1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/resource.c - ACPI device resources interpretation. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #include <linux/acpi.h> 14 #include <linux/device.h> 15 #include <linux/export.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/irq.h> 19 #include <linux/dmi.h> 20 21 #ifdef CONFIG_X86 22 #define valid_IRQ(i) (((i) != 0) && ((i) != 2)) 23 static inline bool acpi_iospace_resource_valid(struct resource *res) 24 { 25 /* On X86 IO space is limited to the [0 - 64K] IO port range */ 26 return res->end < 0x10003; 27 } 28 #else 29 #define valid_IRQ(i) (true) 30 /* 31 * ACPI IO descriptors on arches other than X86 contain MMIO CPU physical 32 * addresses mapping IO space in CPU physical address space, IO space 33 * resources can be placed anywhere in the 64-bit physical address space. 34 */ 35 static inline bool 36 acpi_iospace_resource_valid(struct resource *res) { return true; } 37 #endif 38 39 #if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI) 40 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 41 { 42 return ext_irq->resource_source.string_length == 0 && 43 ext_irq->producer_consumer == ACPI_CONSUMER; 44 } 45 #else 46 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 47 { 48 return true; 49 } 50 #endif 51 52 static bool acpi_dev_resource_len_valid(u64 start, u64 end, u64 len, bool io) 53 { 54 u64 reslen = end - start + 1; 55 56 /* 57 * CHECKME: len might be required to check versus a minimum 58 * length as well. 1 for io is fine, but for memory it does 59 * not make any sense at all. 60 * Note: some BIOSes report incorrect length for ACPI address space 61 * descriptor, so remove check of 'reslen == len' to avoid regression. 62 */ 63 if (len && reslen && start <= end) 64 return true; 65 66 pr_debug("ACPI: invalid or unassigned resource %s [%016llx - %016llx] length [%016llx]\n", 67 io ? "io" : "mem", start, end, len); 68 69 return false; 70 } 71 72 static void acpi_dev_memresource_flags(struct resource *res, u64 len, 73 u8 write_protect) 74 { 75 res->flags = IORESOURCE_MEM; 76 77 if (!acpi_dev_resource_len_valid(res->start, res->end, len, false)) 78 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 79 80 if (write_protect == ACPI_READ_WRITE_MEMORY) 81 res->flags |= IORESOURCE_MEM_WRITEABLE; 82 } 83 84 static void acpi_dev_get_memresource(struct resource *res, u64 start, u64 len, 85 u8 write_protect) 86 { 87 res->start = start; 88 res->end = start + len - 1; 89 acpi_dev_memresource_flags(res, len, write_protect); 90 } 91 92 /** 93 * acpi_dev_resource_memory - Extract ACPI memory resource information. 94 * @ares: Input ACPI resource object. 95 * @res: Output generic resource object. 96 * 97 * Check if the given ACPI resource object represents a memory resource and 98 * if that's the case, use the information in it to populate the generic 99 * resource object pointed to by @res. 100 * 101 * Return: 102 * 1) false with res->flags setting to zero: not the expected resource type 103 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 104 * 3) true: valid assigned resource 105 */ 106 bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res) 107 { 108 struct acpi_resource_memory24 *memory24; 109 struct acpi_resource_memory32 *memory32; 110 struct acpi_resource_fixed_memory32 *fixed_memory32; 111 112 switch (ares->type) { 113 case ACPI_RESOURCE_TYPE_MEMORY24: 114 memory24 = &ares->data.memory24; 115 acpi_dev_get_memresource(res, memory24->minimum << 8, 116 memory24->address_length << 8, 117 memory24->write_protect); 118 break; 119 case ACPI_RESOURCE_TYPE_MEMORY32: 120 memory32 = &ares->data.memory32; 121 acpi_dev_get_memresource(res, memory32->minimum, 122 memory32->address_length, 123 memory32->write_protect); 124 break; 125 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 126 fixed_memory32 = &ares->data.fixed_memory32; 127 acpi_dev_get_memresource(res, fixed_memory32->address, 128 fixed_memory32->address_length, 129 fixed_memory32->write_protect); 130 break; 131 default: 132 res->flags = 0; 133 return false; 134 } 135 136 return !(res->flags & IORESOURCE_DISABLED); 137 } 138 EXPORT_SYMBOL_GPL(acpi_dev_resource_memory); 139 140 static void acpi_dev_ioresource_flags(struct resource *res, u64 len, 141 u8 io_decode, u8 translation_type) 142 { 143 res->flags = IORESOURCE_IO; 144 145 if (!acpi_dev_resource_len_valid(res->start, res->end, len, true)) 146 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 147 148 if (!acpi_iospace_resource_valid(res)) 149 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 150 151 if (io_decode == ACPI_DECODE_16) 152 res->flags |= IORESOURCE_IO_16BIT_ADDR; 153 if (translation_type == ACPI_SPARSE_TRANSLATION) 154 res->flags |= IORESOURCE_IO_SPARSE; 155 } 156 157 static void acpi_dev_get_ioresource(struct resource *res, u64 start, u64 len, 158 u8 io_decode) 159 { 160 res->start = start; 161 res->end = start + len - 1; 162 acpi_dev_ioresource_flags(res, len, io_decode, 0); 163 } 164 165 /** 166 * acpi_dev_resource_io - Extract ACPI I/O resource information. 167 * @ares: Input ACPI resource object. 168 * @res: Output generic resource object. 169 * 170 * Check if the given ACPI resource object represents an I/O resource and 171 * if that's the case, use the information in it to populate the generic 172 * resource object pointed to by @res. 173 * 174 * Return: 175 * 1) false with res->flags setting to zero: not the expected resource type 176 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 177 * 3) true: valid assigned resource 178 */ 179 bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res) 180 { 181 struct acpi_resource_io *io; 182 struct acpi_resource_fixed_io *fixed_io; 183 184 switch (ares->type) { 185 case ACPI_RESOURCE_TYPE_IO: 186 io = &ares->data.io; 187 acpi_dev_get_ioresource(res, io->minimum, 188 io->address_length, 189 io->io_decode); 190 break; 191 case ACPI_RESOURCE_TYPE_FIXED_IO: 192 fixed_io = &ares->data.fixed_io; 193 acpi_dev_get_ioresource(res, fixed_io->address, 194 fixed_io->address_length, 195 ACPI_DECODE_10); 196 break; 197 default: 198 res->flags = 0; 199 return false; 200 } 201 202 return !(res->flags & IORESOURCE_DISABLED); 203 } 204 EXPORT_SYMBOL_GPL(acpi_dev_resource_io); 205 206 static bool acpi_decode_space(struct resource_win *win, 207 struct acpi_resource_address *addr, 208 struct acpi_address64_attribute *attr) 209 { 210 u8 iodec = attr->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16; 211 bool wp = addr->info.mem.write_protect; 212 u64 len = attr->address_length; 213 u64 start, end, offset = 0; 214 struct resource *res = &win->res; 215 216 /* 217 * Filter out invalid descriptor according to ACPI Spec 5.0, section 218 * 6.4.3.5 Address Space Resource Descriptors. 219 */ 220 if ((addr->min_address_fixed != addr->max_address_fixed && len) || 221 (addr->min_address_fixed && addr->max_address_fixed && !len)) 222 pr_debug("ACPI: Invalid address space min_addr_fix %d, max_addr_fix %d, len %llx\n", 223 addr->min_address_fixed, addr->max_address_fixed, len); 224 225 /* 226 * For bridges that translate addresses across the bridge, 227 * translation_offset is the offset that must be added to the 228 * address on the secondary side to obtain the address on the 229 * primary side. Non-bridge devices must list 0 for all Address 230 * Translation offset bits. 231 */ 232 if (addr->producer_consumer == ACPI_PRODUCER) 233 offset = attr->translation_offset; 234 else if (attr->translation_offset) 235 pr_debug("ACPI: translation_offset(%lld) is invalid for non-bridge device.\n", 236 attr->translation_offset); 237 start = attr->minimum + offset; 238 end = attr->maximum + offset; 239 240 win->offset = offset; 241 res->start = start; 242 res->end = end; 243 if (sizeof(resource_size_t) < sizeof(u64) && 244 (offset != win->offset || start != res->start || end != res->end)) { 245 pr_warn("acpi resource window ([%#llx-%#llx] ignored, not CPU addressable)\n", 246 attr->minimum, attr->maximum); 247 return false; 248 } 249 250 switch (addr->resource_type) { 251 case ACPI_MEMORY_RANGE: 252 acpi_dev_memresource_flags(res, len, wp); 253 break; 254 case ACPI_IO_RANGE: 255 acpi_dev_ioresource_flags(res, len, iodec, 256 addr->info.io.translation_type); 257 break; 258 case ACPI_BUS_NUMBER_RANGE: 259 res->flags = IORESOURCE_BUS; 260 break; 261 default: 262 return false; 263 } 264 265 if (addr->producer_consumer == ACPI_PRODUCER) 266 res->flags |= IORESOURCE_WINDOW; 267 268 if (addr->info.mem.caching == ACPI_PREFETCHABLE_MEMORY) 269 res->flags |= IORESOURCE_PREFETCH; 270 271 return !(res->flags & IORESOURCE_DISABLED); 272 } 273 274 /** 275 * acpi_dev_resource_address_space - Extract ACPI address space information. 276 * @ares: Input ACPI resource object. 277 * @win: Output generic resource object. 278 * 279 * Check if the given ACPI resource object represents an address space resource 280 * and if that's the case, use the information in it to populate the generic 281 * resource object pointed to by @win. 282 * 283 * Return: 284 * 1) false with win->res.flags setting to zero: not the expected resource type 285 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 286 * resource 287 * 3) true: valid assigned resource 288 */ 289 bool acpi_dev_resource_address_space(struct acpi_resource *ares, 290 struct resource_win *win) 291 { 292 struct acpi_resource_address64 addr; 293 294 win->res.flags = 0; 295 if (ACPI_FAILURE(acpi_resource_to_address64(ares, &addr))) 296 return false; 297 298 return acpi_decode_space(win, (struct acpi_resource_address *)&addr, 299 &addr.address); 300 } 301 EXPORT_SYMBOL_GPL(acpi_dev_resource_address_space); 302 303 /** 304 * acpi_dev_resource_ext_address_space - Extract ACPI address space information. 305 * @ares: Input ACPI resource object. 306 * @win: Output generic resource object. 307 * 308 * Check if the given ACPI resource object represents an extended address space 309 * resource and if that's the case, use the information in it to populate the 310 * generic resource object pointed to by @win. 311 * 312 * Return: 313 * 1) false with win->res.flags setting to zero: not the expected resource type 314 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 315 * resource 316 * 3) true: valid assigned resource 317 */ 318 bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares, 319 struct resource_win *win) 320 { 321 struct acpi_resource_extended_address64 *ext_addr; 322 323 win->res.flags = 0; 324 if (ares->type != ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64) 325 return false; 326 327 ext_addr = &ares->data.ext_address64; 328 329 return acpi_decode_space(win, (struct acpi_resource_address *)ext_addr, 330 &ext_addr->address); 331 } 332 EXPORT_SYMBOL_GPL(acpi_dev_resource_ext_address_space); 333 334 /** 335 * acpi_dev_irq_flags - Determine IRQ resource flags. 336 * @triggering: Triggering type as provided by ACPI. 337 * @polarity: Interrupt polarity as provided by ACPI. 338 * @shareable: Whether or not the interrupt is shareable. 339 * @wake_capable: Wake capability as provided by ACPI. 340 */ 341 unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable, u8 wake_capable) 342 { 343 unsigned long flags; 344 345 if (triggering == ACPI_LEVEL_SENSITIVE) 346 flags = polarity == ACPI_ACTIVE_LOW ? 347 IORESOURCE_IRQ_LOWLEVEL : IORESOURCE_IRQ_HIGHLEVEL; 348 else 349 flags = polarity == ACPI_ACTIVE_LOW ? 350 IORESOURCE_IRQ_LOWEDGE : IORESOURCE_IRQ_HIGHEDGE; 351 352 if (shareable == ACPI_SHARED) 353 flags |= IORESOURCE_IRQ_SHAREABLE; 354 355 if (wake_capable == ACPI_WAKE_CAPABLE) 356 flags |= IORESOURCE_IRQ_WAKECAPABLE; 357 358 return flags | IORESOURCE_IRQ; 359 } 360 EXPORT_SYMBOL_GPL(acpi_dev_irq_flags); 361 362 /** 363 * acpi_dev_get_irq_type - Determine irq type. 364 * @triggering: Triggering type as provided by ACPI. 365 * @polarity: Interrupt polarity as provided by ACPI. 366 */ 367 unsigned int acpi_dev_get_irq_type(int triggering, int polarity) 368 { 369 switch (polarity) { 370 case ACPI_ACTIVE_LOW: 371 return triggering == ACPI_EDGE_SENSITIVE ? 372 IRQ_TYPE_EDGE_FALLING : 373 IRQ_TYPE_LEVEL_LOW; 374 case ACPI_ACTIVE_HIGH: 375 return triggering == ACPI_EDGE_SENSITIVE ? 376 IRQ_TYPE_EDGE_RISING : 377 IRQ_TYPE_LEVEL_HIGH; 378 case ACPI_ACTIVE_BOTH: 379 if (triggering == ACPI_EDGE_SENSITIVE) 380 return IRQ_TYPE_EDGE_BOTH; 381 fallthrough; 382 default: 383 return IRQ_TYPE_NONE; 384 } 385 } 386 EXPORT_SYMBOL_GPL(acpi_dev_get_irq_type); 387 388 static const struct dmi_system_id medion_laptop[] = { 389 { 390 .ident = "MEDION P15651", 391 .matches = { 392 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 393 DMI_MATCH(DMI_BOARD_NAME, "M15T"), 394 }, 395 }, 396 { 397 .ident = "MEDION S17405", 398 .matches = { 399 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 400 DMI_MATCH(DMI_BOARD_NAME, "M17T"), 401 }, 402 }, 403 { 404 .ident = "MEDION S17413", 405 .matches = { 406 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 407 DMI_MATCH(DMI_BOARD_NAME, "M1xA"), 408 }, 409 }, 410 { } 411 }; 412 413 static const struct dmi_system_id asus_laptop[] = { 414 { 415 .ident = "Asus Vivobook K3402ZA", 416 .matches = { 417 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 418 DMI_MATCH(DMI_BOARD_NAME, "K3402ZA"), 419 }, 420 }, 421 { 422 .ident = "Asus Vivobook K3502ZA", 423 .matches = { 424 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 425 DMI_MATCH(DMI_BOARD_NAME, "K3502ZA"), 426 }, 427 }, 428 { 429 .ident = "Asus Vivobook S5402ZA", 430 .matches = { 431 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 432 DMI_MATCH(DMI_BOARD_NAME, "S5402ZA"), 433 }, 434 }, 435 { 436 .ident = "Asus Vivobook S5602ZA", 437 .matches = { 438 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 439 DMI_MATCH(DMI_BOARD_NAME, "S5602ZA"), 440 }, 441 }, 442 { 443 .ident = "Asus ExpertBook B2402CBA", 444 .matches = { 445 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 446 DMI_MATCH(DMI_BOARD_NAME, "B2402CBA"), 447 }, 448 }, 449 { 450 .ident = "Asus ExpertBook B2402FBA", 451 .matches = { 452 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 453 DMI_MATCH(DMI_BOARD_NAME, "B2402FBA"), 454 }, 455 }, 456 { 457 .ident = "Asus ExpertBook B2502", 458 .matches = { 459 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 460 DMI_MATCH(DMI_BOARD_NAME, "B2502CBA"), 461 }, 462 }, 463 { } 464 }; 465 466 static const struct dmi_system_id lenovo_laptop[] = { 467 { 468 .ident = "LENOVO IdeaPad Flex 5 14ALC7", 469 .matches = { 470 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 471 DMI_MATCH(DMI_PRODUCT_NAME, "82R9"), 472 }, 473 }, 474 { 475 .ident = "LENOVO IdeaPad Flex 5 16ALC7", 476 .matches = { 477 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 478 DMI_MATCH(DMI_PRODUCT_NAME, "82RA"), 479 }, 480 }, 481 { } 482 }; 483 484 static const struct dmi_system_id tongfang_gm_rg[] = { 485 { 486 .ident = "TongFang GMxRGxx/XMG CORE 15 (M22)/TUXEDO Stellaris 15 Gen4 AMD", 487 .matches = { 488 DMI_MATCH(DMI_BOARD_NAME, "GMxRGxx"), 489 }, 490 }, 491 { } 492 }; 493 494 static const struct dmi_system_id maingear_laptop[] = { 495 { 496 .ident = "MAINGEAR Vector Pro 2 15", 497 .matches = { 498 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 499 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-15A3070T"), 500 } 501 }, 502 { 503 .ident = "MAINGEAR Vector Pro 2 17", 504 .matches = { 505 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 506 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-17A3070T"), 507 }, 508 }, 509 { } 510 }; 511 512 struct irq_override_cmp { 513 const struct dmi_system_id *system; 514 unsigned char irq; 515 unsigned char triggering; 516 unsigned char polarity; 517 unsigned char shareable; 518 bool override; 519 }; 520 521 static const struct irq_override_cmp override_table[] = { 522 { medion_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 523 { asus_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 524 { lenovo_laptop, 6, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, true }, 525 { lenovo_laptop, 10, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, true }, 526 { tongfang_gm_rg, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 527 { maingear_laptop, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 528 }; 529 530 static bool acpi_dev_irq_override(u32 gsi, u8 triggering, u8 polarity, 531 u8 shareable) 532 { 533 int i; 534 535 for (i = 0; i < ARRAY_SIZE(override_table); i++) { 536 const struct irq_override_cmp *entry = &override_table[i]; 537 538 if (dmi_check_system(entry->system) && 539 entry->irq == gsi && 540 entry->triggering == triggering && 541 entry->polarity == polarity && 542 entry->shareable == shareable) 543 return entry->override; 544 } 545 546 #ifdef CONFIG_X86 547 /* 548 * IRQ override isn't needed on modern AMD Zen systems and 549 * this override breaks active low IRQs on AMD Ryzen 6000 and 550 * newer systems. Skip it. 551 */ 552 if (boot_cpu_has(X86_FEATURE_ZEN)) 553 return false; 554 #endif 555 556 return true; 557 } 558 559 static void acpi_dev_get_irqresource(struct resource *res, u32 gsi, 560 u8 triggering, u8 polarity, u8 shareable, 561 u8 wake_capable, bool check_override) 562 { 563 int irq, p, t; 564 565 if (!valid_IRQ(gsi)) { 566 irqresource_disabled(res, gsi); 567 return; 568 } 569 570 /* 571 * In IO-APIC mode, use overridden attribute. Two reasons: 572 * 1. BIOS bug in DSDT 573 * 2. BIOS uses IO-APIC mode Interrupt Source Override 574 * 575 * We do this only if we are dealing with IRQ() or IRQNoFlags() 576 * resource (the legacy ISA resources). With modern ACPI 5 devices 577 * using extended IRQ descriptors we take the IRQ configuration 578 * from _CRS directly. 579 */ 580 if (check_override && 581 acpi_dev_irq_override(gsi, triggering, polarity, shareable) && 582 !acpi_get_override_irq(gsi, &t, &p)) { 583 u8 trig = t ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE; 584 u8 pol = p ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; 585 586 if (triggering != trig || polarity != pol) { 587 pr_warn("ACPI: IRQ %d override to %s%s, %s%s\n", gsi, 588 t ? "level" : "edge", 589 trig == triggering ? "" : "(!)", 590 p ? "low" : "high", 591 pol == polarity ? "" : "(!)"); 592 triggering = trig; 593 polarity = pol; 594 } 595 } 596 597 res->flags = acpi_dev_irq_flags(triggering, polarity, shareable, wake_capable); 598 irq = acpi_register_gsi(NULL, gsi, triggering, polarity); 599 if (irq >= 0) { 600 res->start = irq; 601 res->end = irq; 602 } else { 603 irqresource_disabled(res, gsi); 604 } 605 } 606 607 /** 608 * acpi_dev_resource_interrupt - Extract ACPI interrupt resource information. 609 * @ares: Input ACPI resource object. 610 * @index: Index into the array of GSIs represented by the resource. 611 * @res: Output generic resource object. 612 * 613 * Check if the given ACPI resource object represents an interrupt resource 614 * and @index does not exceed the resource's interrupt count (true is returned 615 * in that case regardless of the results of the other checks)). If that's the 616 * case, register the GSI corresponding to @index from the array of interrupts 617 * represented by the resource and populate the generic resource object pointed 618 * to by @res accordingly. If the registration of the GSI is not successful, 619 * IORESOURCE_DISABLED will be set it that object's flags. 620 * 621 * Return: 622 * 1) false with res->flags setting to zero: not the expected resource type 623 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 624 * 3) true: valid assigned resource 625 */ 626 bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index, 627 struct resource *res) 628 { 629 struct acpi_resource_irq *irq; 630 struct acpi_resource_extended_irq *ext_irq; 631 632 switch (ares->type) { 633 case ACPI_RESOURCE_TYPE_IRQ: 634 /* 635 * Per spec, only one interrupt per descriptor is allowed in 636 * _CRS, but some firmware violates this, so parse them all. 637 */ 638 irq = &ares->data.irq; 639 if (index >= irq->interrupt_count) { 640 irqresource_disabled(res, 0); 641 return false; 642 } 643 acpi_dev_get_irqresource(res, irq->interrupts[index], 644 irq->triggering, irq->polarity, 645 irq->shareable, irq->wake_capable, 646 true); 647 break; 648 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 649 ext_irq = &ares->data.extended_irq; 650 if (index >= ext_irq->interrupt_count) { 651 irqresource_disabled(res, 0); 652 return false; 653 } 654 if (is_gsi(ext_irq)) 655 acpi_dev_get_irqresource(res, ext_irq->interrupts[index], 656 ext_irq->triggering, ext_irq->polarity, 657 ext_irq->shareable, ext_irq->wake_capable, 658 false); 659 else 660 irqresource_disabled(res, 0); 661 break; 662 default: 663 res->flags = 0; 664 return false; 665 } 666 667 return true; 668 } 669 EXPORT_SYMBOL_GPL(acpi_dev_resource_interrupt); 670 671 /** 672 * acpi_dev_free_resource_list - Free resource from %acpi_dev_get_resources(). 673 * @list: The head of the resource list to free. 674 */ 675 void acpi_dev_free_resource_list(struct list_head *list) 676 { 677 resource_list_free(list); 678 } 679 EXPORT_SYMBOL_GPL(acpi_dev_free_resource_list); 680 681 struct res_proc_context { 682 struct list_head *list; 683 int (*preproc)(struct acpi_resource *, void *); 684 void *preproc_data; 685 int count; 686 int error; 687 }; 688 689 static acpi_status acpi_dev_new_resource_entry(struct resource_win *win, 690 struct res_proc_context *c) 691 { 692 struct resource_entry *rentry; 693 694 rentry = resource_list_create_entry(NULL, 0); 695 if (!rentry) { 696 c->error = -ENOMEM; 697 return AE_NO_MEMORY; 698 } 699 *rentry->res = win->res; 700 rentry->offset = win->offset; 701 resource_list_add_tail(rentry, c->list); 702 c->count++; 703 return AE_OK; 704 } 705 706 static acpi_status acpi_dev_process_resource(struct acpi_resource *ares, 707 void *context) 708 { 709 struct res_proc_context *c = context; 710 struct resource_win win; 711 struct resource *res = &win.res; 712 int i; 713 714 if (c->preproc) { 715 int ret; 716 717 ret = c->preproc(ares, c->preproc_data); 718 if (ret < 0) { 719 c->error = ret; 720 return AE_ABORT_METHOD; 721 } else if (ret > 0) { 722 return AE_OK; 723 } 724 } 725 726 memset(&win, 0, sizeof(win)); 727 728 if (acpi_dev_resource_memory(ares, res) 729 || acpi_dev_resource_io(ares, res) 730 || acpi_dev_resource_address_space(ares, &win) 731 || acpi_dev_resource_ext_address_space(ares, &win)) 732 return acpi_dev_new_resource_entry(&win, c); 733 734 for (i = 0; acpi_dev_resource_interrupt(ares, i, res); i++) { 735 acpi_status status; 736 737 status = acpi_dev_new_resource_entry(&win, c); 738 if (ACPI_FAILURE(status)) 739 return status; 740 } 741 742 return AE_OK; 743 } 744 745 static int __acpi_dev_get_resources(struct acpi_device *adev, 746 struct list_head *list, 747 int (*preproc)(struct acpi_resource *, void *), 748 void *preproc_data, char *method) 749 { 750 struct res_proc_context c; 751 acpi_status status; 752 753 if (!adev || !adev->handle || !list_empty(list)) 754 return -EINVAL; 755 756 if (!acpi_has_method(adev->handle, method)) 757 return 0; 758 759 c.list = list; 760 c.preproc = preproc; 761 c.preproc_data = preproc_data; 762 c.count = 0; 763 c.error = 0; 764 status = acpi_walk_resources(adev->handle, method, 765 acpi_dev_process_resource, &c); 766 if (ACPI_FAILURE(status)) { 767 acpi_dev_free_resource_list(list); 768 return c.error ? c.error : -EIO; 769 } 770 771 return c.count; 772 } 773 774 /** 775 * acpi_dev_get_resources - Get current resources of a device. 776 * @adev: ACPI device node to get the resources for. 777 * @list: Head of the resultant list of resources (must be empty). 778 * @preproc: The caller's preprocessing routine. 779 * @preproc_data: Pointer passed to the caller's preprocessing routine. 780 * 781 * Evaluate the _CRS method for the given device node and process its output by 782 * (1) executing the @preproc() routine provided by the caller, passing the 783 * resource pointer and @preproc_data to it as arguments, for each ACPI resource 784 * returned and (2) converting all of the returned ACPI resources into struct 785 * resource objects if possible. If the return value of @preproc() in step (1) 786 * is different from 0, step (2) is not applied to the given ACPI resource and 787 * if that value is negative, the whole processing is aborted and that value is 788 * returned as the final error code. 789 * 790 * The resultant struct resource objects are put on the list pointed to by 791 * @list, that must be empty initially, as members of struct resource_entry 792 * objects. Callers of this routine should use %acpi_dev_free_resource_list() to 793 * free that list. 794 * 795 * The number of resources in the output list is returned on success, an error 796 * code reflecting the error condition is returned otherwise. 797 */ 798 int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list, 799 int (*preproc)(struct acpi_resource *, void *), 800 void *preproc_data) 801 { 802 return __acpi_dev_get_resources(adev, list, preproc, preproc_data, 803 METHOD_NAME__CRS); 804 } 805 EXPORT_SYMBOL_GPL(acpi_dev_get_resources); 806 807 static int is_memory(struct acpi_resource *ares, void *not_used) 808 { 809 struct resource_win win; 810 struct resource *res = &win.res; 811 812 memset(&win, 0, sizeof(win)); 813 814 if (acpi_dev_filter_resource_type(ares, IORESOURCE_MEM)) 815 return 1; 816 817 return !(acpi_dev_resource_memory(ares, res) 818 || acpi_dev_resource_address_space(ares, &win) 819 || acpi_dev_resource_ext_address_space(ares, &win)); 820 } 821 822 /** 823 * acpi_dev_get_dma_resources - Get current DMA resources of a device. 824 * @adev: ACPI device node to get the resources for. 825 * @list: Head of the resultant list of resources (must be empty). 826 * 827 * Evaluate the _DMA method for the given device node and process its 828 * output. 829 * 830 * The resultant struct resource objects are put on the list pointed to 831 * by @list, that must be empty initially, as members of struct 832 * resource_entry objects. Callers of this routine should use 833 * %acpi_dev_free_resource_list() to free that list. 834 * 835 * The number of resources in the output list is returned on success, 836 * an error code reflecting the error condition is returned otherwise. 837 */ 838 int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list) 839 { 840 return __acpi_dev_get_resources(adev, list, is_memory, NULL, 841 METHOD_NAME__DMA); 842 } 843 EXPORT_SYMBOL_GPL(acpi_dev_get_dma_resources); 844 845 /** 846 * acpi_dev_get_memory_resources - Get current memory resources of a device. 847 * @adev: ACPI device node to get the resources for. 848 * @list: Head of the resultant list of resources (must be empty). 849 * 850 * This is a helper function that locates all memory type resources of @adev 851 * with acpi_dev_get_resources(). 852 * 853 * The number of resources in the output list is returned on success, an error 854 * code reflecting the error condition is returned otherwise. 855 */ 856 int acpi_dev_get_memory_resources(struct acpi_device *adev, struct list_head *list) 857 { 858 return acpi_dev_get_resources(adev, list, is_memory, NULL); 859 } 860 EXPORT_SYMBOL_GPL(acpi_dev_get_memory_resources); 861 862 /** 863 * acpi_dev_filter_resource_type - Filter ACPI resource according to resource 864 * types 865 * @ares: Input ACPI resource object. 866 * @types: Valid resource types of IORESOURCE_XXX 867 * 868 * This is a helper function to support acpi_dev_get_resources(), which filters 869 * ACPI resource objects according to resource types. 870 */ 871 int acpi_dev_filter_resource_type(struct acpi_resource *ares, 872 unsigned long types) 873 { 874 unsigned long type = 0; 875 876 switch (ares->type) { 877 case ACPI_RESOURCE_TYPE_MEMORY24: 878 case ACPI_RESOURCE_TYPE_MEMORY32: 879 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 880 type = IORESOURCE_MEM; 881 break; 882 case ACPI_RESOURCE_TYPE_IO: 883 case ACPI_RESOURCE_TYPE_FIXED_IO: 884 type = IORESOURCE_IO; 885 break; 886 case ACPI_RESOURCE_TYPE_IRQ: 887 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 888 type = IORESOURCE_IRQ; 889 break; 890 case ACPI_RESOURCE_TYPE_DMA: 891 case ACPI_RESOURCE_TYPE_FIXED_DMA: 892 type = IORESOURCE_DMA; 893 break; 894 case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: 895 type = IORESOURCE_REG; 896 break; 897 case ACPI_RESOURCE_TYPE_ADDRESS16: 898 case ACPI_RESOURCE_TYPE_ADDRESS32: 899 case ACPI_RESOURCE_TYPE_ADDRESS64: 900 case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: 901 if (ares->data.address.resource_type == ACPI_MEMORY_RANGE) 902 type = IORESOURCE_MEM; 903 else if (ares->data.address.resource_type == ACPI_IO_RANGE) 904 type = IORESOURCE_IO; 905 else if (ares->data.address.resource_type == 906 ACPI_BUS_NUMBER_RANGE) 907 type = IORESOURCE_BUS; 908 break; 909 default: 910 break; 911 } 912 913 return (type & types) ? 0 : 1; 914 } 915 EXPORT_SYMBOL_GPL(acpi_dev_filter_resource_type); 916 917 static int acpi_dev_consumes_res(struct acpi_device *adev, struct resource *res) 918 { 919 struct list_head resource_list; 920 struct resource_entry *rentry; 921 int ret, found = 0; 922 923 INIT_LIST_HEAD(&resource_list); 924 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL); 925 if (ret < 0) 926 return 0; 927 928 list_for_each_entry(rentry, &resource_list, node) { 929 if (resource_contains(rentry->res, res)) { 930 found = 1; 931 break; 932 } 933 934 } 935 936 acpi_dev_free_resource_list(&resource_list); 937 return found; 938 } 939 940 static acpi_status acpi_res_consumer_cb(acpi_handle handle, u32 depth, 941 void *context, void **ret) 942 { 943 struct resource *res = context; 944 struct acpi_device **consumer = (struct acpi_device **) ret; 945 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 946 947 if (!adev) 948 return AE_OK; 949 950 if (acpi_dev_consumes_res(adev, res)) { 951 *consumer = adev; 952 return AE_CTRL_TERMINATE; 953 } 954 955 return AE_OK; 956 } 957 958 /** 959 * acpi_resource_consumer - Find the ACPI device that consumes @res. 960 * @res: Resource to search for. 961 * 962 * Search the current resource settings (_CRS) of every ACPI device node 963 * for @res. If we find an ACPI device whose _CRS includes @res, return 964 * it. Otherwise, return NULL. 965 */ 966 struct acpi_device *acpi_resource_consumer(struct resource *res) 967 { 968 struct acpi_device *consumer = NULL; 969 970 acpi_get_devices(NULL, acpi_res_consumer_cb, res, (void **) &consumer); 971 return consumer; 972 } 973