1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/resource.c - ACPI device resources interpretation. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #include <linux/acpi.h> 14 #include <linux/device.h> 15 #include <linux/export.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/irq.h> 19 #include <linux/dmi.h> 20 21 #ifdef CONFIG_X86 22 #define valid_IRQ(i) (((i) != 0) && ((i) != 2)) 23 static inline bool acpi_iospace_resource_valid(struct resource *res) 24 { 25 /* On X86 IO space is limited to the [0 - 64K] IO port range */ 26 return res->end < 0x10003; 27 } 28 #else 29 #define valid_IRQ(i) (true) 30 /* 31 * ACPI IO descriptors on arches other than X86 contain MMIO CPU physical 32 * addresses mapping IO space in CPU physical address space, IO space 33 * resources can be placed anywhere in the 64-bit physical address space. 34 */ 35 static inline bool 36 acpi_iospace_resource_valid(struct resource *res) { return true; } 37 #endif 38 39 #if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI) 40 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 41 { 42 return ext_irq->resource_source.string_length == 0 && 43 ext_irq->producer_consumer == ACPI_CONSUMER; 44 } 45 #else 46 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 47 { 48 return true; 49 } 50 #endif 51 52 static bool acpi_dev_resource_len_valid(u64 start, u64 end, u64 len, bool io) 53 { 54 u64 reslen = end - start + 1; 55 56 /* 57 * CHECKME: len might be required to check versus a minimum 58 * length as well. 1 for io is fine, but for memory it does 59 * not make any sense at all. 60 * Note: some BIOSes report incorrect length for ACPI address space 61 * descriptor, so remove check of 'reslen == len' to avoid regression. 62 */ 63 if (len && reslen && start <= end) 64 return true; 65 66 pr_debug("ACPI: invalid or unassigned resource %s [%016llx - %016llx] length [%016llx]\n", 67 io ? "io" : "mem", start, end, len); 68 69 return false; 70 } 71 72 static void acpi_dev_memresource_flags(struct resource *res, u64 len, 73 u8 write_protect) 74 { 75 res->flags = IORESOURCE_MEM; 76 77 if (!acpi_dev_resource_len_valid(res->start, res->end, len, false)) 78 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 79 80 if (write_protect == ACPI_READ_WRITE_MEMORY) 81 res->flags |= IORESOURCE_MEM_WRITEABLE; 82 } 83 84 static void acpi_dev_get_memresource(struct resource *res, u64 start, u64 len, 85 u8 write_protect) 86 { 87 res->start = start; 88 res->end = start + len - 1; 89 acpi_dev_memresource_flags(res, len, write_protect); 90 } 91 92 /** 93 * acpi_dev_resource_memory - Extract ACPI memory resource information. 94 * @ares: Input ACPI resource object. 95 * @res: Output generic resource object. 96 * 97 * Check if the given ACPI resource object represents a memory resource and 98 * if that's the case, use the information in it to populate the generic 99 * resource object pointed to by @res. 100 * 101 * Return: 102 * 1) false with res->flags setting to zero: not the expected resource type 103 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 104 * 3) true: valid assigned resource 105 */ 106 bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res) 107 { 108 struct acpi_resource_memory24 *memory24; 109 struct acpi_resource_memory32 *memory32; 110 struct acpi_resource_fixed_memory32 *fixed_memory32; 111 112 switch (ares->type) { 113 case ACPI_RESOURCE_TYPE_MEMORY24: 114 memory24 = &ares->data.memory24; 115 acpi_dev_get_memresource(res, memory24->minimum << 8, 116 memory24->address_length << 8, 117 memory24->write_protect); 118 break; 119 case ACPI_RESOURCE_TYPE_MEMORY32: 120 memory32 = &ares->data.memory32; 121 acpi_dev_get_memresource(res, memory32->minimum, 122 memory32->address_length, 123 memory32->write_protect); 124 break; 125 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 126 fixed_memory32 = &ares->data.fixed_memory32; 127 acpi_dev_get_memresource(res, fixed_memory32->address, 128 fixed_memory32->address_length, 129 fixed_memory32->write_protect); 130 break; 131 default: 132 res->flags = 0; 133 return false; 134 } 135 136 return !(res->flags & IORESOURCE_DISABLED); 137 } 138 EXPORT_SYMBOL_GPL(acpi_dev_resource_memory); 139 140 static void acpi_dev_ioresource_flags(struct resource *res, u64 len, 141 u8 io_decode, u8 translation_type) 142 { 143 res->flags = IORESOURCE_IO; 144 145 if (!acpi_dev_resource_len_valid(res->start, res->end, len, true)) 146 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 147 148 if (!acpi_iospace_resource_valid(res)) 149 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 150 151 if (io_decode == ACPI_DECODE_16) 152 res->flags |= IORESOURCE_IO_16BIT_ADDR; 153 if (translation_type == ACPI_SPARSE_TRANSLATION) 154 res->flags |= IORESOURCE_IO_SPARSE; 155 } 156 157 static void acpi_dev_get_ioresource(struct resource *res, u64 start, u64 len, 158 u8 io_decode) 159 { 160 res->start = start; 161 res->end = start + len - 1; 162 acpi_dev_ioresource_flags(res, len, io_decode, 0); 163 } 164 165 /** 166 * acpi_dev_resource_io - Extract ACPI I/O resource information. 167 * @ares: Input ACPI resource object. 168 * @res: Output generic resource object. 169 * 170 * Check if the given ACPI resource object represents an I/O resource and 171 * if that's the case, use the information in it to populate the generic 172 * resource object pointed to by @res. 173 * 174 * Return: 175 * 1) false with res->flags setting to zero: not the expected resource type 176 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 177 * 3) true: valid assigned resource 178 */ 179 bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res) 180 { 181 struct acpi_resource_io *io; 182 struct acpi_resource_fixed_io *fixed_io; 183 184 switch (ares->type) { 185 case ACPI_RESOURCE_TYPE_IO: 186 io = &ares->data.io; 187 acpi_dev_get_ioresource(res, io->minimum, 188 io->address_length, 189 io->io_decode); 190 break; 191 case ACPI_RESOURCE_TYPE_FIXED_IO: 192 fixed_io = &ares->data.fixed_io; 193 acpi_dev_get_ioresource(res, fixed_io->address, 194 fixed_io->address_length, 195 ACPI_DECODE_10); 196 break; 197 default: 198 res->flags = 0; 199 return false; 200 } 201 202 return !(res->flags & IORESOURCE_DISABLED); 203 } 204 EXPORT_SYMBOL_GPL(acpi_dev_resource_io); 205 206 static bool acpi_decode_space(struct resource_win *win, 207 struct acpi_resource_address *addr, 208 struct acpi_address64_attribute *attr) 209 { 210 u8 iodec = attr->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16; 211 bool wp = addr->info.mem.write_protect; 212 u64 len = attr->address_length; 213 u64 start, end, offset = 0; 214 struct resource *res = &win->res; 215 216 /* 217 * Filter out invalid descriptor according to ACPI Spec 5.0, section 218 * 6.4.3.5 Address Space Resource Descriptors. 219 */ 220 if ((addr->min_address_fixed != addr->max_address_fixed && len) || 221 (addr->min_address_fixed && addr->max_address_fixed && !len)) 222 pr_debug("ACPI: Invalid address space min_addr_fix %d, max_addr_fix %d, len %llx\n", 223 addr->min_address_fixed, addr->max_address_fixed, len); 224 225 /* 226 * For bridges that translate addresses across the bridge, 227 * translation_offset is the offset that must be added to the 228 * address on the secondary side to obtain the address on the 229 * primary side. Non-bridge devices must list 0 for all Address 230 * Translation offset bits. 231 */ 232 if (addr->producer_consumer == ACPI_PRODUCER) 233 offset = attr->translation_offset; 234 else if (attr->translation_offset) 235 pr_debug("ACPI: translation_offset(%lld) is invalid for non-bridge device.\n", 236 attr->translation_offset); 237 start = attr->minimum + offset; 238 end = attr->maximum + offset; 239 240 win->offset = offset; 241 res->start = start; 242 res->end = end; 243 if (sizeof(resource_size_t) < sizeof(u64) && 244 (offset != win->offset || start != res->start || end != res->end)) { 245 pr_warn("acpi resource window ([%#llx-%#llx] ignored, not CPU addressable)\n", 246 attr->minimum, attr->maximum); 247 return false; 248 } 249 250 switch (addr->resource_type) { 251 case ACPI_MEMORY_RANGE: 252 acpi_dev_memresource_flags(res, len, wp); 253 break; 254 case ACPI_IO_RANGE: 255 acpi_dev_ioresource_flags(res, len, iodec, 256 addr->info.io.translation_type); 257 break; 258 case ACPI_BUS_NUMBER_RANGE: 259 res->flags = IORESOURCE_BUS; 260 break; 261 default: 262 return false; 263 } 264 265 if (addr->producer_consumer == ACPI_PRODUCER) 266 res->flags |= IORESOURCE_WINDOW; 267 268 if (addr->info.mem.caching == ACPI_PREFETCHABLE_MEMORY) 269 res->flags |= IORESOURCE_PREFETCH; 270 271 return !(res->flags & IORESOURCE_DISABLED); 272 } 273 274 /** 275 * acpi_dev_resource_address_space - Extract ACPI address space information. 276 * @ares: Input ACPI resource object. 277 * @win: Output generic resource object. 278 * 279 * Check if the given ACPI resource object represents an address space resource 280 * and if that's the case, use the information in it to populate the generic 281 * resource object pointed to by @win. 282 * 283 * Return: 284 * 1) false with win->res.flags setting to zero: not the expected resource type 285 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 286 * resource 287 * 3) true: valid assigned resource 288 */ 289 bool acpi_dev_resource_address_space(struct acpi_resource *ares, 290 struct resource_win *win) 291 { 292 struct acpi_resource_address64 addr; 293 294 win->res.flags = 0; 295 if (ACPI_FAILURE(acpi_resource_to_address64(ares, &addr))) 296 return false; 297 298 return acpi_decode_space(win, (struct acpi_resource_address *)&addr, 299 &addr.address); 300 } 301 EXPORT_SYMBOL_GPL(acpi_dev_resource_address_space); 302 303 /** 304 * acpi_dev_resource_ext_address_space - Extract ACPI address space information. 305 * @ares: Input ACPI resource object. 306 * @win: Output generic resource object. 307 * 308 * Check if the given ACPI resource object represents an extended address space 309 * resource and if that's the case, use the information in it to populate the 310 * generic resource object pointed to by @win. 311 * 312 * Return: 313 * 1) false with win->res.flags setting to zero: not the expected resource type 314 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 315 * resource 316 * 3) true: valid assigned resource 317 */ 318 bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares, 319 struct resource_win *win) 320 { 321 struct acpi_resource_extended_address64 *ext_addr; 322 323 win->res.flags = 0; 324 if (ares->type != ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64) 325 return false; 326 327 ext_addr = &ares->data.ext_address64; 328 329 return acpi_decode_space(win, (struct acpi_resource_address *)ext_addr, 330 &ext_addr->address); 331 } 332 EXPORT_SYMBOL_GPL(acpi_dev_resource_ext_address_space); 333 334 /** 335 * acpi_dev_irq_flags - Determine IRQ resource flags. 336 * @triggering: Triggering type as provided by ACPI. 337 * @polarity: Interrupt polarity as provided by ACPI. 338 * @shareable: Whether or not the interrupt is shareable. 339 * @wake_capable: Wake capability as provided by ACPI. 340 */ 341 unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable, u8 wake_capable) 342 { 343 unsigned long flags; 344 345 if (triggering == ACPI_LEVEL_SENSITIVE) 346 flags = polarity == ACPI_ACTIVE_LOW ? 347 IORESOURCE_IRQ_LOWLEVEL : IORESOURCE_IRQ_HIGHLEVEL; 348 else 349 flags = polarity == ACPI_ACTIVE_LOW ? 350 IORESOURCE_IRQ_LOWEDGE : IORESOURCE_IRQ_HIGHEDGE; 351 352 if (shareable == ACPI_SHARED) 353 flags |= IORESOURCE_IRQ_SHAREABLE; 354 355 if (wake_capable == ACPI_WAKE_CAPABLE) 356 flags |= IORESOURCE_IRQ_WAKECAPABLE; 357 358 return flags | IORESOURCE_IRQ; 359 } 360 EXPORT_SYMBOL_GPL(acpi_dev_irq_flags); 361 362 /** 363 * acpi_dev_get_irq_type - Determine irq type. 364 * @triggering: Triggering type as provided by ACPI. 365 * @polarity: Interrupt polarity as provided by ACPI. 366 */ 367 unsigned int acpi_dev_get_irq_type(int triggering, int polarity) 368 { 369 switch (polarity) { 370 case ACPI_ACTIVE_LOW: 371 return triggering == ACPI_EDGE_SENSITIVE ? 372 IRQ_TYPE_EDGE_FALLING : 373 IRQ_TYPE_LEVEL_LOW; 374 case ACPI_ACTIVE_HIGH: 375 return triggering == ACPI_EDGE_SENSITIVE ? 376 IRQ_TYPE_EDGE_RISING : 377 IRQ_TYPE_LEVEL_HIGH; 378 case ACPI_ACTIVE_BOTH: 379 if (triggering == ACPI_EDGE_SENSITIVE) 380 return IRQ_TYPE_EDGE_BOTH; 381 fallthrough; 382 default: 383 return IRQ_TYPE_NONE; 384 } 385 } 386 EXPORT_SYMBOL_GPL(acpi_dev_get_irq_type); 387 388 static const struct dmi_system_id medion_laptop[] = { 389 { 390 .ident = "MEDION P15651", 391 .matches = { 392 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 393 DMI_MATCH(DMI_BOARD_NAME, "M15T"), 394 }, 395 }, 396 { 397 .ident = "MEDION S17405", 398 .matches = { 399 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 400 DMI_MATCH(DMI_BOARD_NAME, "M17T"), 401 }, 402 }, 403 { } 404 }; 405 406 static const struct dmi_system_id asus_laptop[] = { 407 { 408 .ident = "Asus Vivobook K3402ZA", 409 .matches = { 410 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 411 DMI_MATCH(DMI_BOARD_NAME, "K3402ZA"), 412 }, 413 }, 414 { 415 .ident = "Asus Vivobook K3502ZA", 416 .matches = { 417 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 418 DMI_MATCH(DMI_BOARD_NAME, "K3502ZA"), 419 }, 420 }, 421 { 422 .ident = "Asus Vivobook S5402ZA", 423 .matches = { 424 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 425 DMI_MATCH(DMI_BOARD_NAME, "S5402ZA"), 426 }, 427 }, 428 { 429 .ident = "Asus Vivobook S5602ZA", 430 .matches = { 431 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 432 DMI_MATCH(DMI_BOARD_NAME, "S5602ZA"), 433 }, 434 }, 435 { 436 .ident = "Asus ExpertBook B2402CBA", 437 .matches = { 438 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 439 DMI_MATCH(DMI_BOARD_NAME, "B2402CBA"), 440 }, 441 }, 442 { 443 .ident = "Asus ExpertBook B2402FBA", 444 .matches = { 445 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 446 DMI_MATCH(DMI_BOARD_NAME, "B2402FBA"), 447 }, 448 }, 449 { 450 .ident = "Asus ExpertBook B2502", 451 .matches = { 452 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 453 DMI_MATCH(DMI_BOARD_NAME, "B2502CBA"), 454 }, 455 }, 456 { } 457 }; 458 459 static const struct dmi_system_id lenovo_laptop[] = { 460 { 461 .ident = "LENOVO IdeaPad Flex 5 14ALC7", 462 .matches = { 463 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 464 DMI_MATCH(DMI_PRODUCT_NAME, "82R9"), 465 }, 466 }, 467 { 468 .ident = "LENOVO IdeaPad Flex 5 16ALC7", 469 .matches = { 470 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), 471 DMI_MATCH(DMI_PRODUCT_NAME, "82RA"), 472 }, 473 }, 474 { } 475 }; 476 477 static const struct dmi_system_id tongfang_gm_rg[] = { 478 { 479 .ident = "TongFang GMxRGxx/XMG CORE 15 (M22)/TUXEDO Stellaris 15 Gen4 AMD", 480 .matches = { 481 DMI_MATCH(DMI_BOARD_NAME, "GMxRGxx"), 482 }, 483 }, 484 { } 485 }; 486 487 static const struct dmi_system_id maingear_laptop[] = { 488 { 489 .ident = "MAINGEAR Vector Pro 2 15", 490 .matches = { 491 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 492 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-15A3070T"), 493 } 494 }, 495 { 496 .ident = "MAINGEAR Vector Pro 2 17", 497 .matches = { 498 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 499 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-17A3070T"), 500 }, 501 }, 502 { } 503 }; 504 505 struct irq_override_cmp { 506 const struct dmi_system_id *system; 507 unsigned char irq; 508 unsigned char triggering; 509 unsigned char polarity; 510 unsigned char shareable; 511 bool override; 512 }; 513 514 static const struct irq_override_cmp override_table[] = { 515 { medion_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 516 { asus_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 517 { lenovo_laptop, 6, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, true }, 518 { lenovo_laptop, 10, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, true }, 519 { tongfang_gm_rg, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 520 { maingear_laptop, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 521 }; 522 523 static bool acpi_dev_irq_override(u32 gsi, u8 triggering, u8 polarity, 524 u8 shareable) 525 { 526 int i; 527 528 for (i = 0; i < ARRAY_SIZE(override_table); i++) { 529 const struct irq_override_cmp *entry = &override_table[i]; 530 531 if (dmi_check_system(entry->system) && 532 entry->irq == gsi && 533 entry->triggering == triggering && 534 entry->polarity == polarity && 535 entry->shareable == shareable) 536 return entry->override; 537 } 538 539 #ifdef CONFIG_X86 540 /* 541 * IRQ override isn't needed on modern AMD Zen systems and 542 * this override breaks active low IRQs on AMD Ryzen 6000 and 543 * newer systems. Skip it. 544 */ 545 if (boot_cpu_has(X86_FEATURE_ZEN)) 546 return false; 547 #endif 548 549 return true; 550 } 551 552 static void acpi_dev_get_irqresource(struct resource *res, u32 gsi, 553 u8 triggering, u8 polarity, u8 shareable, 554 u8 wake_capable, bool check_override) 555 { 556 int irq, p, t; 557 558 if (!valid_IRQ(gsi)) { 559 irqresource_disabled(res, gsi); 560 return; 561 } 562 563 /* 564 * In IO-APIC mode, use overridden attribute. Two reasons: 565 * 1. BIOS bug in DSDT 566 * 2. BIOS uses IO-APIC mode Interrupt Source Override 567 * 568 * We do this only if we are dealing with IRQ() or IRQNoFlags() 569 * resource (the legacy ISA resources). With modern ACPI 5 devices 570 * using extended IRQ descriptors we take the IRQ configuration 571 * from _CRS directly. 572 */ 573 if (check_override && 574 acpi_dev_irq_override(gsi, triggering, polarity, shareable) && 575 !acpi_get_override_irq(gsi, &t, &p)) { 576 u8 trig = t ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE; 577 u8 pol = p ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; 578 579 if (triggering != trig || polarity != pol) { 580 pr_warn("ACPI: IRQ %d override to %s%s, %s%s\n", gsi, 581 t ? "level" : "edge", 582 trig == triggering ? "" : "(!)", 583 p ? "low" : "high", 584 pol == polarity ? "" : "(!)"); 585 triggering = trig; 586 polarity = pol; 587 } 588 } 589 590 res->flags = acpi_dev_irq_flags(triggering, polarity, shareable, wake_capable); 591 irq = acpi_register_gsi(NULL, gsi, triggering, polarity); 592 if (irq >= 0) { 593 res->start = irq; 594 res->end = irq; 595 } else { 596 irqresource_disabled(res, gsi); 597 } 598 } 599 600 /** 601 * acpi_dev_resource_interrupt - Extract ACPI interrupt resource information. 602 * @ares: Input ACPI resource object. 603 * @index: Index into the array of GSIs represented by the resource. 604 * @res: Output generic resource object. 605 * 606 * Check if the given ACPI resource object represents an interrupt resource 607 * and @index does not exceed the resource's interrupt count (true is returned 608 * in that case regardless of the results of the other checks)). If that's the 609 * case, register the GSI corresponding to @index from the array of interrupts 610 * represented by the resource and populate the generic resource object pointed 611 * to by @res accordingly. If the registration of the GSI is not successful, 612 * IORESOURCE_DISABLED will be set it that object's flags. 613 * 614 * Return: 615 * 1) false with res->flags setting to zero: not the expected resource type 616 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 617 * 3) true: valid assigned resource 618 */ 619 bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index, 620 struct resource *res) 621 { 622 struct acpi_resource_irq *irq; 623 struct acpi_resource_extended_irq *ext_irq; 624 625 switch (ares->type) { 626 case ACPI_RESOURCE_TYPE_IRQ: 627 /* 628 * Per spec, only one interrupt per descriptor is allowed in 629 * _CRS, but some firmware violates this, so parse them all. 630 */ 631 irq = &ares->data.irq; 632 if (index >= irq->interrupt_count) { 633 irqresource_disabled(res, 0); 634 return false; 635 } 636 acpi_dev_get_irqresource(res, irq->interrupts[index], 637 irq->triggering, irq->polarity, 638 irq->shareable, irq->wake_capable, 639 true); 640 break; 641 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 642 ext_irq = &ares->data.extended_irq; 643 if (index >= ext_irq->interrupt_count) { 644 irqresource_disabled(res, 0); 645 return false; 646 } 647 if (is_gsi(ext_irq)) 648 acpi_dev_get_irqresource(res, ext_irq->interrupts[index], 649 ext_irq->triggering, ext_irq->polarity, 650 ext_irq->shareable, ext_irq->wake_capable, 651 false); 652 else 653 irqresource_disabled(res, 0); 654 break; 655 default: 656 res->flags = 0; 657 return false; 658 } 659 660 return true; 661 } 662 EXPORT_SYMBOL_GPL(acpi_dev_resource_interrupt); 663 664 /** 665 * acpi_dev_free_resource_list - Free resource from %acpi_dev_get_resources(). 666 * @list: The head of the resource list to free. 667 */ 668 void acpi_dev_free_resource_list(struct list_head *list) 669 { 670 resource_list_free(list); 671 } 672 EXPORT_SYMBOL_GPL(acpi_dev_free_resource_list); 673 674 struct res_proc_context { 675 struct list_head *list; 676 int (*preproc)(struct acpi_resource *, void *); 677 void *preproc_data; 678 int count; 679 int error; 680 }; 681 682 static acpi_status acpi_dev_new_resource_entry(struct resource_win *win, 683 struct res_proc_context *c) 684 { 685 struct resource_entry *rentry; 686 687 rentry = resource_list_create_entry(NULL, 0); 688 if (!rentry) { 689 c->error = -ENOMEM; 690 return AE_NO_MEMORY; 691 } 692 *rentry->res = win->res; 693 rentry->offset = win->offset; 694 resource_list_add_tail(rentry, c->list); 695 c->count++; 696 return AE_OK; 697 } 698 699 static acpi_status acpi_dev_process_resource(struct acpi_resource *ares, 700 void *context) 701 { 702 struct res_proc_context *c = context; 703 struct resource_win win; 704 struct resource *res = &win.res; 705 int i; 706 707 if (c->preproc) { 708 int ret; 709 710 ret = c->preproc(ares, c->preproc_data); 711 if (ret < 0) { 712 c->error = ret; 713 return AE_ABORT_METHOD; 714 } else if (ret > 0) { 715 return AE_OK; 716 } 717 } 718 719 memset(&win, 0, sizeof(win)); 720 721 if (acpi_dev_resource_memory(ares, res) 722 || acpi_dev_resource_io(ares, res) 723 || acpi_dev_resource_address_space(ares, &win) 724 || acpi_dev_resource_ext_address_space(ares, &win)) 725 return acpi_dev_new_resource_entry(&win, c); 726 727 for (i = 0; acpi_dev_resource_interrupt(ares, i, res); i++) { 728 acpi_status status; 729 730 status = acpi_dev_new_resource_entry(&win, c); 731 if (ACPI_FAILURE(status)) 732 return status; 733 } 734 735 return AE_OK; 736 } 737 738 static int __acpi_dev_get_resources(struct acpi_device *adev, 739 struct list_head *list, 740 int (*preproc)(struct acpi_resource *, void *), 741 void *preproc_data, char *method) 742 { 743 struct res_proc_context c; 744 acpi_status status; 745 746 if (!adev || !adev->handle || !list_empty(list)) 747 return -EINVAL; 748 749 if (!acpi_has_method(adev->handle, method)) 750 return 0; 751 752 c.list = list; 753 c.preproc = preproc; 754 c.preproc_data = preproc_data; 755 c.count = 0; 756 c.error = 0; 757 status = acpi_walk_resources(adev->handle, method, 758 acpi_dev_process_resource, &c); 759 if (ACPI_FAILURE(status)) { 760 acpi_dev_free_resource_list(list); 761 return c.error ? c.error : -EIO; 762 } 763 764 return c.count; 765 } 766 767 /** 768 * acpi_dev_get_resources - Get current resources of a device. 769 * @adev: ACPI device node to get the resources for. 770 * @list: Head of the resultant list of resources (must be empty). 771 * @preproc: The caller's preprocessing routine. 772 * @preproc_data: Pointer passed to the caller's preprocessing routine. 773 * 774 * Evaluate the _CRS method for the given device node and process its output by 775 * (1) executing the @preproc() routine provided by the caller, passing the 776 * resource pointer and @preproc_data to it as arguments, for each ACPI resource 777 * returned and (2) converting all of the returned ACPI resources into struct 778 * resource objects if possible. If the return value of @preproc() in step (1) 779 * is different from 0, step (2) is not applied to the given ACPI resource and 780 * if that value is negative, the whole processing is aborted and that value is 781 * returned as the final error code. 782 * 783 * The resultant struct resource objects are put on the list pointed to by 784 * @list, that must be empty initially, as members of struct resource_entry 785 * objects. Callers of this routine should use %acpi_dev_free_resource_list() to 786 * free that list. 787 * 788 * The number of resources in the output list is returned on success, an error 789 * code reflecting the error condition is returned otherwise. 790 */ 791 int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list, 792 int (*preproc)(struct acpi_resource *, void *), 793 void *preproc_data) 794 { 795 return __acpi_dev_get_resources(adev, list, preproc, preproc_data, 796 METHOD_NAME__CRS); 797 } 798 EXPORT_SYMBOL_GPL(acpi_dev_get_resources); 799 800 static int is_memory(struct acpi_resource *ares, void *not_used) 801 { 802 struct resource_win win; 803 struct resource *res = &win.res; 804 805 memset(&win, 0, sizeof(win)); 806 807 if (acpi_dev_filter_resource_type(ares, IORESOURCE_MEM)) 808 return 1; 809 810 return !(acpi_dev_resource_memory(ares, res) 811 || acpi_dev_resource_address_space(ares, &win) 812 || acpi_dev_resource_ext_address_space(ares, &win)); 813 } 814 815 /** 816 * acpi_dev_get_dma_resources - Get current DMA resources of a device. 817 * @adev: ACPI device node to get the resources for. 818 * @list: Head of the resultant list of resources (must be empty). 819 * 820 * Evaluate the _DMA method for the given device node and process its 821 * output. 822 * 823 * The resultant struct resource objects are put on the list pointed to 824 * by @list, that must be empty initially, as members of struct 825 * resource_entry objects. Callers of this routine should use 826 * %acpi_dev_free_resource_list() to free that list. 827 * 828 * The number of resources in the output list is returned on success, 829 * an error code reflecting the error condition is returned otherwise. 830 */ 831 int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list) 832 { 833 return __acpi_dev_get_resources(adev, list, is_memory, NULL, 834 METHOD_NAME__DMA); 835 } 836 EXPORT_SYMBOL_GPL(acpi_dev_get_dma_resources); 837 838 /** 839 * acpi_dev_get_memory_resources - Get current memory resources of a device. 840 * @adev: ACPI device node to get the resources for. 841 * @list: Head of the resultant list of resources (must be empty). 842 * 843 * This is a helper function that locates all memory type resources of @adev 844 * with acpi_dev_get_resources(). 845 * 846 * The number of resources in the output list is returned on success, an error 847 * code reflecting the error condition is returned otherwise. 848 */ 849 int acpi_dev_get_memory_resources(struct acpi_device *adev, struct list_head *list) 850 { 851 return acpi_dev_get_resources(adev, list, is_memory, NULL); 852 } 853 EXPORT_SYMBOL_GPL(acpi_dev_get_memory_resources); 854 855 /** 856 * acpi_dev_filter_resource_type - Filter ACPI resource according to resource 857 * types 858 * @ares: Input ACPI resource object. 859 * @types: Valid resource types of IORESOURCE_XXX 860 * 861 * This is a helper function to support acpi_dev_get_resources(), which filters 862 * ACPI resource objects according to resource types. 863 */ 864 int acpi_dev_filter_resource_type(struct acpi_resource *ares, 865 unsigned long types) 866 { 867 unsigned long type = 0; 868 869 switch (ares->type) { 870 case ACPI_RESOURCE_TYPE_MEMORY24: 871 case ACPI_RESOURCE_TYPE_MEMORY32: 872 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 873 type = IORESOURCE_MEM; 874 break; 875 case ACPI_RESOURCE_TYPE_IO: 876 case ACPI_RESOURCE_TYPE_FIXED_IO: 877 type = IORESOURCE_IO; 878 break; 879 case ACPI_RESOURCE_TYPE_IRQ: 880 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 881 type = IORESOURCE_IRQ; 882 break; 883 case ACPI_RESOURCE_TYPE_DMA: 884 case ACPI_RESOURCE_TYPE_FIXED_DMA: 885 type = IORESOURCE_DMA; 886 break; 887 case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: 888 type = IORESOURCE_REG; 889 break; 890 case ACPI_RESOURCE_TYPE_ADDRESS16: 891 case ACPI_RESOURCE_TYPE_ADDRESS32: 892 case ACPI_RESOURCE_TYPE_ADDRESS64: 893 case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: 894 if (ares->data.address.resource_type == ACPI_MEMORY_RANGE) 895 type = IORESOURCE_MEM; 896 else if (ares->data.address.resource_type == ACPI_IO_RANGE) 897 type = IORESOURCE_IO; 898 else if (ares->data.address.resource_type == 899 ACPI_BUS_NUMBER_RANGE) 900 type = IORESOURCE_BUS; 901 break; 902 default: 903 break; 904 } 905 906 return (type & types) ? 0 : 1; 907 } 908 EXPORT_SYMBOL_GPL(acpi_dev_filter_resource_type); 909 910 static int acpi_dev_consumes_res(struct acpi_device *adev, struct resource *res) 911 { 912 struct list_head resource_list; 913 struct resource_entry *rentry; 914 int ret, found = 0; 915 916 INIT_LIST_HEAD(&resource_list); 917 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL); 918 if (ret < 0) 919 return 0; 920 921 list_for_each_entry(rentry, &resource_list, node) { 922 if (resource_contains(rentry->res, res)) { 923 found = 1; 924 break; 925 } 926 927 } 928 929 acpi_dev_free_resource_list(&resource_list); 930 return found; 931 } 932 933 static acpi_status acpi_res_consumer_cb(acpi_handle handle, u32 depth, 934 void *context, void **ret) 935 { 936 struct resource *res = context; 937 struct acpi_device **consumer = (struct acpi_device **) ret; 938 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 939 940 if (!adev) 941 return AE_OK; 942 943 if (acpi_dev_consumes_res(adev, res)) { 944 *consumer = adev; 945 return AE_CTRL_TERMINATE; 946 } 947 948 return AE_OK; 949 } 950 951 /** 952 * acpi_resource_consumer - Find the ACPI device that consumes @res. 953 * @res: Resource to search for. 954 * 955 * Search the current resource settings (_CRS) of every ACPI device node 956 * for @res. If we find an ACPI device whose _CRS includes @res, return 957 * it. Otherwise, return NULL. 958 */ 959 struct acpi_device *acpi_resource_consumer(struct resource *res) 960 { 961 struct acpi_device *consumer = NULL; 962 963 acpi_get_devices(NULL, acpi_res_consumer_cb, res, (void **) &consumer); 964 return consumer; 965 } 966