1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/resource.c - ACPI device resources interpretation. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #include <linux/acpi.h> 14 #include <linux/device.h> 15 #include <linux/export.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/irq.h> 19 #include <linux/dmi.h> 20 21 #ifdef CONFIG_X86 22 #define valid_IRQ(i) (((i) != 0) && ((i) != 2)) 23 static inline bool acpi_iospace_resource_valid(struct resource *res) 24 { 25 /* On X86 IO space is limited to the [0 - 64K] IO port range */ 26 return res->end < 0x10003; 27 } 28 #else 29 #define valid_IRQ(i) (true) 30 /* 31 * ACPI IO descriptors on arches other than X86 contain MMIO CPU physical 32 * addresses mapping IO space in CPU physical address space, IO space 33 * resources can be placed anywhere in the 64-bit physical address space. 34 */ 35 static inline bool 36 acpi_iospace_resource_valid(struct resource *res) { return true; } 37 #endif 38 39 #if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI) 40 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 41 { 42 return ext_irq->resource_source.string_length == 0 && 43 ext_irq->producer_consumer == ACPI_CONSUMER; 44 } 45 #else 46 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 47 { 48 return true; 49 } 50 #endif 51 52 static bool acpi_dev_resource_len_valid(u64 start, u64 end, u64 len, bool io) 53 { 54 u64 reslen = end - start + 1; 55 56 /* 57 * CHECKME: len might be required to check versus a minimum 58 * length as well. 1 for io is fine, but for memory it does 59 * not make any sense at all. 60 * Note: some BIOSes report incorrect length for ACPI address space 61 * descriptor, so remove check of 'reslen == len' to avoid regression. 62 */ 63 if (len && reslen && start <= end) 64 return true; 65 66 pr_debug("ACPI: invalid or unassigned resource %s [%016llx - %016llx] length [%016llx]\n", 67 io ? "io" : "mem", start, end, len); 68 69 return false; 70 } 71 72 static void acpi_dev_memresource_flags(struct resource *res, u64 len, 73 u8 write_protect) 74 { 75 res->flags = IORESOURCE_MEM; 76 77 if (!acpi_dev_resource_len_valid(res->start, res->end, len, false)) 78 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 79 80 if (write_protect == ACPI_READ_WRITE_MEMORY) 81 res->flags |= IORESOURCE_MEM_WRITEABLE; 82 } 83 84 static void acpi_dev_get_memresource(struct resource *res, u64 start, u64 len, 85 u8 write_protect) 86 { 87 res->start = start; 88 res->end = start + len - 1; 89 acpi_dev_memresource_flags(res, len, write_protect); 90 } 91 92 /** 93 * acpi_dev_resource_memory - Extract ACPI memory resource information. 94 * @ares: Input ACPI resource object. 95 * @res: Output generic resource object. 96 * 97 * Check if the given ACPI resource object represents a memory resource and 98 * if that's the case, use the information in it to populate the generic 99 * resource object pointed to by @res. 100 * 101 * Return: 102 * 1) false with res->flags setting to zero: not the expected resource type 103 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 104 * 3) true: valid assigned resource 105 */ 106 bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res) 107 { 108 struct acpi_resource_memory24 *memory24; 109 struct acpi_resource_memory32 *memory32; 110 struct acpi_resource_fixed_memory32 *fixed_memory32; 111 112 switch (ares->type) { 113 case ACPI_RESOURCE_TYPE_MEMORY24: 114 memory24 = &ares->data.memory24; 115 acpi_dev_get_memresource(res, memory24->minimum << 8, 116 memory24->address_length << 8, 117 memory24->write_protect); 118 break; 119 case ACPI_RESOURCE_TYPE_MEMORY32: 120 memory32 = &ares->data.memory32; 121 acpi_dev_get_memresource(res, memory32->minimum, 122 memory32->address_length, 123 memory32->write_protect); 124 break; 125 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 126 fixed_memory32 = &ares->data.fixed_memory32; 127 acpi_dev_get_memresource(res, fixed_memory32->address, 128 fixed_memory32->address_length, 129 fixed_memory32->write_protect); 130 break; 131 default: 132 res->flags = 0; 133 return false; 134 } 135 136 return !(res->flags & IORESOURCE_DISABLED); 137 } 138 EXPORT_SYMBOL_GPL(acpi_dev_resource_memory); 139 140 static void acpi_dev_ioresource_flags(struct resource *res, u64 len, 141 u8 io_decode, u8 translation_type) 142 { 143 res->flags = IORESOURCE_IO; 144 145 if (!acpi_dev_resource_len_valid(res->start, res->end, len, true)) 146 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 147 148 if (!acpi_iospace_resource_valid(res)) 149 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 150 151 if (io_decode == ACPI_DECODE_16) 152 res->flags |= IORESOURCE_IO_16BIT_ADDR; 153 if (translation_type == ACPI_SPARSE_TRANSLATION) 154 res->flags |= IORESOURCE_IO_SPARSE; 155 } 156 157 static void acpi_dev_get_ioresource(struct resource *res, u64 start, u64 len, 158 u8 io_decode) 159 { 160 res->start = start; 161 res->end = start + len - 1; 162 acpi_dev_ioresource_flags(res, len, io_decode, 0); 163 } 164 165 /** 166 * acpi_dev_resource_io - Extract ACPI I/O resource information. 167 * @ares: Input ACPI resource object. 168 * @res: Output generic resource object. 169 * 170 * Check if the given ACPI resource object represents an I/O resource and 171 * if that's the case, use the information in it to populate the generic 172 * resource object pointed to by @res. 173 * 174 * Return: 175 * 1) false with res->flags setting to zero: not the expected resource type 176 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 177 * 3) true: valid assigned resource 178 */ 179 bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res) 180 { 181 struct acpi_resource_io *io; 182 struct acpi_resource_fixed_io *fixed_io; 183 184 switch (ares->type) { 185 case ACPI_RESOURCE_TYPE_IO: 186 io = &ares->data.io; 187 acpi_dev_get_ioresource(res, io->minimum, 188 io->address_length, 189 io->io_decode); 190 break; 191 case ACPI_RESOURCE_TYPE_FIXED_IO: 192 fixed_io = &ares->data.fixed_io; 193 acpi_dev_get_ioresource(res, fixed_io->address, 194 fixed_io->address_length, 195 ACPI_DECODE_10); 196 break; 197 default: 198 res->flags = 0; 199 return false; 200 } 201 202 return !(res->flags & IORESOURCE_DISABLED); 203 } 204 EXPORT_SYMBOL_GPL(acpi_dev_resource_io); 205 206 static bool acpi_decode_space(struct resource_win *win, 207 struct acpi_resource_address *addr, 208 struct acpi_address64_attribute *attr) 209 { 210 u8 iodec = attr->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16; 211 bool wp = addr->info.mem.write_protect; 212 u64 len = attr->address_length; 213 u64 start, end, offset = 0; 214 struct resource *res = &win->res; 215 216 /* 217 * Filter out invalid descriptor according to ACPI Spec 5.0, section 218 * 6.4.3.5 Address Space Resource Descriptors. 219 */ 220 if ((addr->min_address_fixed != addr->max_address_fixed && len) || 221 (addr->min_address_fixed && addr->max_address_fixed && !len)) 222 pr_debug("ACPI: Invalid address space min_addr_fix %d, max_addr_fix %d, len %llx\n", 223 addr->min_address_fixed, addr->max_address_fixed, len); 224 225 /* 226 * For bridges that translate addresses across the bridge, 227 * translation_offset is the offset that must be added to the 228 * address on the secondary side to obtain the address on the 229 * primary side. Non-bridge devices must list 0 for all Address 230 * Translation offset bits. 231 */ 232 if (addr->producer_consumer == ACPI_PRODUCER) 233 offset = attr->translation_offset; 234 else if (attr->translation_offset) 235 pr_debug("ACPI: translation_offset(%lld) is invalid for non-bridge device.\n", 236 attr->translation_offset); 237 start = attr->minimum + offset; 238 end = attr->maximum + offset; 239 240 win->offset = offset; 241 res->start = start; 242 res->end = end; 243 if (sizeof(resource_size_t) < sizeof(u64) && 244 (offset != win->offset || start != res->start || end != res->end)) { 245 pr_warn("acpi resource window ([%#llx-%#llx] ignored, not CPU addressable)\n", 246 attr->minimum, attr->maximum); 247 return false; 248 } 249 250 switch (addr->resource_type) { 251 case ACPI_MEMORY_RANGE: 252 acpi_dev_memresource_flags(res, len, wp); 253 break; 254 case ACPI_IO_RANGE: 255 acpi_dev_ioresource_flags(res, len, iodec, 256 addr->info.io.translation_type); 257 break; 258 case ACPI_BUS_NUMBER_RANGE: 259 res->flags = IORESOURCE_BUS; 260 break; 261 default: 262 return false; 263 } 264 265 if (addr->producer_consumer == ACPI_PRODUCER) 266 res->flags |= IORESOURCE_WINDOW; 267 268 if (addr->info.mem.caching == ACPI_PREFETCHABLE_MEMORY) 269 res->flags |= IORESOURCE_PREFETCH; 270 271 return !(res->flags & IORESOURCE_DISABLED); 272 } 273 274 /** 275 * acpi_dev_resource_address_space - Extract ACPI address space information. 276 * @ares: Input ACPI resource object. 277 * @win: Output generic resource object. 278 * 279 * Check if the given ACPI resource object represents an address space resource 280 * and if that's the case, use the information in it to populate the generic 281 * resource object pointed to by @win. 282 * 283 * Return: 284 * 1) false with win->res.flags setting to zero: not the expected resource type 285 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 286 * resource 287 * 3) true: valid assigned resource 288 */ 289 bool acpi_dev_resource_address_space(struct acpi_resource *ares, 290 struct resource_win *win) 291 { 292 struct acpi_resource_address64 addr; 293 294 win->res.flags = 0; 295 if (ACPI_FAILURE(acpi_resource_to_address64(ares, &addr))) 296 return false; 297 298 return acpi_decode_space(win, (struct acpi_resource_address *)&addr, 299 &addr.address); 300 } 301 EXPORT_SYMBOL_GPL(acpi_dev_resource_address_space); 302 303 /** 304 * acpi_dev_resource_ext_address_space - Extract ACPI address space information. 305 * @ares: Input ACPI resource object. 306 * @win: Output generic resource object. 307 * 308 * Check if the given ACPI resource object represents an extended address space 309 * resource and if that's the case, use the information in it to populate the 310 * generic resource object pointed to by @win. 311 * 312 * Return: 313 * 1) false with win->res.flags setting to zero: not the expected resource type 314 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 315 * resource 316 * 3) true: valid assigned resource 317 */ 318 bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares, 319 struct resource_win *win) 320 { 321 struct acpi_resource_extended_address64 *ext_addr; 322 323 win->res.flags = 0; 324 if (ares->type != ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64) 325 return false; 326 327 ext_addr = &ares->data.ext_address64; 328 329 return acpi_decode_space(win, (struct acpi_resource_address *)ext_addr, 330 &ext_addr->address); 331 } 332 EXPORT_SYMBOL_GPL(acpi_dev_resource_ext_address_space); 333 334 /** 335 * acpi_dev_irq_flags - Determine IRQ resource flags. 336 * @triggering: Triggering type as provided by ACPI. 337 * @polarity: Interrupt polarity as provided by ACPI. 338 * @shareable: Whether or not the interrupt is shareable. 339 * @wake_capable: Wake capability as provided by ACPI. 340 */ 341 unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable, u8 wake_capable) 342 { 343 unsigned long flags; 344 345 if (triggering == ACPI_LEVEL_SENSITIVE) 346 flags = polarity == ACPI_ACTIVE_LOW ? 347 IORESOURCE_IRQ_LOWLEVEL : IORESOURCE_IRQ_HIGHLEVEL; 348 else 349 flags = polarity == ACPI_ACTIVE_LOW ? 350 IORESOURCE_IRQ_LOWEDGE : IORESOURCE_IRQ_HIGHEDGE; 351 352 if (shareable == ACPI_SHARED) 353 flags |= IORESOURCE_IRQ_SHAREABLE; 354 355 if (wake_capable == ACPI_WAKE_CAPABLE) 356 flags |= IORESOURCE_IRQ_WAKECAPABLE; 357 358 return flags | IORESOURCE_IRQ; 359 } 360 EXPORT_SYMBOL_GPL(acpi_dev_irq_flags); 361 362 /** 363 * acpi_dev_get_irq_type - Determine irq type. 364 * @triggering: Triggering type as provided by ACPI. 365 * @polarity: Interrupt polarity as provided by ACPI. 366 */ 367 unsigned int acpi_dev_get_irq_type(int triggering, int polarity) 368 { 369 switch (polarity) { 370 case ACPI_ACTIVE_LOW: 371 return triggering == ACPI_EDGE_SENSITIVE ? 372 IRQ_TYPE_EDGE_FALLING : 373 IRQ_TYPE_LEVEL_LOW; 374 case ACPI_ACTIVE_HIGH: 375 return triggering == ACPI_EDGE_SENSITIVE ? 376 IRQ_TYPE_EDGE_RISING : 377 IRQ_TYPE_LEVEL_HIGH; 378 case ACPI_ACTIVE_BOTH: 379 if (triggering == ACPI_EDGE_SENSITIVE) 380 return IRQ_TYPE_EDGE_BOTH; 381 fallthrough; 382 default: 383 return IRQ_TYPE_NONE; 384 } 385 } 386 EXPORT_SYMBOL_GPL(acpi_dev_get_irq_type); 387 388 static const struct dmi_system_id medion_laptop[] = { 389 { 390 .ident = "MEDION P15651", 391 .matches = { 392 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 393 DMI_MATCH(DMI_BOARD_NAME, "M15T"), 394 }, 395 }, 396 { 397 .ident = "MEDION S17405", 398 .matches = { 399 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 400 DMI_MATCH(DMI_BOARD_NAME, "M17T"), 401 }, 402 }, 403 { 404 .ident = "MEDION S17413", 405 .matches = { 406 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 407 DMI_MATCH(DMI_BOARD_NAME, "M1xA"), 408 }, 409 }, 410 { } 411 }; 412 413 static const struct dmi_system_id asus_laptop[] = { 414 { 415 .ident = "Asus Vivobook K3402ZA", 416 .matches = { 417 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 418 DMI_MATCH(DMI_BOARD_NAME, "K3402ZA"), 419 }, 420 }, 421 { 422 .ident = "Asus Vivobook K3502ZA", 423 .matches = { 424 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 425 DMI_MATCH(DMI_BOARD_NAME, "K3502ZA"), 426 }, 427 }, 428 { 429 .ident = "Asus Vivobook S5402ZA", 430 .matches = { 431 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 432 DMI_MATCH(DMI_BOARD_NAME, "S5402ZA"), 433 }, 434 }, 435 { 436 .ident = "Asus Vivobook S5602ZA", 437 .matches = { 438 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 439 DMI_MATCH(DMI_BOARD_NAME, "S5602ZA"), 440 }, 441 }, 442 { 443 /* Asus Vivobook X1704VAP */ 444 .matches = { 445 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 446 DMI_MATCH(DMI_BOARD_NAME, "X1704VAP"), 447 }, 448 }, 449 { 450 .ident = "Asus ExpertBook B1402CBA", 451 .matches = { 452 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 453 DMI_MATCH(DMI_BOARD_NAME, "B1402CBA"), 454 }, 455 }, 456 { 457 /* Asus ExpertBook B1402CVA */ 458 .matches = { 459 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 460 DMI_MATCH(DMI_BOARD_NAME, "B1402CVA"), 461 }, 462 }, 463 { 464 .ident = "Asus ExpertBook B1502CBA", 465 .matches = { 466 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 467 DMI_MATCH(DMI_BOARD_NAME, "B1502CBA"), 468 }, 469 }, 470 { 471 .ident = "Asus ExpertBook B2402CBA", 472 .matches = { 473 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 474 DMI_MATCH(DMI_BOARD_NAME, "B2402CBA"), 475 }, 476 }, 477 { 478 .ident = "Asus ExpertBook B2402FBA", 479 .matches = { 480 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 481 DMI_MATCH(DMI_BOARD_NAME, "B2402FBA"), 482 }, 483 }, 484 { 485 .ident = "Asus ExpertBook B2502", 486 .matches = { 487 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 488 DMI_MATCH(DMI_BOARD_NAME, "B2502CBA"), 489 }, 490 }, 491 { } 492 }; 493 494 static const struct dmi_system_id tongfang_gm_rg[] = { 495 { 496 .ident = "TongFang GMxRGxx/XMG CORE 15 (M22)/TUXEDO Stellaris 15 Gen4 AMD", 497 .matches = { 498 DMI_MATCH(DMI_BOARD_NAME, "GMxRGxx"), 499 }, 500 }, 501 { 502 /* LG Electronics 16T90SP */ 503 .matches = { 504 DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"), 505 DMI_MATCH(DMI_BOARD_NAME, "16T90SP"), 506 }, 507 }, 508 { } 509 }; 510 511 static const struct dmi_system_id maingear_laptop[] = { 512 { 513 .ident = "MAINGEAR Vector Pro 2 15", 514 .matches = { 515 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 516 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-15A3070T"), 517 } 518 }, 519 { 520 /* Asus ExpertBook B2502CVA */ 521 .matches = { 522 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 523 DMI_MATCH(DMI_BOARD_NAME, "B2502CVA"), 524 }, 525 }, 526 { 527 /* TongFang GMxXGxx/TUXEDO Polaris 15 Gen5 AMD */ 528 .matches = { 529 DMI_MATCH(DMI_BOARD_NAME, "GMxXGxx"), 530 }, 531 }, 532 { 533 /* TongFang GMxXGxX/TUXEDO Polaris 15 Gen5 AMD */ 534 .matches = { 535 DMI_MATCH(DMI_BOARD_NAME, "GMxXGxX"), 536 }, 537 }, 538 { 539 /* TongFang GMxXGxx sold as Eluktronics Inc. RP-15 */ 540 .matches = { 541 DMI_MATCH(DMI_SYS_VENDOR, "Eluktronics Inc."), 542 DMI_MATCH(DMI_BOARD_NAME, "RP-15"), 543 }, 544 }, 545 { 546 /* TongFang GM6XGxX/TUXEDO Stellaris 16 Gen5 AMD */ 547 .matches = { 548 DMI_MATCH(DMI_BOARD_NAME, "GM6XGxX"), 549 }, 550 }, 551 { 552 .ident = "MAINGEAR Vector Pro 2 17", 553 .matches = { 554 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 555 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-17A3070T"), 556 }, 557 }, 558 { } 559 }; 560 561 static const struct dmi_system_id pcspecialist_laptop[] = { 562 { 563 /* TongFang GM6BGEQ / PCSpecialist Elimina Pro 16 M, RTX 3050 */ 564 .matches = { 565 DMI_MATCH(DMI_BOARD_NAME, "GM6BGEQ"), 566 }, 567 }, 568 { 569 /* TongFang GM6BG5Q, RTX 4050 */ 570 .matches = { 571 DMI_MATCH(DMI_BOARD_NAME, "GM6BG5Q"), 572 }, 573 }, 574 { 575 /* TongFang GM6BG0Q / PCSpecialist Elimina Pro 16 M, RTX 4060 */ 576 .matches = { 577 DMI_MATCH(DMI_BOARD_NAME, "GM6BG0Q"), 578 }, 579 }, 580 { 581 /* Infinity E15-5A165-BM */ 582 .matches = { 583 DMI_MATCH(DMI_BOARD_NAME, "GM5RG1E0009COM"), 584 }, 585 }, 586 { 587 /* Infinity E15-5A305-1M */ 588 .matches = { 589 DMI_MATCH(DMI_BOARD_NAME, "GM5RGEE0016COM"), 590 }, 591 }, 592 { 593 /* Lunnen Ground 15 / AMD Ryzen 5 5500U */ 594 .matches = { 595 DMI_MATCH(DMI_SYS_VENDOR, "Lunnen"), 596 DMI_MATCH(DMI_BOARD_NAME, "LLL5DAW"), 597 }, 598 }, 599 { 600 /* Lunnen Ground 16 / AMD Ryzen 7 5800U */ 601 .matches = { 602 DMI_MATCH(DMI_SYS_VENDOR, "Lunnen"), 603 DMI_MATCH(DMI_BOARD_NAME, "LL6FA"), 604 }, 605 }, 606 { 607 /* MAIBENBEN X577 */ 608 .matches = { 609 DMI_MATCH(DMI_SYS_VENDOR, "MAIBENBEN"), 610 DMI_MATCH(DMI_BOARD_NAME, "X577"), 611 }, 612 }, 613 { } 614 }; 615 616 static const struct dmi_system_id lg_laptop[] = { 617 { 618 .ident = "LG Electronics 17U70P", 619 .matches = { 620 DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"), 621 DMI_MATCH(DMI_BOARD_NAME, "17U70P"), 622 }, 623 }, 624 { 625 /* TongFang GXxHRXx/TUXEDO InfinityBook Pro Gen9 AMD */ 626 .matches = { 627 DMI_MATCH(DMI_BOARD_NAME, "GXxHRXx"), 628 }, 629 }, 630 { 631 /* TongFang GMxHGxx/TUXEDO Stellaris Slim Gen1 AMD */ 632 .matches = { 633 DMI_MATCH(DMI_BOARD_NAME, "GMxHGxx"), 634 }, 635 }, 636 { } 637 }; 638 639 struct irq_override_cmp { 640 const struct dmi_system_id *system; 641 unsigned char irq; 642 unsigned char triggering; 643 unsigned char polarity; 644 unsigned char shareable; 645 bool override; 646 }; 647 648 static const struct irq_override_cmp override_table[] = { 649 { medion_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 650 { asus_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 651 { tongfang_gm_rg, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 652 { maingear_laptop, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 653 { pcspecialist_laptop, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 654 { lg_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 655 }; 656 657 static bool acpi_dev_irq_override(u32 gsi, u8 triggering, u8 polarity, 658 u8 shareable) 659 { 660 int i; 661 662 for (i = 0; i < ARRAY_SIZE(override_table); i++) { 663 const struct irq_override_cmp *entry = &override_table[i]; 664 665 if (dmi_check_system(entry->system) && 666 entry->irq == gsi && 667 entry->triggering == triggering && 668 entry->polarity == polarity && 669 entry->shareable == shareable) 670 return entry->override; 671 } 672 673 #ifdef CONFIG_X86 674 /* 675 * Always use the MADT override info, except for the i8042 PS/2 ctrl 676 * IRQs (1 and 12). For these the DSDT IRQ settings should sometimes 677 * be used otherwise PS/2 keyboards / mice will not work. 678 */ 679 if (gsi != 1 && gsi != 12) 680 return true; 681 682 /* If the override comes from an INT_SRC_OVR MADT entry, honor it. */ 683 if (acpi_int_src_ovr[gsi]) 684 return true; 685 686 /* 687 * IRQ override isn't needed on modern AMD Zen systems and 688 * this override breaks active low IRQs on AMD Ryzen 6000 and 689 * newer systems. Skip it. 690 */ 691 if (boot_cpu_has(X86_FEATURE_ZEN)) 692 return false; 693 #endif 694 695 return true; 696 } 697 698 static void acpi_dev_get_irqresource(struct resource *res, u32 gsi, 699 u8 triggering, u8 polarity, u8 shareable, 700 u8 wake_capable, bool check_override) 701 { 702 int irq, p, t; 703 704 if (!valid_IRQ(gsi)) { 705 irqresource_disabled(res, gsi); 706 return; 707 } 708 709 /* 710 * In IO-APIC mode, use overridden attribute. Two reasons: 711 * 1. BIOS bug in DSDT 712 * 2. BIOS uses IO-APIC mode Interrupt Source Override 713 * 714 * We do this only if we are dealing with IRQ() or IRQNoFlags() 715 * resource (the legacy ISA resources). With modern ACPI 5 devices 716 * using extended IRQ descriptors we take the IRQ configuration 717 * from _CRS directly. 718 */ 719 if (check_override && 720 acpi_dev_irq_override(gsi, triggering, polarity, shareable) && 721 !acpi_get_override_irq(gsi, &t, &p)) { 722 u8 trig = t ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE; 723 u8 pol = p ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; 724 725 if (triggering != trig || polarity != pol) { 726 pr_warn("ACPI: IRQ %d override to %s%s, %s%s\n", gsi, 727 t ? "level" : "edge", 728 trig == triggering ? "" : "(!)", 729 p ? "low" : "high", 730 pol == polarity ? "" : "(!)"); 731 triggering = trig; 732 polarity = pol; 733 } 734 } 735 736 res->flags = acpi_dev_irq_flags(triggering, polarity, shareable, wake_capable); 737 irq = acpi_register_gsi(NULL, gsi, triggering, polarity); 738 if (irq >= 0) { 739 res->start = irq; 740 res->end = irq; 741 } else { 742 irqresource_disabled(res, gsi); 743 } 744 } 745 746 /** 747 * acpi_dev_resource_interrupt - Extract ACPI interrupt resource information. 748 * @ares: Input ACPI resource object. 749 * @index: Index into the array of GSIs represented by the resource. 750 * @res: Output generic resource object. 751 * 752 * Check if the given ACPI resource object represents an interrupt resource 753 * and @index does not exceed the resource's interrupt count (true is returned 754 * in that case regardless of the results of the other checks)). If that's the 755 * case, register the GSI corresponding to @index from the array of interrupts 756 * represented by the resource and populate the generic resource object pointed 757 * to by @res accordingly. If the registration of the GSI is not successful, 758 * IORESOURCE_DISABLED will be set it that object's flags. 759 * 760 * Return: 761 * 1) false with res->flags setting to zero: not the expected resource type 762 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 763 * 3) true: valid assigned resource 764 */ 765 bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index, 766 struct resource *res) 767 { 768 struct acpi_resource_irq *irq; 769 struct acpi_resource_extended_irq *ext_irq; 770 771 switch (ares->type) { 772 case ACPI_RESOURCE_TYPE_IRQ: 773 /* 774 * Per spec, only one interrupt per descriptor is allowed in 775 * _CRS, but some firmware violates this, so parse them all. 776 */ 777 irq = &ares->data.irq; 778 if (index >= irq->interrupt_count) { 779 irqresource_disabled(res, 0); 780 return false; 781 } 782 acpi_dev_get_irqresource(res, irq->interrupts[index], 783 irq->triggering, irq->polarity, 784 irq->shareable, irq->wake_capable, 785 true); 786 break; 787 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 788 ext_irq = &ares->data.extended_irq; 789 if (index >= ext_irq->interrupt_count) { 790 irqresource_disabled(res, 0); 791 return false; 792 } 793 if (is_gsi(ext_irq)) 794 acpi_dev_get_irqresource(res, ext_irq->interrupts[index], 795 ext_irq->triggering, ext_irq->polarity, 796 ext_irq->shareable, ext_irq->wake_capable, 797 false); 798 else 799 irqresource_disabled(res, 0); 800 break; 801 default: 802 res->flags = 0; 803 return false; 804 } 805 806 return true; 807 } 808 EXPORT_SYMBOL_GPL(acpi_dev_resource_interrupt); 809 810 /** 811 * acpi_dev_free_resource_list - Free resource from %acpi_dev_get_resources(). 812 * @list: The head of the resource list to free. 813 */ 814 void acpi_dev_free_resource_list(struct list_head *list) 815 { 816 resource_list_free(list); 817 } 818 EXPORT_SYMBOL_GPL(acpi_dev_free_resource_list); 819 820 struct res_proc_context { 821 struct list_head *list; 822 int (*preproc)(struct acpi_resource *, void *); 823 void *preproc_data; 824 int count; 825 int error; 826 }; 827 828 static acpi_status acpi_dev_new_resource_entry(struct resource_win *win, 829 struct res_proc_context *c) 830 { 831 struct resource_entry *rentry; 832 833 rentry = resource_list_create_entry(NULL, 0); 834 if (!rentry) { 835 c->error = -ENOMEM; 836 return AE_NO_MEMORY; 837 } 838 *rentry->res = win->res; 839 rentry->offset = win->offset; 840 resource_list_add_tail(rentry, c->list); 841 c->count++; 842 return AE_OK; 843 } 844 845 static acpi_status acpi_dev_process_resource(struct acpi_resource *ares, 846 void *context) 847 { 848 struct res_proc_context *c = context; 849 struct resource_win win; 850 struct resource *res = &win.res; 851 int i; 852 853 if (c->preproc) { 854 int ret; 855 856 ret = c->preproc(ares, c->preproc_data); 857 if (ret < 0) { 858 c->error = ret; 859 return AE_ABORT_METHOD; 860 } else if (ret > 0) { 861 return AE_OK; 862 } 863 } 864 865 memset(&win, 0, sizeof(win)); 866 867 if (acpi_dev_resource_memory(ares, res) 868 || acpi_dev_resource_io(ares, res) 869 || acpi_dev_resource_address_space(ares, &win) 870 || acpi_dev_resource_ext_address_space(ares, &win)) 871 return acpi_dev_new_resource_entry(&win, c); 872 873 for (i = 0; acpi_dev_resource_interrupt(ares, i, res); i++) { 874 acpi_status status; 875 876 status = acpi_dev_new_resource_entry(&win, c); 877 if (ACPI_FAILURE(status)) 878 return status; 879 } 880 881 return AE_OK; 882 } 883 884 static int __acpi_dev_get_resources(struct acpi_device *adev, 885 struct list_head *list, 886 int (*preproc)(struct acpi_resource *, void *), 887 void *preproc_data, char *method) 888 { 889 struct res_proc_context c; 890 acpi_status status; 891 892 if (!adev || !adev->handle || !list_empty(list)) 893 return -EINVAL; 894 895 if (!acpi_has_method(adev->handle, method)) 896 return 0; 897 898 c.list = list; 899 c.preproc = preproc; 900 c.preproc_data = preproc_data; 901 c.count = 0; 902 c.error = 0; 903 status = acpi_walk_resources(adev->handle, method, 904 acpi_dev_process_resource, &c); 905 if (ACPI_FAILURE(status)) { 906 acpi_dev_free_resource_list(list); 907 return c.error ? c.error : -EIO; 908 } 909 910 return c.count; 911 } 912 913 /** 914 * acpi_dev_get_resources - Get current resources of a device. 915 * @adev: ACPI device node to get the resources for. 916 * @list: Head of the resultant list of resources (must be empty). 917 * @preproc: The caller's preprocessing routine. 918 * @preproc_data: Pointer passed to the caller's preprocessing routine. 919 * 920 * Evaluate the _CRS method for the given device node and process its output by 921 * (1) executing the @preproc() routine provided by the caller, passing the 922 * resource pointer and @preproc_data to it as arguments, for each ACPI resource 923 * returned and (2) converting all of the returned ACPI resources into struct 924 * resource objects if possible. If the return value of @preproc() in step (1) 925 * is different from 0, step (2) is not applied to the given ACPI resource and 926 * if that value is negative, the whole processing is aborted and that value is 927 * returned as the final error code. 928 * 929 * The resultant struct resource objects are put on the list pointed to by 930 * @list, that must be empty initially, as members of struct resource_entry 931 * objects. Callers of this routine should use %acpi_dev_free_resource_list() to 932 * free that list. 933 * 934 * The number of resources in the output list is returned on success, an error 935 * code reflecting the error condition is returned otherwise. 936 */ 937 int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list, 938 int (*preproc)(struct acpi_resource *, void *), 939 void *preproc_data) 940 { 941 return __acpi_dev_get_resources(adev, list, preproc, preproc_data, 942 METHOD_NAME__CRS); 943 } 944 EXPORT_SYMBOL_GPL(acpi_dev_get_resources); 945 946 static int is_memory(struct acpi_resource *ares, void *not_used) 947 { 948 struct resource_win win; 949 struct resource *res = &win.res; 950 951 memset(&win, 0, sizeof(win)); 952 953 if (acpi_dev_filter_resource_type(ares, IORESOURCE_MEM)) 954 return 1; 955 956 return !(acpi_dev_resource_memory(ares, res) 957 || acpi_dev_resource_address_space(ares, &win) 958 || acpi_dev_resource_ext_address_space(ares, &win)); 959 } 960 961 /** 962 * acpi_dev_get_dma_resources - Get current DMA resources of a device. 963 * @adev: ACPI device node to get the resources for. 964 * @list: Head of the resultant list of resources (must be empty). 965 * 966 * Evaluate the _DMA method for the given device node and process its 967 * output. 968 * 969 * The resultant struct resource objects are put on the list pointed to 970 * by @list, that must be empty initially, as members of struct 971 * resource_entry objects. Callers of this routine should use 972 * %acpi_dev_free_resource_list() to free that list. 973 * 974 * The number of resources in the output list is returned on success, 975 * an error code reflecting the error condition is returned otherwise. 976 */ 977 int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list) 978 { 979 return __acpi_dev_get_resources(adev, list, is_memory, NULL, 980 METHOD_NAME__DMA); 981 } 982 EXPORT_SYMBOL_GPL(acpi_dev_get_dma_resources); 983 984 /** 985 * acpi_dev_get_memory_resources - Get current memory resources of a device. 986 * @adev: ACPI device node to get the resources for. 987 * @list: Head of the resultant list of resources (must be empty). 988 * 989 * This is a helper function that locates all memory type resources of @adev 990 * with acpi_dev_get_resources(). 991 * 992 * The number of resources in the output list is returned on success, an error 993 * code reflecting the error condition is returned otherwise. 994 */ 995 int acpi_dev_get_memory_resources(struct acpi_device *adev, struct list_head *list) 996 { 997 return acpi_dev_get_resources(adev, list, is_memory, NULL); 998 } 999 EXPORT_SYMBOL_GPL(acpi_dev_get_memory_resources); 1000 1001 /** 1002 * acpi_dev_filter_resource_type - Filter ACPI resource according to resource 1003 * types 1004 * @ares: Input ACPI resource object. 1005 * @types: Valid resource types of IORESOURCE_XXX 1006 * 1007 * This is a helper function to support acpi_dev_get_resources(), which filters 1008 * ACPI resource objects according to resource types. 1009 */ 1010 int acpi_dev_filter_resource_type(struct acpi_resource *ares, 1011 unsigned long types) 1012 { 1013 unsigned long type = 0; 1014 1015 switch (ares->type) { 1016 case ACPI_RESOURCE_TYPE_MEMORY24: 1017 case ACPI_RESOURCE_TYPE_MEMORY32: 1018 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 1019 type = IORESOURCE_MEM; 1020 break; 1021 case ACPI_RESOURCE_TYPE_IO: 1022 case ACPI_RESOURCE_TYPE_FIXED_IO: 1023 type = IORESOURCE_IO; 1024 break; 1025 case ACPI_RESOURCE_TYPE_IRQ: 1026 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 1027 type = IORESOURCE_IRQ; 1028 break; 1029 case ACPI_RESOURCE_TYPE_DMA: 1030 case ACPI_RESOURCE_TYPE_FIXED_DMA: 1031 type = IORESOURCE_DMA; 1032 break; 1033 case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: 1034 type = IORESOURCE_REG; 1035 break; 1036 case ACPI_RESOURCE_TYPE_ADDRESS16: 1037 case ACPI_RESOURCE_TYPE_ADDRESS32: 1038 case ACPI_RESOURCE_TYPE_ADDRESS64: 1039 case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: 1040 if (ares->data.address.resource_type == ACPI_MEMORY_RANGE) 1041 type = IORESOURCE_MEM; 1042 else if (ares->data.address.resource_type == ACPI_IO_RANGE) 1043 type = IORESOURCE_IO; 1044 else if (ares->data.address.resource_type == 1045 ACPI_BUS_NUMBER_RANGE) 1046 type = IORESOURCE_BUS; 1047 break; 1048 default: 1049 break; 1050 } 1051 1052 return (type & types) ? 0 : 1; 1053 } 1054 EXPORT_SYMBOL_GPL(acpi_dev_filter_resource_type); 1055 1056 static int acpi_dev_consumes_res(struct acpi_device *adev, struct resource *res) 1057 { 1058 struct list_head resource_list; 1059 struct resource_entry *rentry; 1060 int ret, found = 0; 1061 1062 INIT_LIST_HEAD(&resource_list); 1063 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL); 1064 if (ret < 0) 1065 return 0; 1066 1067 list_for_each_entry(rentry, &resource_list, node) { 1068 if (resource_contains(rentry->res, res)) { 1069 found = 1; 1070 break; 1071 } 1072 1073 } 1074 1075 acpi_dev_free_resource_list(&resource_list); 1076 return found; 1077 } 1078 1079 static acpi_status acpi_res_consumer_cb(acpi_handle handle, u32 depth, 1080 void *context, void **ret) 1081 { 1082 struct resource *res = context; 1083 struct acpi_device **consumer = (struct acpi_device **) ret; 1084 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 1085 1086 if (!adev) 1087 return AE_OK; 1088 1089 if (acpi_dev_consumes_res(adev, res)) { 1090 *consumer = adev; 1091 return AE_CTRL_TERMINATE; 1092 } 1093 1094 return AE_OK; 1095 } 1096 1097 /** 1098 * acpi_resource_consumer - Find the ACPI device that consumes @res. 1099 * @res: Resource to search for. 1100 * 1101 * Search the current resource settings (_CRS) of every ACPI device node 1102 * for @res. If we find an ACPI device whose _CRS includes @res, return 1103 * it. Otherwise, return NULL. 1104 */ 1105 struct acpi_device *acpi_resource_consumer(struct resource *res) 1106 { 1107 struct acpi_device *consumer = NULL; 1108 1109 acpi_get_devices(NULL, acpi_res_consumer_cb, res, (void **) &consumer); 1110 return consumer; 1111 } 1112