1 /* 2 * processor_perflib.c - ACPI Processor P-States Library ($Revision: 71 $) 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * 10 * 11 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License along 24 * with this program; if not, write to the Free Software Foundation, Inc., 25 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 26 * 27 */ 28 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/init.h> 32 #include <linux/cpufreq.h> 33 #include <linux/slab.h> 34 35 #ifdef CONFIG_X86 36 #include <asm/cpufeature.h> 37 #endif 38 39 #include <acpi/acpi_bus.h> 40 #include <acpi/acpi_drivers.h> 41 #include <acpi/processor.h> 42 43 #define PREFIX "ACPI: " 44 45 #define ACPI_PROCESSOR_CLASS "processor" 46 #define ACPI_PROCESSOR_FILE_PERFORMANCE "performance" 47 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 48 ACPI_MODULE_NAME("processor_perflib"); 49 50 static DEFINE_MUTEX(performance_mutex); 51 52 /* 53 * _PPC support is implemented as a CPUfreq policy notifier: 54 * This means each time a CPUfreq driver registered also with 55 * the ACPI core is asked to change the speed policy, the maximum 56 * value is adjusted so that it is within the platform limit. 57 * 58 * Also, when a new platform limit value is detected, the CPUfreq 59 * policy is adjusted accordingly. 60 */ 61 62 /* ignore_ppc: 63 * -1 -> cpufreq low level drivers not initialized -> _PSS, etc. not called yet 64 * ignore _PPC 65 * 0 -> cpufreq low level drivers initialized -> consider _PPC values 66 * 1 -> ignore _PPC totally -> forced by user through boot param 67 */ 68 static int ignore_ppc = -1; 69 module_param(ignore_ppc, int, 0644); 70 MODULE_PARM_DESC(ignore_ppc, "If the frequency of your machine gets wrongly" \ 71 "limited by BIOS, this should help"); 72 73 #define PPC_REGISTERED 1 74 #define PPC_IN_USE 2 75 76 static int acpi_processor_ppc_status; 77 78 static int acpi_processor_ppc_notifier(struct notifier_block *nb, 79 unsigned long event, void *data) 80 { 81 struct cpufreq_policy *policy = data; 82 struct acpi_processor *pr; 83 unsigned int ppc = 0; 84 85 if (event == CPUFREQ_START && ignore_ppc <= 0) { 86 ignore_ppc = 0; 87 return 0; 88 } 89 90 if (ignore_ppc) 91 return 0; 92 93 if (event != CPUFREQ_INCOMPATIBLE) 94 return 0; 95 96 mutex_lock(&performance_mutex); 97 98 pr = per_cpu(processors, policy->cpu); 99 if (!pr || !pr->performance) 100 goto out; 101 102 ppc = (unsigned int)pr->performance_platform_limit; 103 104 if (ppc >= pr->performance->state_count) 105 goto out; 106 107 cpufreq_verify_within_limits(policy, 0, 108 pr->performance->states[ppc]. 109 core_frequency * 1000); 110 111 out: 112 mutex_unlock(&performance_mutex); 113 114 return 0; 115 } 116 117 static struct notifier_block acpi_ppc_notifier_block = { 118 .notifier_call = acpi_processor_ppc_notifier, 119 }; 120 121 static int acpi_processor_get_platform_limit(struct acpi_processor *pr) 122 { 123 acpi_status status = 0; 124 unsigned long long ppc = 0; 125 126 127 if (!pr) 128 return -EINVAL; 129 130 /* 131 * _PPC indicates the maximum state currently supported by the platform 132 * (e.g. 0 = states 0..n; 1 = states 1..n; etc. 133 */ 134 status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc); 135 136 if (status != AE_NOT_FOUND) 137 acpi_processor_ppc_status |= PPC_IN_USE; 138 139 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 140 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PPC")); 141 return -ENODEV; 142 } 143 144 pr_debug("CPU %d: _PPC is %d - frequency %s limited\n", pr->id, 145 (int)ppc, ppc ? "" : "not"); 146 147 pr->performance_platform_limit = (int)ppc; 148 149 return 0; 150 } 151 152 #define ACPI_PROCESSOR_NOTIFY_PERFORMANCE 0x80 153 /* 154 * acpi_processor_ppc_ost: Notify firmware the _PPC evaluation status 155 * @handle: ACPI processor handle 156 * @status: the status code of _PPC evaluation 157 * 0: success. OSPM is now using the performance state specificed. 158 * 1: failure. OSPM has not changed the number of P-states in use 159 */ 160 static void acpi_processor_ppc_ost(acpi_handle handle, int status) 161 { 162 union acpi_object params[2] = { 163 {.type = ACPI_TYPE_INTEGER,}, 164 {.type = ACPI_TYPE_INTEGER,}, 165 }; 166 struct acpi_object_list arg_list = {2, params}; 167 acpi_handle temp; 168 169 params[0].integer.value = ACPI_PROCESSOR_NOTIFY_PERFORMANCE; 170 params[1].integer.value = status; 171 172 /* when there is no _OST , skip it */ 173 if (ACPI_FAILURE(acpi_get_handle(handle, "_OST", &temp))) 174 return; 175 176 acpi_evaluate_object(handle, "_OST", &arg_list, NULL); 177 return; 178 } 179 180 int acpi_processor_ppc_has_changed(struct acpi_processor *pr, int event_flag) 181 { 182 int ret; 183 184 if (ignore_ppc) { 185 /* 186 * Only when it is notification event, the _OST object 187 * will be evaluated. Otherwise it is skipped. 188 */ 189 if (event_flag) 190 acpi_processor_ppc_ost(pr->handle, 1); 191 return 0; 192 } 193 194 ret = acpi_processor_get_platform_limit(pr); 195 /* 196 * Only when it is notification event, the _OST object 197 * will be evaluated. Otherwise it is skipped. 198 */ 199 if (event_flag) { 200 if (ret < 0) 201 acpi_processor_ppc_ost(pr->handle, 1); 202 else 203 acpi_processor_ppc_ost(pr->handle, 0); 204 } 205 if (ret < 0) 206 return (ret); 207 else 208 return cpufreq_update_policy(pr->id); 209 } 210 211 int acpi_processor_get_bios_limit(int cpu, unsigned int *limit) 212 { 213 struct acpi_processor *pr; 214 215 pr = per_cpu(processors, cpu); 216 if (!pr || !pr->performance || !pr->performance->state_count) 217 return -ENODEV; 218 *limit = pr->performance->states[pr->performance_platform_limit]. 219 core_frequency * 1000; 220 return 0; 221 } 222 EXPORT_SYMBOL(acpi_processor_get_bios_limit); 223 224 void acpi_processor_ppc_init(void) 225 { 226 if (!cpufreq_register_notifier 227 (&acpi_ppc_notifier_block, CPUFREQ_POLICY_NOTIFIER)) 228 acpi_processor_ppc_status |= PPC_REGISTERED; 229 else 230 printk(KERN_DEBUG 231 "Warning: Processor Platform Limit not supported.\n"); 232 } 233 234 void acpi_processor_ppc_exit(void) 235 { 236 if (acpi_processor_ppc_status & PPC_REGISTERED) 237 cpufreq_unregister_notifier(&acpi_ppc_notifier_block, 238 CPUFREQ_POLICY_NOTIFIER); 239 240 acpi_processor_ppc_status &= ~PPC_REGISTERED; 241 } 242 243 /* 244 * Do a quick check if the systems looks like it should use ACPI 245 * cpufreq. We look at a _PCT method being available, but don't 246 * do a whole lot of sanity checks. 247 */ 248 void acpi_processor_load_module(struct acpi_processor *pr) 249 { 250 static int requested; 251 acpi_status status = 0; 252 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 253 254 if (!arch_has_acpi_pdc() || requested) 255 return; 256 status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer); 257 if (!ACPI_FAILURE(status)) { 258 printk(KERN_INFO PREFIX "Requesting acpi_cpufreq\n"); 259 request_module_nowait("acpi_cpufreq"); 260 requested = 1; 261 } 262 kfree(buffer.pointer); 263 } 264 265 static int acpi_processor_get_performance_control(struct acpi_processor *pr) 266 { 267 int result = 0; 268 acpi_status status = 0; 269 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 270 union acpi_object *pct = NULL; 271 union acpi_object obj = { 0 }; 272 273 274 status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer); 275 if (ACPI_FAILURE(status)) { 276 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PCT")); 277 return -ENODEV; 278 } 279 280 pct = (union acpi_object *)buffer.pointer; 281 if (!pct || (pct->type != ACPI_TYPE_PACKAGE) 282 || (pct->package.count != 2)) { 283 printk(KERN_ERR PREFIX "Invalid _PCT data\n"); 284 result = -EFAULT; 285 goto end; 286 } 287 288 /* 289 * control_register 290 */ 291 292 obj = pct->package.elements[0]; 293 294 if ((obj.type != ACPI_TYPE_BUFFER) 295 || (obj.buffer.length < sizeof(struct acpi_pct_register)) 296 || (obj.buffer.pointer == NULL)) { 297 printk(KERN_ERR PREFIX "Invalid _PCT data (control_register)\n"); 298 result = -EFAULT; 299 goto end; 300 } 301 memcpy(&pr->performance->control_register, obj.buffer.pointer, 302 sizeof(struct acpi_pct_register)); 303 304 /* 305 * status_register 306 */ 307 308 obj = pct->package.elements[1]; 309 310 if ((obj.type != ACPI_TYPE_BUFFER) 311 || (obj.buffer.length < sizeof(struct acpi_pct_register)) 312 || (obj.buffer.pointer == NULL)) { 313 printk(KERN_ERR PREFIX "Invalid _PCT data (status_register)\n"); 314 result = -EFAULT; 315 goto end; 316 } 317 318 memcpy(&pr->performance->status_register, obj.buffer.pointer, 319 sizeof(struct acpi_pct_register)); 320 321 end: 322 kfree(buffer.pointer); 323 324 return result; 325 } 326 327 static int acpi_processor_get_performance_states(struct acpi_processor *pr) 328 { 329 int result = 0; 330 acpi_status status = AE_OK; 331 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 332 struct acpi_buffer format = { sizeof("NNNNNN"), "NNNNNN" }; 333 struct acpi_buffer state = { 0, NULL }; 334 union acpi_object *pss = NULL; 335 int i; 336 337 338 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 339 if (ACPI_FAILURE(status)) { 340 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PSS")); 341 return -ENODEV; 342 } 343 344 pss = buffer.pointer; 345 if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) { 346 printk(KERN_ERR PREFIX "Invalid _PSS data\n"); 347 result = -EFAULT; 348 goto end; 349 } 350 351 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n", 352 pss->package.count)); 353 354 pr->performance->state_count = pss->package.count; 355 pr->performance->states = 356 kmalloc(sizeof(struct acpi_processor_px) * pss->package.count, 357 GFP_KERNEL); 358 if (!pr->performance->states) { 359 result = -ENOMEM; 360 goto end; 361 } 362 363 for (i = 0; i < pr->performance->state_count; i++) { 364 365 struct acpi_processor_px *px = &(pr->performance->states[i]); 366 367 state.length = sizeof(struct acpi_processor_px); 368 state.pointer = px; 369 370 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i)); 371 372 status = acpi_extract_package(&(pss->package.elements[i]), 373 &format, &state); 374 if (ACPI_FAILURE(status)) { 375 ACPI_EXCEPTION((AE_INFO, status, "Invalid _PSS data")); 376 result = -EFAULT; 377 kfree(pr->performance->states); 378 goto end; 379 } 380 381 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 382 "State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n", 383 i, 384 (u32) px->core_frequency, 385 (u32) px->power, 386 (u32) px->transition_latency, 387 (u32) px->bus_master_latency, 388 (u32) px->control, (u32) px->status)); 389 390 /* 391 * Check that ACPI's u64 MHz will be valid as u32 KHz in cpufreq 392 */ 393 if (!px->core_frequency || 394 ((u32)(px->core_frequency * 1000) != 395 (px->core_frequency * 1000))) { 396 printk(KERN_ERR FW_BUG PREFIX 397 "Invalid BIOS _PSS frequency: 0x%llx MHz\n", 398 px->core_frequency); 399 result = -EFAULT; 400 kfree(pr->performance->states); 401 goto end; 402 } 403 } 404 405 end: 406 kfree(buffer.pointer); 407 408 return result; 409 } 410 411 static int acpi_processor_get_performance_info(struct acpi_processor *pr) 412 { 413 int result = 0; 414 acpi_status status = AE_OK; 415 acpi_handle handle = NULL; 416 417 if (!pr || !pr->performance || !pr->handle) 418 return -EINVAL; 419 420 status = acpi_get_handle(pr->handle, "_PCT", &handle); 421 if (ACPI_FAILURE(status)) { 422 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 423 "ACPI-based processor performance control unavailable\n")); 424 return -ENODEV; 425 } 426 427 result = acpi_processor_get_performance_control(pr); 428 if (result) 429 goto update_bios; 430 431 result = acpi_processor_get_performance_states(pr); 432 if (result) 433 goto update_bios; 434 435 /* We need to call _PPC once when cpufreq starts */ 436 if (ignore_ppc != 1) 437 result = acpi_processor_get_platform_limit(pr); 438 439 return result; 440 441 /* 442 * Having _PPC but missing frequencies (_PSS, _PCT) is a very good hint that 443 * the BIOS is older than the CPU and does not know its frequencies 444 */ 445 update_bios: 446 #ifdef CONFIG_X86 447 if (ACPI_SUCCESS(acpi_get_handle(pr->handle, "_PPC", &handle))){ 448 if(boot_cpu_has(X86_FEATURE_EST)) 449 printk(KERN_WARNING FW_BUG "BIOS needs update for CPU " 450 "frequency support\n"); 451 } 452 #endif 453 return result; 454 } 455 456 int acpi_processor_notify_smm(struct module *calling_module) 457 { 458 acpi_status status; 459 static int is_done = 0; 460 461 462 if (!(acpi_processor_ppc_status & PPC_REGISTERED)) 463 return -EBUSY; 464 465 if (!try_module_get(calling_module)) 466 return -EINVAL; 467 468 /* is_done is set to negative if an error occurred, 469 * and to postitive if _no_ error occurred, but SMM 470 * was already notified. This avoids double notification 471 * which might lead to unexpected results... 472 */ 473 if (is_done > 0) { 474 module_put(calling_module); 475 return 0; 476 } else if (is_done < 0) { 477 module_put(calling_module); 478 return is_done; 479 } 480 481 is_done = -EIO; 482 483 /* Can't write pstate_control to smi_command if either value is zero */ 484 if ((!acpi_gbl_FADT.smi_command) || (!acpi_gbl_FADT.pstate_control)) { 485 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No SMI port or pstate_control\n")); 486 module_put(calling_module); 487 return 0; 488 } 489 490 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 491 "Writing pstate_control [0x%x] to smi_command [0x%x]\n", 492 acpi_gbl_FADT.pstate_control, acpi_gbl_FADT.smi_command)); 493 494 status = acpi_os_write_port(acpi_gbl_FADT.smi_command, 495 (u32) acpi_gbl_FADT.pstate_control, 8); 496 if (ACPI_FAILURE(status)) { 497 ACPI_EXCEPTION((AE_INFO, status, 498 "Failed to write pstate_control [0x%x] to " 499 "smi_command [0x%x]", acpi_gbl_FADT.pstate_control, 500 acpi_gbl_FADT.smi_command)); 501 module_put(calling_module); 502 return status; 503 } 504 505 /* Success. If there's no _PPC, we need to fear nothing, so 506 * we can allow the cpufreq driver to be rmmod'ed. */ 507 is_done = 1; 508 509 if (!(acpi_processor_ppc_status & PPC_IN_USE)) 510 module_put(calling_module); 511 512 return 0; 513 } 514 515 EXPORT_SYMBOL(acpi_processor_notify_smm); 516 517 static int acpi_processor_get_psd(struct acpi_processor *pr) 518 { 519 int result = 0; 520 acpi_status status = AE_OK; 521 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 522 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; 523 struct acpi_buffer state = {0, NULL}; 524 union acpi_object *psd = NULL; 525 struct acpi_psd_package *pdomain; 526 527 status = acpi_evaluate_object(pr->handle, "_PSD", NULL, &buffer); 528 if (ACPI_FAILURE(status)) { 529 return -ENODEV; 530 } 531 532 psd = buffer.pointer; 533 if (!psd || (psd->type != ACPI_TYPE_PACKAGE)) { 534 printk(KERN_ERR PREFIX "Invalid _PSD data\n"); 535 result = -EFAULT; 536 goto end; 537 } 538 539 if (psd->package.count != 1) { 540 printk(KERN_ERR PREFIX "Invalid _PSD data\n"); 541 result = -EFAULT; 542 goto end; 543 } 544 545 pdomain = &(pr->performance->domain_info); 546 547 state.length = sizeof(struct acpi_psd_package); 548 state.pointer = pdomain; 549 550 status = acpi_extract_package(&(psd->package.elements[0]), 551 &format, &state); 552 if (ACPI_FAILURE(status)) { 553 printk(KERN_ERR PREFIX "Invalid _PSD data\n"); 554 result = -EFAULT; 555 goto end; 556 } 557 558 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { 559 printk(KERN_ERR PREFIX "Unknown _PSD:num_entries\n"); 560 result = -EFAULT; 561 goto end; 562 } 563 564 if (pdomain->revision != ACPI_PSD_REV0_REVISION) { 565 printk(KERN_ERR PREFIX "Unknown _PSD:revision\n"); 566 result = -EFAULT; 567 goto end; 568 } 569 570 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && 571 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && 572 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { 573 printk(KERN_ERR PREFIX "Invalid _PSD:coord_type\n"); 574 result = -EFAULT; 575 goto end; 576 } 577 end: 578 kfree(buffer.pointer); 579 return result; 580 } 581 582 int acpi_processor_preregister_performance( 583 struct acpi_processor_performance __percpu *performance) 584 { 585 int count, count_target; 586 int retval = 0; 587 unsigned int i, j; 588 cpumask_var_t covered_cpus; 589 struct acpi_processor *pr; 590 struct acpi_psd_package *pdomain; 591 struct acpi_processor *match_pr; 592 struct acpi_psd_package *match_pdomain; 593 594 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL)) 595 return -ENOMEM; 596 597 mutex_lock(&performance_mutex); 598 599 /* 600 * Check if another driver has already registered, and abort before 601 * changing pr->performance if it has. Check input data as well. 602 */ 603 for_each_possible_cpu(i) { 604 pr = per_cpu(processors, i); 605 if (!pr) { 606 /* Look only at processors in ACPI namespace */ 607 continue; 608 } 609 610 if (pr->performance) { 611 retval = -EBUSY; 612 goto err_out; 613 } 614 615 if (!performance || !per_cpu_ptr(performance, i)) { 616 retval = -EINVAL; 617 goto err_out; 618 } 619 } 620 621 /* Call _PSD for all CPUs */ 622 for_each_possible_cpu(i) { 623 pr = per_cpu(processors, i); 624 if (!pr) 625 continue; 626 627 pr->performance = per_cpu_ptr(performance, i); 628 cpumask_set_cpu(i, pr->performance->shared_cpu_map); 629 if (acpi_processor_get_psd(pr)) { 630 retval = -EINVAL; 631 continue; 632 } 633 } 634 if (retval) 635 goto err_ret; 636 637 /* 638 * Now that we have _PSD data from all CPUs, lets setup P-state 639 * domain info. 640 */ 641 for_each_possible_cpu(i) { 642 pr = per_cpu(processors, i); 643 if (!pr) 644 continue; 645 646 if (cpumask_test_cpu(i, covered_cpus)) 647 continue; 648 649 pdomain = &(pr->performance->domain_info); 650 cpumask_set_cpu(i, pr->performance->shared_cpu_map); 651 cpumask_set_cpu(i, covered_cpus); 652 if (pdomain->num_processors <= 1) 653 continue; 654 655 /* Validate the Domain info */ 656 count_target = pdomain->num_processors; 657 count = 1; 658 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) 659 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL; 660 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) 661 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_HW; 662 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) 663 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ANY; 664 665 for_each_possible_cpu(j) { 666 if (i == j) 667 continue; 668 669 match_pr = per_cpu(processors, j); 670 if (!match_pr) 671 continue; 672 673 match_pdomain = &(match_pr->performance->domain_info); 674 if (match_pdomain->domain != pdomain->domain) 675 continue; 676 677 /* Here i and j are in the same domain */ 678 679 if (match_pdomain->num_processors != count_target) { 680 retval = -EINVAL; 681 goto err_ret; 682 } 683 684 if (pdomain->coord_type != match_pdomain->coord_type) { 685 retval = -EINVAL; 686 goto err_ret; 687 } 688 689 cpumask_set_cpu(j, covered_cpus); 690 cpumask_set_cpu(j, pr->performance->shared_cpu_map); 691 count++; 692 } 693 694 for_each_possible_cpu(j) { 695 if (i == j) 696 continue; 697 698 match_pr = per_cpu(processors, j); 699 if (!match_pr) 700 continue; 701 702 match_pdomain = &(match_pr->performance->domain_info); 703 if (match_pdomain->domain != pdomain->domain) 704 continue; 705 706 match_pr->performance->shared_type = 707 pr->performance->shared_type; 708 cpumask_copy(match_pr->performance->shared_cpu_map, 709 pr->performance->shared_cpu_map); 710 } 711 } 712 713 err_ret: 714 for_each_possible_cpu(i) { 715 pr = per_cpu(processors, i); 716 if (!pr || !pr->performance) 717 continue; 718 719 /* Assume no coordination on any error parsing domain info */ 720 if (retval) { 721 cpumask_clear(pr->performance->shared_cpu_map); 722 cpumask_set_cpu(i, pr->performance->shared_cpu_map); 723 pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL; 724 } 725 pr->performance = NULL; /* Will be set for real in register */ 726 } 727 728 err_out: 729 mutex_unlock(&performance_mutex); 730 free_cpumask_var(covered_cpus); 731 return retval; 732 } 733 EXPORT_SYMBOL(acpi_processor_preregister_performance); 734 735 int 736 acpi_processor_register_performance(struct acpi_processor_performance 737 *performance, unsigned int cpu) 738 { 739 struct acpi_processor *pr; 740 741 if (!(acpi_processor_ppc_status & PPC_REGISTERED)) 742 return -EINVAL; 743 744 mutex_lock(&performance_mutex); 745 746 pr = per_cpu(processors, cpu); 747 if (!pr) { 748 mutex_unlock(&performance_mutex); 749 return -ENODEV; 750 } 751 752 if (pr->performance) { 753 mutex_unlock(&performance_mutex); 754 return -EBUSY; 755 } 756 757 WARN_ON(!performance); 758 759 pr->performance = performance; 760 761 if (acpi_processor_get_performance_info(pr)) { 762 pr->performance = NULL; 763 mutex_unlock(&performance_mutex); 764 return -EIO; 765 } 766 767 mutex_unlock(&performance_mutex); 768 return 0; 769 } 770 771 EXPORT_SYMBOL(acpi_processor_register_performance); 772 773 void 774 acpi_processor_unregister_performance(struct acpi_processor_performance 775 *performance, unsigned int cpu) 776 { 777 struct acpi_processor *pr; 778 779 mutex_lock(&performance_mutex); 780 781 pr = per_cpu(processors, cpu); 782 if (!pr) { 783 mutex_unlock(&performance_mutex); 784 return; 785 } 786 787 if (pr->performance) 788 kfree(pr->performance->states); 789 pr->performance = NULL; 790 791 mutex_unlock(&performance_mutex); 792 793 return; 794 } 795 796 EXPORT_SYMBOL(acpi_processor_unregister_performance); 797