xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuidle.h>
45 
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55 
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58 
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62 
63 #define ACPI_PROCESSOR_COMPONENT        0x01000000
64 #define ACPI_PROCESSOR_CLASS            "processor"
65 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define ACPI_PROCESSOR_FILE_POWER	"power"
68 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
69 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
70 #ifndef CONFIG_CPU_IDLE
71 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
72 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
73 static void (*pm_idle_save) (void) __read_mostly;
74 #else
75 #define C2_OVERHEAD			1	/* 1us */
76 #define C3_OVERHEAD			1	/* 1us */
77 #endif
78 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
79 
80 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
81 #ifdef CONFIG_CPU_IDLE
82 module_param(max_cstate, uint, 0000);
83 #else
84 module_param(max_cstate, uint, 0644);
85 #endif
86 static unsigned int nocst __read_mostly;
87 module_param(nocst, uint, 0000);
88 
89 #ifndef CONFIG_CPU_IDLE
90 /*
91  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
92  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
93  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
94  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
95  * reduce history for more aggressive entry into C3
96  */
97 static unsigned int bm_history __read_mostly =
98     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
99 module_param(bm_history, uint, 0644);
100 
101 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
102 
103 #else	/* CONFIG_CPU_IDLE */
104 static unsigned int latency_factor __read_mostly = 2;
105 module_param(latency_factor, uint, 0644);
106 #endif
107 
108 /*
109  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
110  * For now disable this. Probably a bug somewhere else.
111  *
112  * To skip this limit, boot/load with a large max_cstate limit.
113  */
114 static int set_max_cstate(const struct dmi_system_id *id)
115 {
116 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
117 		return 0;
118 
119 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
120 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
121 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
122 
123 	max_cstate = (long)id->driver_data;
124 
125 	return 0;
126 }
127 
128 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
129    callers to only run once -AK */
130 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
131 	{ set_max_cstate, "IBM ThinkPad R40e", {
132 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
134 	{ set_max_cstate, "IBM ThinkPad R40e", {
135 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
137 	{ set_max_cstate, "IBM ThinkPad R40e", {
138 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
140 	{ set_max_cstate, "IBM ThinkPad R40e", {
141 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
143 	{ set_max_cstate, "IBM ThinkPad R40e", {
144 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
145 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
146 	{ set_max_cstate, "IBM ThinkPad R40e", {
147 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
148 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
149 	{ set_max_cstate, "IBM ThinkPad R40e", {
150 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
151 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
152 	{ set_max_cstate, "IBM ThinkPad R40e", {
153 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
154 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
155 	{ set_max_cstate, "IBM ThinkPad R40e", {
156 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
157 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
158 	{ set_max_cstate, "IBM ThinkPad R40e", {
159 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
160 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
161 	{ set_max_cstate, "IBM ThinkPad R40e", {
162 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
163 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
164 	{ set_max_cstate, "IBM ThinkPad R40e", {
165 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
166 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
167 	{ set_max_cstate, "IBM ThinkPad R40e", {
168 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
169 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
170 	{ set_max_cstate, "IBM ThinkPad R40e", {
171 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
172 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
173 	{ set_max_cstate, "IBM ThinkPad R40e", {
174 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
175 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
176 	{ set_max_cstate, "IBM ThinkPad R40e", {
177 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
178 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
179 	{ set_max_cstate, "Medion 41700", {
180 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
181 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
182 	{ set_max_cstate, "Clevo 5600D", {
183 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
184 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
185 	 (void *)2},
186 	{},
187 };
188 
189 static inline u32 ticks_elapsed(u32 t1, u32 t2)
190 {
191 	if (t2 >= t1)
192 		return (t2 - t1);
193 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
194 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
195 	else
196 		return ((0xFFFFFFFF - t1) + t2);
197 }
198 
199 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
200 {
201 	if (t2 >= t1)
202 		return PM_TIMER_TICKS_TO_US(t2 - t1);
203 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
204 		return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
205 	else
206 		return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
207 }
208 
209 /*
210  * Callers should disable interrupts before the call and enable
211  * interrupts after return.
212  */
213 static void acpi_safe_halt(void)
214 {
215 	current_thread_info()->status &= ~TS_POLLING;
216 	/*
217 	 * TS_POLLING-cleared state must be visible before we
218 	 * test NEED_RESCHED:
219 	 */
220 	smp_mb();
221 	if (!need_resched()) {
222 		safe_halt();
223 		local_irq_disable();
224 	}
225 	current_thread_info()->status |= TS_POLLING;
226 }
227 
228 #ifndef CONFIG_CPU_IDLE
229 
230 static void
231 acpi_processor_power_activate(struct acpi_processor *pr,
232 			      struct acpi_processor_cx *new)
233 {
234 	struct acpi_processor_cx *old;
235 
236 	if (!pr || !new)
237 		return;
238 
239 	old = pr->power.state;
240 
241 	if (old)
242 		old->promotion.count = 0;
243 	new->demotion.count = 0;
244 
245 	/* Cleanup from old state. */
246 	if (old) {
247 		switch (old->type) {
248 		case ACPI_STATE_C3:
249 			/* Disable bus master reload */
250 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
251 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
252 			break;
253 		}
254 	}
255 
256 	/* Prepare to use new state. */
257 	switch (new->type) {
258 	case ACPI_STATE_C3:
259 		/* Enable bus master reload */
260 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
261 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
262 		break;
263 	}
264 
265 	pr->power.state = new;
266 
267 	return;
268 }
269 
270 static atomic_t c3_cpu_count;
271 
272 /* Common C-state entry for C2, C3, .. */
273 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
274 {
275 	/* Don't trace irqs off for idle */
276 	stop_critical_timings();
277 	if (cstate->entry_method == ACPI_CSTATE_FFH) {
278 		/* Call into architectural FFH based C-state */
279 		acpi_processor_ffh_cstate_enter(cstate);
280 	} else {
281 		int unused;
282 		/* IO port based C-state */
283 		inb(cstate->address);
284 		/* Dummy wait op - must do something useless after P_LVL2 read
285 		   because chipsets cannot guarantee that STPCLK# signal
286 		   gets asserted in time to freeze execution properly. */
287 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
288 	}
289 	start_critical_timings();
290 }
291 #endif /* !CONFIG_CPU_IDLE */
292 
293 #ifdef ARCH_APICTIMER_STOPS_ON_C3
294 
295 /*
296  * Some BIOS implementations switch to C3 in the published C2 state.
297  * This seems to be a common problem on AMD boxen, but other vendors
298  * are affected too. We pick the most conservative approach: we assume
299  * that the local APIC stops in both C2 and C3.
300  */
301 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
302 				   struct acpi_processor_cx *cx)
303 {
304 	struct acpi_processor_power *pwr = &pr->power;
305 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
306 
307 	/*
308 	 * Check, if one of the previous states already marked the lapic
309 	 * unstable
310 	 */
311 	if (pwr->timer_broadcast_on_state < state)
312 		return;
313 
314 	if (cx->type >= type)
315 		pr->power.timer_broadcast_on_state = state;
316 }
317 
318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
319 {
320 	unsigned long reason;
321 
322 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
323 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
324 
325 	clockevents_notify(reason, &pr->id);
326 }
327 
328 /* Power(C) State timer broadcast control */
329 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
330 				       struct acpi_processor_cx *cx,
331 				       int broadcast)
332 {
333 	int state = cx - pr->power.states;
334 
335 	if (state >= pr->power.timer_broadcast_on_state) {
336 		unsigned long reason;
337 
338 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
339 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
340 		clockevents_notify(reason, &pr->id);
341 	}
342 }
343 
344 #else
345 
346 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
347 				   struct acpi_processor_cx *cstate) { }
348 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
349 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
350 				       struct acpi_processor_cx *cx,
351 				       int broadcast)
352 {
353 }
354 
355 #endif
356 
357 /*
358  * Suspend / resume control
359  */
360 static int acpi_idle_suspend;
361 
362 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
363 {
364 	acpi_idle_suspend = 1;
365 	return 0;
366 }
367 
368 int acpi_processor_resume(struct acpi_device * device)
369 {
370 	acpi_idle_suspend = 0;
371 	return 0;
372 }
373 
374 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
375 static int tsc_halts_in_c(int state)
376 {
377 	switch (boot_cpu_data.x86_vendor) {
378 	case X86_VENDOR_AMD:
379 		/*
380 		 * AMD Fam10h TSC will tick in all
381 		 * C/P/S0/S1 states when this bit is set.
382 		 */
383 		if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
384 			return 0;
385 		/*FALL THROUGH*/
386 	case X86_VENDOR_INTEL:
387 		/* Several cases known where TSC halts in C2 too */
388 	default:
389 		return state > ACPI_STATE_C1;
390 	}
391 }
392 #endif
393 
394 #ifndef CONFIG_CPU_IDLE
395 static void acpi_processor_idle(void)
396 {
397 	struct acpi_processor *pr = NULL;
398 	struct acpi_processor_cx *cx = NULL;
399 	struct acpi_processor_cx *next_state = NULL;
400 	int sleep_ticks = 0;
401 	u32 t1, t2 = 0;
402 
403 	/*
404 	 * Interrupts must be disabled during bus mastering calculations and
405 	 * for C2/C3 transitions.
406 	 */
407 	local_irq_disable();
408 
409 	pr = __get_cpu_var(processors);
410 	if (!pr) {
411 		local_irq_enable();
412 		return;
413 	}
414 
415 	/*
416 	 * Check whether we truly need to go idle, or should
417 	 * reschedule:
418 	 */
419 	if (unlikely(need_resched())) {
420 		local_irq_enable();
421 		return;
422 	}
423 
424 	cx = pr->power.state;
425 	if (!cx || acpi_idle_suspend) {
426 		if (pm_idle_save) {
427 			pm_idle_save(); /* enables IRQs */
428 		} else {
429 			acpi_safe_halt();
430 			local_irq_enable();
431 		}
432 
433 		return;
434 	}
435 
436 	/*
437 	 * Check BM Activity
438 	 * -----------------
439 	 * Check for bus mastering activity (if required), record, and check
440 	 * for demotion.
441 	 */
442 	if (pr->flags.bm_check) {
443 		u32 bm_status = 0;
444 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
445 
446 		if (diff > 31)
447 			diff = 31;
448 
449 		pr->power.bm_activity <<= diff;
450 
451 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
452 		if (bm_status) {
453 			pr->power.bm_activity |= 0x1;
454 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
455 		}
456 		/*
457 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
458 		 * the true state of bus mastering activity; forcing us to
459 		 * manually check the BMIDEA bit of each IDE channel.
460 		 */
461 		else if (errata.piix4.bmisx) {
462 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
463 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
464 				pr->power.bm_activity |= 0x1;
465 		}
466 
467 		pr->power.bm_check_timestamp = jiffies;
468 
469 		/*
470 		 * If bus mastering is or was active this jiffy, demote
471 		 * to avoid a faulty transition.  Note that the processor
472 		 * won't enter a low-power state during this call (to this
473 		 * function) but should upon the next.
474 		 *
475 		 * TBD: A better policy might be to fallback to the demotion
476 		 *      state (use it for this quantum only) istead of
477 		 *      demoting -- and rely on duration as our sole demotion
478 		 *      qualification.  This may, however, introduce DMA
479 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
480 		 */
481 		if ((pr->power.bm_activity & 0x1) &&
482 		    cx->demotion.threshold.bm) {
483 			local_irq_enable();
484 			next_state = cx->demotion.state;
485 			goto end;
486 		}
487 	}
488 
489 #ifdef CONFIG_HOTPLUG_CPU
490 	/*
491 	 * Check for P_LVL2_UP flag before entering C2 and above on
492 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
493 	 * detection phase, to work cleanly with logical CPU hotplug.
494 	 */
495 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
496 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
497 		cx = &pr->power.states[ACPI_STATE_C1];
498 #endif
499 
500 	/*
501 	 * Sleep:
502 	 * ------
503 	 * Invoke the current Cx state to put the processor to sleep.
504 	 */
505 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
506 		current_thread_info()->status &= ~TS_POLLING;
507 		/*
508 		 * TS_POLLING-cleared state must be visible before we
509 		 * test NEED_RESCHED:
510 		 */
511 		smp_mb();
512 		if (need_resched()) {
513 			current_thread_info()->status |= TS_POLLING;
514 			local_irq_enable();
515 			return;
516 		}
517 	}
518 
519 	switch (cx->type) {
520 
521 	case ACPI_STATE_C1:
522 		/*
523 		 * Invoke C1.
524 		 * Use the appropriate idle routine, the one that would
525 		 * be used without acpi C-states.
526 		 */
527 		if (pm_idle_save) {
528 			pm_idle_save(); /* enables IRQs */
529 		} else {
530 			acpi_safe_halt();
531 			local_irq_enable();
532 		}
533 
534 		/*
535 		 * TBD: Can't get time duration while in C1, as resumes
536 		 *      go to an ISR rather than here.  Need to instrument
537 		 *      base interrupt handler.
538 		 *
539 		 * Note: the TSC better not stop in C1, sched_clock() will
540 		 *       skew otherwise.
541 		 */
542 		sleep_ticks = 0xFFFFFFFF;
543 
544 		break;
545 
546 	case ACPI_STATE_C2:
547 		/* Get start time (ticks) */
548 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
549 		/* Tell the scheduler that we are going deep-idle: */
550 		sched_clock_idle_sleep_event();
551 		/* Invoke C2 */
552 		acpi_state_timer_broadcast(pr, cx, 1);
553 		acpi_cstate_enter(cx);
554 		/* Get end time (ticks) */
555 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
556 
557 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
558 		/* TSC halts in C2, so notify users */
559 		if (tsc_halts_in_c(ACPI_STATE_C2))
560 			mark_tsc_unstable("possible TSC halt in C2");
561 #endif
562 		/* Compute time (ticks) that we were actually asleep */
563 		sleep_ticks = ticks_elapsed(t1, t2);
564 
565 		/* Tell the scheduler how much we idled: */
566 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
567 
568 		/* Re-enable interrupts */
569 		local_irq_enable();
570 		/* Do not account our idle-switching overhead: */
571 		sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
572 
573 		current_thread_info()->status |= TS_POLLING;
574 		acpi_state_timer_broadcast(pr, cx, 0);
575 		break;
576 
577 	case ACPI_STATE_C3:
578 		acpi_unlazy_tlb(smp_processor_id());
579 		/*
580 		 * Must be done before busmaster disable as we might
581 		 * need to access HPET !
582 		 */
583 		acpi_state_timer_broadcast(pr, cx, 1);
584 		/*
585 		 * disable bus master
586 		 * bm_check implies we need ARB_DIS
587 		 * !bm_check implies we need cache flush
588 		 * bm_control implies whether we can do ARB_DIS
589 		 *
590 		 * That leaves a case where bm_check is set and bm_control is
591 		 * not set. In that case we cannot do much, we enter C3
592 		 * without doing anything.
593 		 */
594 		if (pr->flags.bm_check && pr->flags.bm_control) {
595 			if (atomic_inc_return(&c3_cpu_count) ==
596 			    num_online_cpus()) {
597 				/*
598 				 * All CPUs are trying to go to C3
599 				 * Disable bus master arbitration
600 				 */
601 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
602 			}
603 		} else if (!pr->flags.bm_check) {
604 			/* SMP with no shared cache... Invalidate cache  */
605 			ACPI_FLUSH_CPU_CACHE();
606 		}
607 
608 		/* Get start time (ticks) */
609 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
610 		/* Invoke C3 */
611 		/* Tell the scheduler that we are going deep-idle: */
612 		sched_clock_idle_sleep_event();
613 		acpi_cstate_enter(cx);
614 		/* Get end time (ticks) */
615 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
616 		if (pr->flags.bm_check && pr->flags.bm_control) {
617 			/* Enable bus master arbitration */
618 			atomic_dec(&c3_cpu_count);
619 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
620 		}
621 
622 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
623 		/* TSC halts in C3, so notify users */
624 		if (tsc_halts_in_c(ACPI_STATE_C3))
625 			mark_tsc_unstable("TSC halts in C3");
626 #endif
627 		/* Compute time (ticks) that we were actually asleep */
628 		sleep_ticks = ticks_elapsed(t1, t2);
629 		/* Tell the scheduler how much we idled: */
630 		sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
631 
632 		/* Re-enable interrupts */
633 		local_irq_enable();
634 		/* Do not account our idle-switching overhead: */
635 		sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
636 
637 		current_thread_info()->status |= TS_POLLING;
638 		acpi_state_timer_broadcast(pr, cx, 0);
639 		break;
640 
641 	default:
642 		local_irq_enable();
643 		return;
644 	}
645 	cx->usage++;
646 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
647 		cx->time += sleep_ticks;
648 
649 	next_state = pr->power.state;
650 
651 #ifdef CONFIG_HOTPLUG_CPU
652 	/* Don't do promotion/demotion */
653 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
654 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
655 		next_state = cx;
656 		goto end;
657 	}
658 #endif
659 
660 	/*
661 	 * Promotion?
662 	 * ----------
663 	 * Track the number of longs (time asleep is greater than threshold)
664 	 * and promote when the count threshold is reached.  Note that bus
665 	 * mastering activity may prevent promotions.
666 	 * Do not promote above max_cstate.
667 	 */
668 	if (cx->promotion.state &&
669 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
670 		if (sleep_ticks > cx->promotion.threshold.ticks &&
671 		  cx->promotion.state->latency <=
672 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
673 			cx->promotion.count++;
674 			cx->demotion.count = 0;
675 			if (cx->promotion.count >=
676 			    cx->promotion.threshold.count) {
677 				if (pr->flags.bm_check) {
678 					if (!
679 					    (pr->power.bm_activity & cx->
680 					     promotion.threshold.bm)) {
681 						next_state =
682 						    cx->promotion.state;
683 						goto end;
684 					}
685 				} else {
686 					next_state = cx->promotion.state;
687 					goto end;
688 				}
689 			}
690 		}
691 	}
692 
693 	/*
694 	 * Demotion?
695 	 * ---------
696 	 * Track the number of shorts (time asleep is less than time threshold)
697 	 * and demote when the usage threshold is reached.
698 	 */
699 	if (cx->demotion.state) {
700 		if (sleep_ticks < cx->demotion.threshold.ticks) {
701 			cx->demotion.count++;
702 			cx->promotion.count = 0;
703 			if (cx->demotion.count >= cx->demotion.threshold.count) {
704 				next_state = cx->demotion.state;
705 				goto end;
706 			}
707 		}
708 	}
709 
710       end:
711 	/*
712 	 * Demote if current state exceeds max_cstate
713 	 * or if the latency of the current state is unacceptable
714 	 */
715 	if ((pr->power.state - pr->power.states) > max_cstate ||
716 		pr->power.state->latency >
717 				pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
718 		if (cx->demotion.state)
719 			next_state = cx->demotion.state;
720 	}
721 
722 	/*
723 	 * New Cx State?
724 	 * -------------
725 	 * If we're going to start using a new Cx state we must clean up
726 	 * from the previous and prepare to use the new.
727 	 */
728 	if (next_state != pr->power.state)
729 		acpi_processor_power_activate(pr, next_state);
730 }
731 
732 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
733 {
734 	unsigned int i;
735 	unsigned int state_is_set = 0;
736 	struct acpi_processor_cx *lower = NULL;
737 	struct acpi_processor_cx *higher = NULL;
738 	struct acpi_processor_cx *cx;
739 
740 
741 	if (!pr)
742 		return -EINVAL;
743 
744 	/*
745 	 * This function sets the default Cx state policy (OS idle handler).
746 	 * Our scheme is to promote quickly to C2 but more conservatively
747 	 * to C3.  We're favoring C2  for its characteristics of low latency
748 	 * (quick response), good power savings, and ability to allow bus
749 	 * mastering activity.  Note that the Cx state policy is completely
750 	 * customizable and can be altered dynamically.
751 	 */
752 
753 	/* startup state */
754 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
755 		cx = &pr->power.states[i];
756 		if (!cx->valid)
757 			continue;
758 
759 		if (!state_is_set)
760 			pr->power.state = cx;
761 		state_is_set++;
762 		break;
763 	}
764 
765 	if (!state_is_set)
766 		return -ENODEV;
767 
768 	/* demotion */
769 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
770 		cx = &pr->power.states[i];
771 		if (!cx->valid)
772 			continue;
773 
774 		if (lower) {
775 			cx->demotion.state = lower;
776 			cx->demotion.threshold.ticks = cx->latency_ticks;
777 			cx->demotion.threshold.count = 1;
778 			if (cx->type == ACPI_STATE_C3)
779 				cx->demotion.threshold.bm = bm_history;
780 		}
781 
782 		lower = cx;
783 	}
784 
785 	/* promotion */
786 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
787 		cx = &pr->power.states[i];
788 		if (!cx->valid)
789 			continue;
790 
791 		if (higher) {
792 			cx->promotion.state = higher;
793 			cx->promotion.threshold.ticks = cx->latency_ticks;
794 			if (cx->type >= ACPI_STATE_C2)
795 				cx->promotion.threshold.count = 4;
796 			else
797 				cx->promotion.threshold.count = 10;
798 			if (higher->type == ACPI_STATE_C3)
799 				cx->promotion.threshold.bm = bm_history;
800 		}
801 
802 		higher = cx;
803 	}
804 
805 	return 0;
806 }
807 #endif /* !CONFIG_CPU_IDLE */
808 
809 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
810 {
811 
812 	if (!pr)
813 		return -EINVAL;
814 
815 	if (!pr->pblk)
816 		return -ENODEV;
817 
818 	/* if info is obtained from pblk/fadt, type equals state */
819 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
820 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
821 
822 #ifndef CONFIG_HOTPLUG_CPU
823 	/*
824 	 * Check for P_LVL2_UP flag before entering C2 and above on
825 	 * an SMP system.
826 	 */
827 	if ((num_online_cpus() > 1) &&
828 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
829 		return -ENODEV;
830 #endif
831 
832 	/* determine C2 and C3 address from pblk */
833 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
834 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
835 
836 	/* determine latencies from FADT */
837 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
838 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
839 
840 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
841 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
842 			  pr->power.states[ACPI_STATE_C2].address,
843 			  pr->power.states[ACPI_STATE_C3].address));
844 
845 	return 0;
846 }
847 
848 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
849 {
850 	if (!pr->power.states[ACPI_STATE_C1].valid) {
851 		/* set the first C-State to C1 */
852 		/* all processors need to support C1 */
853 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
854 		pr->power.states[ACPI_STATE_C1].valid = 1;
855 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
856 	}
857 	/* the C0 state only exists as a filler in our array */
858 	pr->power.states[ACPI_STATE_C0].valid = 1;
859 	return 0;
860 }
861 
862 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
863 {
864 	acpi_status status = 0;
865 	acpi_integer count;
866 	int current_count;
867 	int i;
868 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
869 	union acpi_object *cst;
870 
871 
872 	if (nocst)
873 		return -ENODEV;
874 
875 	current_count = 0;
876 
877 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
878 	if (ACPI_FAILURE(status)) {
879 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
880 		return -ENODEV;
881 	}
882 
883 	cst = buffer.pointer;
884 
885 	/* There must be at least 2 elements */
886 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
887 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
888 		status = -EFAULT;
889 		goto end;
890 	}
891 
892 	count = cst->package.elements[0].integer.value;
893 
894 	/* Validate number of power states. */
895 	if (count < 1 || count != cst->package.count - 1) {
896 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
897 		status = -EFAULT;
898 		goto end;
899 	}
900 
901 	/* Tell driver that at least _CST is supported. */
902 	pr->flags.has_cst = 1;
903 
904 	for (i = 1; i <= count; i++) {
905 		union acpi_object *element;
906 		union acpi_object *obj;
907 		struct acpi_power_register *reg;
908 		struct acpi_processor_cx cx;
909 
910 		memset(&cx, 0, sizeof(cx));
911 
912 		element = &(cst->package.elements[i]);
913 		if (element->type != ACPI_TYPE_PACKAGE)
914 			continue;
915 
916 		if (element->package.count != 4)
917 			continue;
918 
919 		obj = &(element->package.elements[0]);
920 
921 		if (obj->type != ACPI_TYPE_BUFFER)
922 			continue;
923 
924 		reg = (struct acpi_power_register *)obj->buffer.pointer;
925 
926 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
927 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
928 			continue;
929 
930 		/* There should be an easy way to extract an integer... */
931 		obj = &(element->package.elements[1]);
932 		if (obj->type != ACPI_TYPE_INTEGER)
933 			continue;
934 
935 		cx.type = obj->integer.value;
936 		/*
937 		 * Some buggy BIOSes won't list C1 in _CST -
938 		 * Let acpi_processor_get_power_info_default() handle them later
939 		 */
940 		if (i == 1 && cx.type != ACPI_STATE_C1)
941 			current_count++;
942 
943 		cx.address = reg->address;
944 		cx.index = current_count + 1;
945 
946 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
947 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
948 			if (acpi_processor_ffh_cstate_probe
949 					(pr->id, &cx, reg) == 0) {
950 				cx.entry_method = ACPI_CSTATE_FFH;
951 			} else if (cx.type == ACPI_STATE_C1) {
952 				/*
953 				 * C1 is a special case where FIXED_HARDWARE
954 				 * can be handled in non-MWAIT way as well.
955 				 * In that case, save this _CST entry info.
956 				 * Otherwise, ignore this info and continue.
957 				 */
958 				cx.entry_method = ACPI_CSTATE_HALT;
959 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
960 			} else {
961 				continue;
962 			}
963 			if (cx.type == ACPI_STATE_C1 &&
964 					(idle_halt || idle_nomwait)) {
965 				/*
966 				 * In most cases the C1 space_id obtained from
967 				 * _CST object is FIXED_HARDWARE access mode.
968 				 * But when the option of idle=halt is added,
969 				 * the entry_method type should be changed from
970 				 * CSTATE_FFH to CSTATE_HALT.
971 				 * When the option of idle=nomwait is added,
972 				 * the C1 entry_method type should be
973 				 * CSTATE_HALT.
974 				 */
975 				cx.entry_method = ACPI_CSTATE_HALT;
976 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
977 			}
978 		} else {
979 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
980 				 cx.address);
981 		}
982 
983 		if (cx.type == ACPI_STATE_C1) {
984 			cx.valid = 1;
985 		}
986 
987 		obj = &(element->package.elements[2]);
988 		if (obj->type != ACPI_TYPE_INTEGER)
989 			continue;
990 
991 		cx.latency = obj->integer.value;
992 
993 		obj = &(element->package.elements[3]);
994 		if (obj->type != ACPI_TYPE_INTEGER)
995 			continue;
996 
997 		cx.power = obj->integer.value;
998 
999 		current_count++;
1000 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
1001 
1002 		/*
1003 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
1004 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
1005 		 */
1006 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
1007 			printk(KERN_WARNING
1008 			       "Limiting number of power states to max (%d)\n",
1009 			       ACPI_PROCESSOR_MAX_POWER);
1010 			printk(KERN_WARNING
1011 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1012 			break;
1013 		}
1014 	}
1015 
1016 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
1017 			  current_count));
1018 
1019 	/* Validate number of power states discovered */
1020 	if (current_count < 2)
1021 		status = -EFAULT;
1022 
1023       end:
1024 	kfree(buffer.pointer);
1025 
1026 	return status;
1027 }
1028 
1029 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
1030 {
1031 
1032 	if (!cx->address)
1033 		return;
1034 
1035 	/*
1036 	 * C2 latency must be less than or equal to 100
1037 	 * microseconds.
1038 	 */
1039 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1040 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1041 				  "latency too large [%d]\n", cx->latency));
1042 		return;
1043 	}
1044 
1045 	/*
1046 	 * Otherwise we've met all of our C2 requirements.
1047 	 * Normalize the C2 latency to expidite policy
1048 	 */
1049 	cx->valid = 1;
1050 
1051 #ifndef CONFIG_CPU_IDLE
1052 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1053 #else
1054 	cx->latency_ticks = cx->latency;
1055 #endif
1056 
1057 	return;
1058 }
1059 
1060 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1061 					   struct acpi_processor_cx *cx)
1062 {
1063 	static int bm_check_flag;
1064 
1065 
1066 	if (!cx->address)
1067 		return;
1068 
1069 	/*
1070 	 * C3 latency must be less than or equal to 1000
1071 	 * microseconds.
1072 	 */
1073 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1074 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1075 				  "latency too large [%d]\n", cx->latency));
1076 		return;
1077 	}
1078 
1079 	/*
1080 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1081 	 * DMA transfers are used by any ISA device to avoid livelock.
1082 	 * Note that we could disable Type-F DMA (as recommended by
1083 	 * the erratum), but this is known to disrupt certain ISA
1084 	 * devices thus we take the conservative approach.
1085 	 */
1086 	else if (errata.piix4.fdma) {
1087 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1088 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
1089 		return;
1090 	}
1091 
1092 	/* All the logic here assumes flags.bm_check is same across all CPUs */
1093 	if (!bm_check_flag) {
1094 		/* Determine whether bm_check is needed based on CPU  */
1095 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1096 		bm_check_flag = pr->flags.bm_check;
1097 	} else {
1098 		pr->flags.bm_check = bm_check_flag;
1099 	}
1100 
1101 	if (pr->flags.bm_check) {
1102 		if (!pr->flags.bm_control) {
1103 			if (pr->flags.has_cst != 1) {
1104 				/* bus mastering control is necessary */
1105 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1106 					"C3 support requires BM control\n"));
1107 				return;
1108 			} else {
1109 				/* Here we enter C3 without bus mastering */
1110 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1111 					"C3 support without BM control\n"));
1112 			}
1113 		}
1114 	} else {
1115 		/*
1116 		 * WBINVD should be set in fadt, for C3 state to be
1117 		 * supported on when bm_check is not required.
1118 		 */
1119 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1120 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1121 					  "Cache invalidation should work properly"
1122 					  " for C3 to be enabled on SMP systems\n"));
1123 			return;
1124 		}
1125 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1126 	}
1127 
1128 	/*
1129 	 * Otherwise we've met all of our C3 requirements.
1130 	 * Normalize the C3 latency to expidite policy.  Enable
1131 	 * checking of bus mastering status (bm_check) so we can
1132 	 * use this in our C3 policy
1133 	 */
1134 	cx->valid = 1;
1135 
1136 #ifndef CONFIG_CPU_IDLE
1137 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1138 #else
1139 	cx->latency_ticks = cx->latency;
1140 #endif
1141 
1142 	return;
1143 }
1144 
1145 static int acpi_processor_power_verify(struct acpi_processor *pr)
1146 {
1147 	unsigned int i;
1148 	unsigned int working = 0;
1149 
1150 	pr->power.timer_broadcast_on_state = INT_MAX;
1151 
1152 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1153 		struct acpi_processor_cx *cx = &pr->power.states[i];
1154 
1155 		switch (cx->type) {
1156 		case ACPI_STATE_C1:
1157 			cx->valid = 1;
1158 			break;
1159 
1160 		case ACPI_STATE_C2:
1161 			acpi_processor_power_verify_c2(cx);
1162 			if (cx->valid)
1163 				acpi_timer_check_state(i, pr, cx);
1164 			break;
1165 
1166 		case ACPI_STATE_C3:
1167 			acpi_processor_power_verify_c3(pr, cx);
1168 			if (cx->valid)
1169 				acpi_timer_check_state(i, pr, cx);
1170 			break;
1171 		}
1172 
1173 		if (cx->valid)
1174 			working++;
1175 	}
1176 
1177 	acpi_propagate_timer_broadcast(pr);
1178 
1179 	return (working);
1180 }
1181 
1182 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1183 {
1184 	unsigned int i;
1185 	int result;
1186 
1187 
1188 	/* NOTE: the idle thread may not be running while calling
1189 	 * this function */
1190 
1191 	/* Zero initialize all the C-states info. */
1192 	memset(pr->power.states, 0, sizeof(pr->power.states));
1193 
1194 	result = acpi_processor_get_power_info_cst(pr);
1195 	if (result == -ENODEV)
1196 		result = acpi_processor_get_power_info_fadt(pr);
1197 
1198 	if (result)
1199 		return result;
1200 
1201 	acpi_processor_get_power_info_default(pr);
1202 
1203 	pr->power.count = acpi_processor_power_verify(pr);
1204 
1205 #ifndef CONFIG_CPU_IDLE
1206 	/*
1207 	 * Set Default Policy
1208 	 * ------------------
1209 	 * Now that we know which states are supported, set the default
1210 	 * policy.  Note that this policy can be changed dynamically
1211 	 * (e.g. encourage deeper sleeps to conserve battery life when
1212 	 * not on AC).
1213 	 */
1214 	result = acpi_processor_set_power_policy(pr);
1215 	if (result)
1216 		return result;
1217 #endif
1218 
1219 	/*
1220 	 * if one state of type C2 or C3 is available, mark this
1221 	 * CPU as being "idle manageable"
1222 	 */
1223 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1224 		if (pr->power.states[i].valid) {
1225 			pr->power.count = i;
1226 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1227 				pr->flags.power = 1;
1228 		}
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1235 {
1236 	struct acpi_processor *pr = seq->private;
1237 	unsigned int i;
1238 
1239 
1240 	if (!pr)
1241 		goto end;
1242 
1243 	seq_printf(seq, "active state:            C%zd\n"
1244 		   "max_cstate:              C%d\n"
1245 		   "bus master activity:     %08x\n"
1246 		   "maximum allowed latency: %d usec\n",
1247 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1248 		   max_cstate, (unsigned)pr->power.bm_activity,
1249 		   pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1250 
1251 	seq_puts(seq, "states:\n");
1252 
1253 	for (i = 1; i <= pr->power.count; i++) {
1254 		seq_printf(seq, "   %cC%d:                  ",
1255 			   (&pr->power.states[i] ==
1256 			    pr->power.state ? '*' : ' '), i);
1257 
1258 		if (!pr->power.states[i].valid) {
1259 			seq_puts(seq, "<not supported>\n");
1260 			continue;
1261 		}
1262 
1263 		switch (pr->power.states[i].type) {
1264 		case ACPI_STATE_C1:
1265 			seq_printf(seq, "type[C1] ");
1266 			break;
1267 		case ACPI_STATE_C2:
1268 			seq_printf(seq, "type[C2] ");
1269 			break;
1270 		case ACPI_STATE_C3:
1271 			seq_printf(seq, "type[C3] ");
1272 			break;
1273 		default:
1274 			seq_printf(seq, "type[--] ");
1275 			break;
1276 		}
1277 
1278 		if (pr->power.states[i].promotion.state)
1279 			seq_printf(seq, "promotion[C%zd] ",
1280 				   (pr->power.states[i].promotion.state -
1281 				    pr->power.states));
1282 		else
1283 			seq_puts(seq, "promotion[--] ");
1284 
1285 		if (pr->power.states[i].demotion.state)
1286 			seq_printf(seq, "demotion[C%zd] ",
1287 				   (pr->power.states[i].demotion.state -
1288 				    pr->power.states));
1289 		else
1290 			seq_puts(seq, "demotion[--] ");
1291 
1292 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1293 			   pr->power.states[i].latency,
1294 			   pr->power.states[i].usage,
1295 			   (unsigned long long)pr->power.states[i].time);
1296 	}
1297 
1298       end:
1299 	return 0;
1300 }
1301 
1302 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1303 {
1304 	return single_open(file, acpi_processor_power_seq_show,
1305 			   PDE(inode)->data);
1306 }
1307 
1308 static const struct file_operations acpi_processor_power_fops = {
1309 	.owner = THIS_MODULE,
1310 	.open = acpi_processor_power_open_fs,
1311 	.read = seq_read,
1312 	.llseek = seq_lseek,
1313 	.release = single_release,
1314 };
1315 
1316 #ifndef CONFIG_CPU_IDLE
1317 
1318 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1319 {
1320 	int result = 0;
1321 
1322 	if (boot_option_idle_override)
1323 		return 0;
1324 
1325 	if (!pr)
1326 		return -EINVAL;
1327 
1328 	if (nocst) {
1329 		return -ENODEV;
1330 	}
1331 
1332 	if (!pr->flags.power_setup_done)
1333 		return -ENODEV;
1334 
1335 	/*
1336 	 * Fall back to the default idle loop, when pm_idle_save had
1337 	 * been initialized.
1338 	 */
1339 	if (pm_idle_save) {
1340 		pm_idle = pm_idle_save;
1341 		/* Relies on interrupts forcing exit from idle. */
1342 		synchronize_sched();
1343 	}
1344 
1345 	pr->flags.power = 0;
1346 	result = acpi_processor_get_power_info(pr);
1347 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1348 		pm_idle = acpi_processor_idle;
1349 
1350 	return result;
1351 }
1352 
1353 #ifdef CONFIG_SMP
1354 static void smp_callback(void *v)
1355 {
1356 	/* we already woke the CPU up, nothing more to do */
1357 }
1358 
1359 /*
1360  * This function gets called when a part of the kernel has a new latency
1361  * requirement.  This means we need to get all processors out of their C-state,
1362  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1363  * wakes them all right up.
1364  */
1365 static int acpi_processor_latency_notify(struct notifier_block *b,
1366 		unsigned long l, void *v)
1367 {
1368 	smp_call_function(smp_callback, NULL, 1);
1369 	return NOTIFY_OK;
1370 }
1371 
1372 static struct notifier_block acpi_processor_latency_notifier = {
1373 	.notifier_call = acpi_processor_latency_notify,
1374 };
1375 
1376 #endif
1377 
1378 #else /* CONFIG_CPU_IDLE */
1379 
1380 /**
1381  * acpi_idle_bm_check - checks if bus master activity was detected
1382  */
1383 static int acpi_idle_bm_check(void)
1384 {
1385 	u32 bm_status = 0;
1386 
1387 	acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1388 	if (bm_status)
1389 		acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1390 	/*
1391 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1392 	 * the true state of bus mastering activity; forcing us to
1393 	 * manually check the BMIDEA bit of each IDE channel.
1394 	 */
1395 	else if (errata.piix4.bmisx) {
1396 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1397 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1398 			bm_status = 1;
1399 	}
1400 	return bm_status;
1401 }
1402 
1403 /**
1404  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1405  * @pr: the processor
1406  * @target: the new target state
1407  */
1408 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1409 					   struct acpi_processor_cx *target)
1410 {
1411 	if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1412 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1413 		pr->flags.bm_rld_set = 0;
1414 	}
1415 
1416 	if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1417 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1418 		pr->flags.bm_rld_set = 1;
1419 	}
1420 }
1421 
1422 /**
1423  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1424  * @cx: cstate data
1425  *
1426  * Caller disables interrupt before call and enables interrupt after return.
1427  */
1428 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1429 {
1430 	/* Don't trace irqs off for idle */
1431 	stop_critical_timings();
1432 	if (cx->entry_method == ACPI_CSTATE_FFH) {
1433 		/* Call into architectural FFH based C-state */
1434 		acpi_processor_ffh_cstate_enter(cx);
1435 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
1436 		acpi_safe_halt();
1437 	} else {
1438 		int unused;
1439 		/* IO port based C-state */
1440 		inb(cx->address);
1441 		/* Dummy wait op - must do something useless after P_LVL2 read
1442 		   because chipsets cannot guarantee that STPCLK# signal
1443 		   gets asserted in time to freeze execution properly. */
1444 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1445 	}
1446 	start_critical_timings();
1447 }
1448 
1449 /**
1450  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1451  * @dev: the target CPU
1452  * @state: the state data
1453  *
1454  * This is equivalent to the HALT instruction.
1455  */
1456 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1457 			      struct cpuidle_state *state)
1458 {
1459 	u32 t1, t2;
1460 	struct acpi_processor *pr;
1461 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1462 
1463 	pr = __get_cpu_var(processors);
1464 
1465 	if (unlikely(!pr))
1466 		return 0;
1467 
1468 	local_irq_disable();
1469 
1470 	/* Do not access any ACPI IO ports in suspend path */
1471 	if (acpi_idle_suspend) {
1472 		acpi_safe_halt();
1473 		local_irq_enable();
1474 		return 0;
1475 	}
1476 
1477 	if (pr->flags.bm_check)
1478 		acpi_idle_update_bm_rld(pr, cx);
1479 
1480 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1481 	acpi_idle_do_entry(cx);
1482 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1483 
1484 	local_irq_enable();
1485 	cx->usage++;
1486 
1487 	return ticks_elapsed_in_us(t1, t2);
1488 }
1489 
1490 /**
1491  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1492  * @dev: the target CPU
1493  * @state: the state data
1494  */
1495 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1496 				  struct cpuidle_state *state)
1497 {
1498 	struct acpi_processor *pr;
1499 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1500 	u32 t1, t2;
1501 	int sleep_ticks = 0;
1502 
1503 	pr = __get_cpu_var(processors);
1504 
1505 	if (unlikely(!pr))
1506 		return 0;
1507 
1508 	if (acpi_idle_suspend)
1509 		return(acpi_idle_enter_c1(dev, state));
1510 
1511 	local_irq_disable();
1512 	current_thread_info()->status &= ~TS_POLLING;
1513 	/*
1514 	 * TS_POLLING-cleared state must be visible before we test
1515 	 * NEED_RESCHED:
1516 	 */
1517 	smp_mb();
1518 
1519 	if (unlikely(need_resched())) {
1520 		current_thread_info()->status |= TS_POLLING;
1521 		local_irq_enable();
1522 		return 0;
1523 	}
1524 
1525 	/*
1526 	 * Must be done before busmaster disable as we might need to
1527 	 * access HPET !
1528 	 */
1529 	acpi_state_timer_broadcast(pr, cx, 1);
1530 
1531 	if (pr->flags.bm_check)
1532 		acpi_idle_update_bm_rld(pr, cx);
1533 
1534 	if (cx->type == ACPI_STATE_C3)
1535 		ACPI_FLUSH_CPU_CACHE();
1536 
1537 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1538 	/* Tell the scheduler that we are going deep-idle: */
1539 	sched_clock_idle_sleep_event();
1540 	acpi_idle_do_entry(cx);
1541 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1542 
1543 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1544 	/* TSC could halt in idle, so notify users */
1545 	if (tsc_halts_in_c(cx->type))
1546 		mark_tsc_unstable("TSC halts in idle");;
1547 #endif
1548 	sleep_ticks = ticks_elapsed(t1, t2);
1549 
1550 	/* Tell the scheduler how much we idled: */
1551 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1552 
1553 	local_irq_enable();
1554 	current_thread_info()->status |= TS_POLLING;
1555 
1556 	cx->usage++;
1557 
1558 	acpi_state_timer_broadcast(pr, cx, 0);
1559 	cx->time += sleep_ticks;
1560 	return ticks_elapsed_in_us(t1, t2);
1561 }
1562 
1563 static int c3_cpu_count;
1564 static DEFINE_SPINLOCK(c3_lock);
1565 
1566 /**
1567  * acpi_idle_enter_bm - enters C3 with proper BM handling
1568  * @dev: the target CPU
1569  * @state: the state data
1570  *
1571  * If BM is detected, the deepest non-C3 idle state is entered instead.
1572  */
1573 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1574 			      struct cpuidle_state *state)
1575 {
1576 	struct acpi_processor *pr;
1577 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1578 	u32 t1, t2;
1579 	int sleep_ticks = 0;
1580 
1581 	pr = __get_cpu_var(processors);
1582 
1583 	if (unlikely(!pr))
1584 		return 0;
1585 
1586 	if (acpi_idle_suspend)
1587 		return(acpi_idle_enter_c1(dev, state));
1588 
1589 	if (acpi_idle_bm_check()) {
1590 		if (dev->safe_state) {
1591 			return dev->safe_state->enter(dev, dev->safe_state);
1592 		} else {
1593 			local_irq_disable();
1594 			acpi_safe_halt();
1595 			local_irq_enable();
1596 			return 0;
1597 		}
1598 	}
1599 
1600 	local_irq_disable();
1601 	current_thread_info()->status &= ~TS_POLLING;
1602 	/*
1603 	 * TS_POLLING-cleared state must be visible before we test
1604 	 * NEED_RESCHED:
1605 	 */
1606 	smp_mb();
1607 
1608 	if (unlikely(need_resched())) {
1609 		current_thread_info()->status |= TS_POLLING;
1610 		local_irq_enable();
1611 		return 0;
1612 	}
1613 
1614 	acpi_unlazy_tlb(smp_processor_id());
1615 
1616 	/* Tell the scheduler that we are going deep-idle: */
1617 	sched_clock_idle_sleep_event();
1618 	/*
1619 	 * Must be done before busmaster disable as we might need to
1620 	 * access HPET !
1621 	 */
1622 	acpi_state_timer_broadcast(pr, cx, 1);
1623 
1624 	acpi_idle_update_bm_rld(pr, cx);
1625 
1626 	/*
1627 	 * disable bus master
1628 	 * bm_check implies we need ARB_DIS
1629 	 * !bm_check implies we need cache flush
1630 	 * bm_control implies whether we can do ARB_DIS
1631 	 *
1632 	 * That leaves a case where bm_check is set and bm_control is
1633 	 * not set. In that case we cannot do much, we enter C3
1634 	 * without doing anything.
1635 	 */
1636 	if (pr->flags.bm_check && pr->flags.bm_control) {
1637 		spin_lock(&c3_lock);
1638 		c3_cpu_count++;
1639 		/* Disable bus master arbitration when all CPUs are in C3 */
1640 		if (c3_cpu_count == num_online_cpus())
1641 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1642 		spin_unlock(&c3_lock);
1643 	} else if (!pr->flags.bm_check) {
1644 		ACPI_FLUSH_CPU_CACHE();
1645 	}
1646 
1647 	t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1648 	acpi_idle_do_entry(cx);
1649 	t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1650 
1651 	/* Re-enable bus master arbitration */
1652 	if (pr->flags.bm_check && pr->flags.bm_control) {
1653 		spin_lock(&c3_lock);
1654 		acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1655 		c3_cpu_count--;
1656 		spin_unlock(&c3_lock);
1657 	}
1658 
1659 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
1660 	/* TSC could halt in idle, so notify users */
1661 	if (tsc_halts_in_c(ACPI_STATE_C3))
1662 		mark_tsc_unstable("TSC halts in idle");
1663 #endif
1664 	sleep_ticks = ticks_elapsed(t1, t2);
1665 	/* Tell the scheduler how much we idled: */
1666 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1667 
1668 	local_irq_enable();
1669 	current_thread_info()->status |= TS_POLLING;
1670 
1671 	cx->usage++;
1672 
1673 	acpi_state_timer_broadcast(pr, cx, 0);
1674 	cx->time += sleep_ticks;
1675 	return ticks_elapsed_in_us(t1, t2);
1676 }
1677 
1678 struct cpuidle_driver acpi_idle_driver = {
1679 	.name =		"acpi_idle",
1680 	.owner =	THIS_MODULE,
1681 };
1682 
1683 /**
1684  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1685  * @pr: the ACPI processor
1686  */
1687 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1688 {
1689 	int i, count = CPUIDLE_DRIVER_STATE_START;
1690 	struct acpi_processor_cx *cx;
1691 	struct cpuidle_state *state;
1692 	struct cpuidle_device *dev = &pr->power.dev;
1693 
1694 	if (!pr->flags.power_setup_done)
1695 		return -EINVAL;
1696 
1697 	if (pr->flags.power == 0) {
1698 		return -EINVAL;
1699 	}
1700 
1701 	dev->cpu = pr->id;
1702 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1703 		dev->states[i].name[0] = '\0';
1704 		dev->states[i].desc[0] = '\0';
1705 	}
1706 
1707 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1708 		cx = &pr->power.states[i];
1709 		state = &dev->states[count];
1710 
1711 		if (!cx->valid)
1712 			continue;
1713 
1714 #ifdef CONFIG_HOTPLUG_CPU
1715 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1716 		    !pr->flags.has_cst &&
1717 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1718 			continue;
1719 #endif
1720 		cpuidle_set_statedata(state, cx);
1721 
1722 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1723 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1724 		state->exit_latency = cx->latency;
1725 		state->target_residency = cx->latency * latency_factor;
1726 		state->power_usage = cx->power;
1727 
1728 		state->flags = 0;
1729 		switch (cx->type) {
1730 			case ACPI_STATE_C1:
1731 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1732 			if (cx->entry_method == ACPI_CSTATE_FFH)
1733 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1734 
1735 			state->enter = acpi_idle_enter_c1;
1736 			dev->safe_state = state;
1737 			break;
1738 
1739 			case ACPI_STATE_C2:
1740 			state->flags |= CPUIDLE_FLAG_BALANCED;
1741 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1742 			state->enter = acpi_idle_enter_simple;
1743 			dev->safe_state = state;
1744 			break;
1745 
1746 			case ACPI_STATE_C3:
1747 			state->flags |= CPUIDLE_FLAG_DEEP;
1748 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1749 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1750 			state->enter = pr->flags.bm_check ?
1751 					acpi_idle_enter_bm :
1752 					acpi_idle_enter_simple;
1753 			break;
1754 		}
1755 
1756 		count++;
1757 		if (count == CPUIDLE_STATE_MAX)
1758 			break;
1759 	}
1760 
1761 	dev->state_count = count;
1762 
1763 	if (!count)
1764 		return -EINVAL;
1765 
1766 	return 0;
1767 }
1768 
1769 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1770 {
1771 	int ret = 0;
1772 
1773 	if (boot_option_idle_override)
1774 		return 0;
1775 
1776 	if (!pr)
1777 		return -EINVAL;
1778 
1779 	if (nocst) {
1780 		return -ENODEV;
1781 	}
1782 
1783 	if (!pr->flags.power_setup_done)
1784 		return -ENODEV;
1785 
1786 	cpuidle_pause_and_lock();
1787 	cpuidle_disable_device(&pr->power.dev);
1788 	acpi_processor_get_power_info(pr);
1789 	if (pr->flags.power) {
1790 		acpi_processor_setup_cpuidle(pr);
1791 		ret = cpuidle_enable_device(&pr->power.dev);
1792 	}
1793 	cpuidle_resume_and_unlock();
1794 
1795 	return ret;
1796 }
1797 
1798 #endif /* CONFIG_CPU_IDLE */
1799 
1800 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1801 			      struct acpi_device *device)
1802 {
1803 	acpi_status status = 0;
1804 	static int first_run;
1805 	struct proc_dir_entry *entry = NULL;
1806 	unsigned int i;
1807 
1808 	if (boot_option_idle_override)
1809 		return 0;
1810 
1811 	if (!first_run) {
1812 		if (idle_halt) {
1813 			/*
1814 			 * When the boot option of "idle=halt" is added, halt
1815 			 * is used for CPU IDLE.
1816 			 * In such case C2/C3 is meaningless. So the max_cstate
1817 			 * is set to one.
1818 			 */
1819 			max_cstate = 1;
1820 		}
1821 		dmi_check_system(processor_power_dmi_table);
1822 		max_cstate = acpi_processor_cstate_check(max_cstate);
1823 		if (max_cstate < ACPI_C_STATES_MAX)
1824 			printk(KERN_NOTICE
1825 			       "ACPI: processor limited to max C-state %d\n",
1826 			       max_cstate);
1827 		first_run++;
1828 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1829 		pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1830 				&acpi_processor_latency_notifier);
1831 #endif
1832 	}
1833 
1834 	if (!pr)
1835 		return -EINVAL;
1836 
1837 	if (acpi_gbl_FADT.cst_control && !nocst) {
1838 		status =
1839 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1840 		if (ACPI_FAILURE(status)) {
1841 			ACPI_EXCEPTION((AE_INFO, status,
1842 					"Notifying BIOS of _CST ability failed"));
1843 		}
1844 	}
1845 
1846 	acpi_processor_get_power_info(pr);
1847 	pr->flags.power_setup_done = 1;
1848 
1849 	/*
1850 	 * Install the idle handler if processor power management is supported.
1851 	 * Note that we use previously set idle handler will be used on
1852 	 * platforms that only support C1.
1853 	 */
1854 	if (pr->flags.power) {
1855 #ifdef CONFIG_CPU_IDLE
1856 		acpi_processor_setup_cpuidle(pr);
1857 		if (cpuidle_register_device(&pr->power.dev))
1858 			return -EIO;
1859 #endif
1860 
1861 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1862 		for (i = 1; i <= pr->power.count; i++)
1863 			if (pr->power.states[i].valid)
1864 				printk(" C%d[C%d]", i,
1865 				       pr->power.states[i].type);
1866 		printk(")\n");
1867 
1868 #ifndef CONFIG_CPU_IDLE
1869 		if (pr->id == 0) {
1870 			pm_idle_save = pm_idle;
1871 			pm_idle = acpi_processor_idle;
1872 		}
1873 #endif
1874 	}
1875 
1876 	/* 'power' [R] */
1877 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1878 				 S_IRUGO, acpi_device_dir(device),
1879 				 &acpi_processor_power_fops,
1880 				 acpi_driver_data(device));
1881 	if (!entry)
1882 		return -EIO;
1883 	return 0;
1884 }
1885 
1886 int acpi_processor_power_exit(struct acpi_processor *pr,
1887 			      struct acpi_device *device)
1888 {
1889 	if (boot_option_idle_override)
1890 		return 0;
1891 
1892 #ifdef CONFIG_CPU_IDLE
1893 	cpuidle_unregister_device(&pr->power.dev);
1894 #endif
1895 	pr->flags.power_setup_done = 0;
1896 
1897 	if (acpi_device_dir(device))
1898 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1899 				  acpi_device_dir(device));
1900 
1901 #ifndef CONFIG_CPU_IDLE
1902 
1903 	/* Unregister the idle handler when processor #0 is removed. */
1904 	if (pr->id == 0) {
1905 		if (pm_idle_save)
1906 			pm_idle = pm_idle_save;
1907 
1908 		/*
1909 		 * We are about to unload the current idle thread pm callback
1910 		 * (pm_idle), Wait for all processors to update cached/local
1911 		 * copies of pm_idle before proceeding.
1912 		 */
1913 		cpu_idle_wait();
1914 #ifdef CONFIG_SMP
1915 		pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1916 				&acpi_processor_latency_notifier);
1917 #endif
1918 	}
1919 #endif
1920 
1921 	return 0;
1922 }
1923