xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision e8377f49)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <acpi/processor.h>
24 
25 /*
26  * Include the apic definitions for x86 to have the APIC timer related defines
27  * available also for UP (on SMP it gets magically included via linux/smp.h).
28  * asm/acpi.h is not an option, as it would require more include magic. Also
29  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
30  */
31 #ifdef CONFIG_X86
32 #include <asm/apic.h>
33 #include <asm/cpu.h>
34 #endif
35 
36 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
37 
38 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
39 module_param(max_cstate, uint, 0000);
40 static unsigned int nocst __read_mostly;
41 module_param(nocst, uint, 0000);
42 static int bm_check_disable __read_mostly;
43 module_param(bm_check_disable, uint, 0000);
44 
45 static unsigned int latency_factor __read_mostly = 2;
46 module_param(latency_factor, uint, 0644);
47 
48 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
49 
50 struct cpuidle_driver acpi_idle_driver = {
51 	.name =		"acpi_idle",
52 	.owner =	THIS_MODULE,
53 };
54 
55 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
56 static
57 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
58 
59 static int disabled_by_idle_boot_param(void)
60 {
61 	return boot_option_idle_override == IDLE_POLL ||
62 		boot_option_idle_override == IDLE_HALT;
63 }
64 
65 /*
66  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
67  * For now disable this. Probably a bug somewhere else.
68  *
69  * To skip this limit, boot/load with a large max_cstate limit.
70  */
71 static int set_max_cstate(const struct dmi_system_id *id)
72 {
73 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
74 		return 0;
75 
76 	pr_notice("%s detected - limiting to C%ld max_cstate."
77 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
78 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
79 
80 	max_cstate = (long)id->driver_data;
81 
82 	return 0;
83 }
84 
85 static const struct dmi_system_id processor_power_dmi_table[] = {
86 	{ set_max_cstate, "Clevo 5600D", {
87 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
88 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
89 	 (void *)2},
90 	{ set_max_cstate, "Pavilion zv5000", {
91 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
92 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
93 	 (void *)1},
94 	{ set_max_cstate, "Asus L8400B", {
95 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
96 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
97 	 (void *)1},
98 	{},
99 };
100 
101 
102 /*
103  * Callers should disable interrupts before the call and enable
104  * interrupts after return.
105  */
106 static void __cpuidle acpi_safe_halt(void)
107 {
108 	if (!tif_need_resched()) {
109 		safe_halt();
110 		local_irq_disable();
111 	}
112 }
113 
114 #ifdef ARCH_APICTIMER_STOPS_ON_C3
115 
116 /*
117  * Some BIOS implementations switch to C3 in the published C2 state.
118  * This seems to be a common problem on AMD boxen, but other vendors
119  * are affected too. We pick the most conservative approach: we assume
120  * that the local APIC stops in both C2 and C3.
121  */
122 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
123 				   struct acpi_processor_cx *cx)
124 {
125 	struct acpi_processor_power *pwr = &pr->power;
126 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
127 
128 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
129 		return;
130 
131 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
132 		type = ACPI_STATE_C1;
133 
134 	/*
135 	 * Check, if one of the previous states already marked the lapic
136 	 * unstable
137 	 */
138 	if (pwr->timer_broadcast_on_state < state)
139 		return;
140 
141 	if (cx->type >= type)
142 		pr->power.timer_broadcast_on_state = state;
143 }
144 
145 static void __lapic_timer_propagate_broadcast(void *arg)
146 {
147 	struct acpi_processor *pr = (struct acpi_processor *) arg;
148 
149 	if (pr->power.timer_broadcast_on_state < INT_MAX)
150 		tick_broadcast_enable();
151 	else
152 		tick_broadcast_disable();
153 }
154 
155 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
156 {
157 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
158 				 (void *)pr, 1);
159 }
160 
161 /* Power(C) State timer broadcast control */
162 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
163 					struct acpi_processor_cx *cx)
164 {
165 	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
166 }
167 
168 #else
169 
170 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
171 				   struct acpi_processor_cx *cstate) { }
172 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
173 
174 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
175 					struct acpi_processor_cx *cx)
176 {
177 	return false;
178 }
179 
180 #endif
181 
182 #if defined(CONFIG_X86)
183 static void tsc_check_state(int state)
184 {
185 	switch (boot_cpu_data.x86_vendor) {
186 	case X86_VENDOR_HYGON:
187 	case X86_VENDOR_AMD:
188 	case X86_VENDOR_INTEL:
189 	case X86_VENDOR_CENTAUR:
190 	case X86_VENDOR_ZHAOXIN:
191 		/*
192 		 * AMD Fam10h TSC will tick in all
193 		 * C/P/S0/S1 states when this bit is set.
194 		 */
195 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
196 			return;
197 		fallthrough;
198 	default:
199 		/* TSC could halt in idle, so notify users */
200 		if (state > ACPI_STATE_C1)
201 			mark_tsc_unstable("TSC halts in idle");
202 	}
203 }
204 #else
205 static void tsc_check_state(int state) { return; }
206 #endif
207 
208 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
209 {
210 
211 	if (!pr->pblk)
212 		return -ENODEV;
213 
214 	/* if info is obtained from pblk/fadt, type equals state */
215 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
216 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
217 
218 #ifndef CONFIG_HOTPLUG_CPU
219 	/*
220 	 * Check for P_LVL2_UP flag before entering C2 and above on
221 	 * an SMP system.
222 	 */
223 	if ((num_online_cpus() > 1) &&
224 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
225 		return -ENODEV;
226 #endif
227 
228 	/* determine C2 and C3 address from pblk */
229 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
230 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
231 
232 	/* determine latencies from FADT */
233 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
234 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
235 
236 	/*
237 	 * FADT specified C2 latency must be less than or equal to
238 	 * 100 microseconds.
239 	 */
240 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
241 		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
242 				  acpi_gbl_FADT.c2_latency);
243 		/* invalidate C2 */
244 		pr->power.states[ACPI_STATE_C2].address = 0;
245 	}
246 
247 	/*
248 	 * FADT supplied C3 latency must be less than or equal to
249 	 * 1000 microseconds.
250 	 */
251 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
252 		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
253 				  acpi_gbl_FADT.c3_latency);
254 		/* invalidate C3 */
255 		pr->power.states[ACPI_STATE_C3].address = 0;
256 	}
257 
258 	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
259 			  pr->power.states[ACPI_STATE_C2].address,
260 			  pr->power.states[ACPI_STATE_C3].address);
261 
262 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
263 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
264 			 pr->power.states[ACPI_STATE_C2].address);
265 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
266 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
267 			 pr->power.states[ACPI_STATE_C3].address);
268 
269 	return 0;
270 }
271 
272 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
273 {
274 	if (!pr->power.states[ACPI_STATE_C1].valid) {
275 		/* set the first C-State to C1 */
276 		/* all processors need to support C1 */
277 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
278 		pr->power.states[ACPI_STATE_C1].valid = 1;
279 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
280 
281 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
282 			 ACPI_CX_DESC_LEN, "ACPI HLT");
283 	}
284 	/* the C0 state only exists as a filler in our array */
285 	pr->power.states[ACPI_STATE_C0].valid = 1;
286 	return 0;
287 }
288 
289 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
290 {
291 	int ret;
292 
293 	if (nocst)
294 		return -ENODEV;
295 
296 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
297 	if (ret)
298 		return ret;
299 
300 	if (!pr->power.count)
301 		return -EFAULT;
302 
303 	pr->flags.has_cst = 1;
304 	return 0;
305 }
306 
307 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
308 					   struct acpi_processor_cx *cx)
309 {
310 	static int bm_check_flag = -1;
311 	static int bm_control_flag = -1;
312 
313 
314 	if (!cx->address)
315 		return;
316 
317 	/*
318 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
319 	 * DMA transfers are used by any ISA device to avoid livelock.
320 	 * Note that we could disable Type-F DMA (as recommended by
321 	 * the erratum), but this is known to disrupt certain ISA
322 	 * devices thus we take the conservative approach.
323 	 */
324 	else if (errata.piix4.fdma) {
325 		acpi_handle_debug(pr->handle,
326 				  "C3 not supported on PIIX4 with Type-F DMA\n");
327 		return;
328 	}
329 
330 	/* All the logic here assumes flags.bm_check is same across all CPUs */
331 	if (bm_check_flag == -1) {
332 		/* Determine whether bm_check is needed based on CPU  */
333 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
334 		bm_check_flag = pr->flags.bm_check;
335 		bm_control_flag = pr->flags.bm_control;
336 	} else {
337 		pr->flags.bm_check = bm_check_flag;
338 		pr->flags.bm_control = bm_control_flag;
339 	}
340 
341 	if (pr->flags.bm_check) {
342 		if (!pr->flags.bm_control) {
343 			if (pr->flags.has_cst != 1) {
344 				/* bus mastering control is necessary */
345 				acpi_handle_debug(pr->handle,
346 						  "C3 support requires BM control\n");
347 				return;
348 			} else {
349 				/* Here we enter C3 without bus mastering */
350 				acpi_handle_debug(pr->handle,
351 						  "C3 support without BM control\n");
352 			}
353 		}
354 	} else {
355 		/*
356 		 * WBINVD should be set in fadt, for C3 state to be
357 		 * supported on when bm_check is not required.
358 		 */
359 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
360 			acpi_handle_debug(pr->handle,
361 					  "Cache invalidation should work properly"
362 					  " for C3 to be enabled on SMP systems\n");
363 			return;
364 		}
365 	}
366 
367 	/*
368 	 * Otherwise we've met all of our C3 requirements.
369 	 * Normalize the C3 latency to expidite policy.  Enable
370 	 * checking of bus mastering status (bm_check) so we can
371 	 * use this in our C3 policy
372 	 */
373 	cx->valid = 1;
374 
375 	/*
376 	 * On older chipsets, BM_RLD needs to be set
377 	 * in order for Bus Master activity to wake the
378 	 * system from C3.  Newer chipsets handle DMA
379 	 * during C3 automatically and BM_RLD is a NOP.
380 	 * In either case, the proper way to
381 	 * handle BM_RLD is to set it and leave it set.
382 	 */
383 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
384 
385 	return;
386 }
387 
388 static int acpi_cst_latency_cmp(const void *a, const void *b)
389 {
390 	const struct acpi_processor_cx *x = a, *y = b;
391 
392 	if (!(x->valid && y->valid))
393 		return 0;
394 	if (x->latency > y->latency)
395 		return 1;
396 	if (x->latency < y->latency)
397 		return -1;
398 	return 0;
399 }
400 static void acpi_cst_latency_swap(void *a, void *b, int n)
401 {
402 	struct acpi_processor_cx *x = a, *y = b;
403 	u32 tmp;
404 
405 	if (!(x->valid && y->valid))
406 		return;
407 	tmp = x->latency;
408 	x->latency = y->latency;
409 	y->latency = tmp;
410 }
411 
412 static int acpi_processor_power_verify(struct acpi_processor *pr)
413 {
414 	unsigned int i;
415 	unsigned int working = 0;
416 	unsigned int last_latency = 0;
417 	unsigned int last_type = 0;
418 	bool buggy_latency = false;
419 
420 	pr->power.timer_broadcast_on_state = INT_MAX;
421 
422 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423 		struct acpi_processor_cx *cx = &pr->power.states[i];
424 
425 		switch (cx->type) {
426 		case ACPI_STATE_C1:
427 			cx->valid = 1;
428 			break;
429 
430 		case ACPI_STATE_C2:
431 			if (!cx->address)
432 				break;
433 			cx->valid = 1;
434 			break;
435 
436 		case ACPI_STATE_C3:
437 			acpi_processor_power_verify_c3(pr, cx);
438 			break;
439 		}
440 		if (!cx->valid)
441 			continue;
442 		if (cx->type >= last_type && cx->latency < last_latency)
443 			buggy_latency = true;
444 		last_latency = cx->latency;
445 		last_type = cx->type;
446 
447 		lapic_timer_check_state(i, pr, cx);
448 		tsc_check_state(cx->type);
449 		working++;
450 	}
451 
452 	if (buggy_latency) {
453 		pr_notice("FW issue: working around C-state latencies out of order\n");
454 		sort(&pr->power.states[1], max_cstate,
455 		     sizeof(struct acpi_processor_cx),
456 		     acpi_cst_latency_cmp,
457 		     acpi_cst_latency_swap);
458 	}
459 
460 	lapic_timer_propagate_broadcast(pr);
461 
462 	return (working);
463 }
464 
465 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
466 {
467 	unsigned int i;
468 	int result;
469 
470 
471 	/* NOTE: the idle thread may not be running while calling
472 	 * this function */
473 
474 	/* Zero initialize all the C-states info. */
475 	memset(pr->power.states, 0, sizeof(pr->power.states));
476 
477 	result = acpi_processor_get_power_info_cst(pr);
478 	if (result == -ENODEV)
479 		result = acpi_processor_get_power_info_fadt(pr);
480 
481 	if (result)
482 		return result;
483 
484 	acpi_processor_get_power_info_default(pr);
485 
486 	pr->power.count = acpi_processor_power_verify(pr);
487 
488 	/*
489 	 * if one state of type C2 or C3 is available, mark this
490 	 * CPU as being "idle manageable"
491 	 */
492 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
493 		if (pr->power.states[i].valid) {
494 			pr->power.count = i;
495 			pr->flags.power = 1;
496 		}
497 	}
498 
499 	return 0;
500 }
501 
502 /**
503  * acpi_idle_bm_check - checks if bus master activity was detected
504  */
505 static int acpi_idle_bm_check(void)
506 {
507 	u32 bm_status = 0;
508 
509 	if (bm_check_disable)
510 		return 0;
511 
512 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
513 	if (bm_status)
514 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
515 	/*
516 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
517 	 * the true state of bus mastering activity; forcing us to
518 	 * manually check the BMIDEA bit of each IDE channel.
519 	 */
520 	else if (errata.piix4.bmisx) {
521 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
522 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
523 			bm_status = 1;
524 	}
525 	return bm_status;
526 }
527 
528 static void wait_for_freeze(void)
529 {
530 #ifdef	CONFIG_X86
531 	/* No delay is needed if we are in guest */
532 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
533 		return;
534 #endif
535 	/* Dummy wait op - must do something useless after P_LVL2 read
536 	   because chipsets cannot guarantee that STPCLK# signal
537 	   gets asserted in time to freeze execution properly. */
538 	inl(acpi_gbl_FADT.xpm_timer_block.address);
539 }
540 
541 /**
542  * acpi_idle_do_entry - enter idle state using the appropriate method
543  * @cx: cstate data
544  *
545  * Caller disables interrupt before call and enables interrupt after return.
546  */
547 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
548 {
549 	if (cx->entry_method == ACPI_CSTATE_FFH) {
550 		/* Call into architectural FFH based C-state */
551 		acpi_processor_ffh_cstate_enter(cx);
552 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
553 		acpi_safe_halt();
554 	} else {
555 		/* IO port based C-state */
556 		inb(cx->address);
557 		wait_for_freeze();
558 	}
559 }
560 
561 /**
562  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
563  * @dev: the target CPU
564  * @index: the index of suggested state
565  */
566 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
567 {
568 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
569 
570 	ACPI_FLUSH_CPU_CACHE();
571 
572 	while (1) {
573 
574 		if (cx->entry_method == ACPI_CSTATE_HALT)
575 			safe_halt();
576 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
577 			inb(cx->address);
578 			wait_for_freeze();
579 		} else
580 			return -ENODEV;
581 
582 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
583 		cond_wakeup_cpu0();
584 #endif
585 	}
586 
587 	/* Never reached */
588 	return 0;
589 }
590 
591 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
592 {
593 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
594 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
595 }
596 
597 static int c3_cpu_count;
598 static DEFINE_RAW_SPINLOCK(c3_lock);
599 
600 /**
601  * acpi_idle_enter_bm - enters C3 with proper BM handling
602  * @drv: cpuidle driver
603  * @pr: Target processor
604  * @cx: Target state context
605  * @index: index of target state
606  */
607 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
608 			       struct acpi_processor *pr,
609 			       struct acpi_processor_cx *cx,
610 			       int index)
611 {
612 	static struct acpi_processor_cx safe_cx = {
613 		.entry_method = ACPI_CSTATE_HALT,
614 	};
615 
616 	/*
617 	 * disable bus master
618 	 * bm_check implies we need ARB_DIS
619 	 * bm_control implies whether we can do ARB_DIS
620 	 *
621 	 * That leaves a case where bm_check is set and bm_control is not set.
622 	 * In that case we cannot do much, we enter C3 without doing anything.
623 	 */
624 	bool dis_bm = pr->flags.bm_control;
625 
626 	/* If we can skip BM, demote to a safe state. */
627 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
628 		dis_bm = false;
629 		index = drv->safe_state_index;
630 		if (index >= 0) {
631 			cx = this_cpu_read(acpi_cstate[index]);
632 		} else {
633 			cx = &safe_cx;
634 			index = -EBUSY;
635 		}
636 	}
637 
638 	if (dis_bm) {
639 		raw_spin_lock(&c3_lock);
640 		c3_cpu_count++;
641 		/* Disable bus master arbitration when all CPUs are in C3 */
642 		if (c3_cpu_count == num_online_cpus())
643 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
644 		raw_spin_unlock(&c3_lock);
645 	}
646 
647 	rcu_idle_enter();
648 
649 	acpi_idle_do_entry(cx);
650 
651 	rcu_idle_exit();
652 
653 	/* Re-enable bus master arbitration */
654 	if (dis_bm) {
655 		raw_spin_lock(&c3_lock);
656 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
657 		c3_cpu_count--;
658 		raw_spin_unlock(&c3_lock);
659 	}
660 
661 	return index;
662 }
663 
664 static int acpi_idle_enter(struct cpuidle_device *dev,
665 			   struct cpuidle_driver *drv, int index)
666 {
667 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
668 	struct acpi_processor *pr;
669 
670 	pr = __this_cpu_read(processors);
671 	if (unlikely(!pr))
672 		return -EINVAL;
673 
674 	if (cx->type != ACPI_STATE_C1) {
675 		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
676 			return acpi_idle_enter_bm(drv, pr, cx, index);
677 
678 		/* C2 to C1 demotion. */
679 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
680 			index = ACPI_IDLE_STATE_START;
681 			cx = per_cpu(acpi_cstate[index], dev->cpu);
682 		}
683 	}
684 
685 	if (cx->type == ACPI_STATE_C3)
686 		ACPI_FLUSH_CPU_CACHE();
687 
688 	acpi_idle_do_entry(cx);
689 
690 	return index;
691 }
692 
693 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
694 				  struct cpuidle_driver *drv, int index)
695 {
696 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
697 
698 	if (cx->type == ACPI_STATE_C3) {
699 		struct acpi_processor *pr = __this_cpu_read(processors);
700 
701 		if (unlikely(!pr))
702 			return 0;
703 
704 		if (pr->flags.bm_check) {
705 			u8 bm_sts_skip = cx->bm_sts_skip;
706 
707 			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
708 			cx->bm_sts_skip = 1;
709 			acpi_idle_enter_bm(drv, pr, cx, index);
710 			cx->bm_sts_skip = bm_sts_skip;
711 
712 			return 0;
713 		} else {
714 			ACPI_FLUSH_CPU_CACHE();
715 		}
716 	}
717 	acpi_idle_do_entry(cx);
718 
719 	return 0;
720 }
721 
722 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
723 					   struct cpuidle_device *dev)
724 {
725 	int i, count = ACPI_IDLE_STATE_START;
726 	struct acpi_processor_cx *cx;
727 	struct cpuidle_state *state;
728 
729 	if (max_cstate == 0)
730 		max_cstate = 1;
731 
732 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
733 		state = &acpi_idle_driver.states[count];
734 		cx = &pr->power.states[i];
735 
736 		if (!cx->valid)
737 			continue;
738 
739 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
740 
741 		if (lapic_timer_needs_broadcast(pr, cx))
742 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
743 
744 		if (cx->type == ACPI_STATE_C3) {
745 			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
746 			if (pr->flags.bm_check)
747 				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
748 		}
749 
750 		count++;
751 		if (count == CPUIDLE_STATE_MAX)
752 			break;
753 	}
754 
755 	if (!count)
756 		return -EINVAL;
757 
758 	return 0;
759 }
760 
761 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
762 {
763 	int i, count;
764 	struct acpi_processor_cx *cx;
765 	struct cpuidle_state *state;
766 	struct cpuidle_driver *drv = &acpi_idle_driver;
767 
768 	if (max_cstate == 0)
769 		max_cstate = 1;
770 
771 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
772 		cpuidle_poll_state_init(drv);
773 		count = 1;
774 	} else {
775 		count = 0;
776 	}
777 
778 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
779 		cx = &pr->power.states[i];
780 
781 		if (!cx->valid)
782 			continue;
783 
784 		state = &drv->states[count];
785 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
786 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
787 		state->exit_latency = cx->latency;
788 		state->target_residency = cx->latency * latency_factor;
789 		state->enter = acpi_idle_enter;
790 
791 		state->flags = 0;
792 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
793 			state->enter_dead = acpi_idle_play_dead;
794 			drv->safe_state_index = count;
795 		}
796 		/*
797 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
798 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
799 		 * particularly interesting from the suspend-to-idle angle, so
800 		 * avoid C1 and the situations in which we may need to fall back
801 		 * to it altogether.
802 		 */
803 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
804 			state->enter_s2idle = acpi_idle_enter_s2idle;
805 
806 		count++;
807 		if (count == CPUIDLE_STATE_MAX)
808 			break;
809 	}
810 
811 	drv->state_count = count;
812 
813 	if (!count)
814 		return -EINVAL;
815 
816 	return 0;
817 }
818 
819 static inline void acpi_processor_cstate_first_run_checks(void)
820 {
821 	static int first_run;
822 
823 	if (first_run)
824 		return;
825 	dmi_check_system(processor_power_dmi_table);
826 	max_cstate = acpi_processor_cstate_check(max_cstate);
827 	if (max_cstate < ACPI_C_STATES_MAX)
828 		pr_notice("processor limited to max C-state %d\n", max_cstate);
829 
830 	first_run++;
831 
832 	if (nocst)
833 		return;
834 
835 	acpi_processor_claim_cst_control();
836 }
837 #else
838 
839 static inline int disabled_by_idle_boot_param(void) { return 0; }
840 static inline void acpi_processor_cstate_first_run_checks(void) { }
841 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
842 {
843 	return -ENODEV;
844 }
845 
846 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
847 					   struct cpuidle_device *dev)
848 {
849 	return -EINVAL;
850 }
851 
852 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
853 {
854 	return -EINVAL;
855 }
856 
857 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
858 
859 struct acpi_lpi_states_array {
860 	unsigned int size;
861 	unsigned int composite_states_size;
862 	struct acpi_lpi_state *entries;
863 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
864 };
865 
866 static int obj_get_integer(union acpi_object *obj, u32 *value)
867 {
868 	if (obj->type != ACPI_TYPE_INTEGER)
869 		return -EINVAL;
870 
871 	*value = obj->integer.value;
872 	return 0;
873 }
874 
875 static int acpi_processor_evaluate_lpi(acpi_handle handle,
876 				       struct acpi_lpi_states_array *info)
877 {
878 	acpi_status status;
879 	int ret = 0;
880 	int pkg_count, state_idx = 1, loop;
881 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
882 	union acpi_object *lpi_data;
883 	struct acpi_lpi_state *lpi_state;
884 
885 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
886 	if (ACPI_FAILURE(status)) {
887 		acpi_handle_debug(handle, "No _LPI, giving up\n");
888 		return -ENODEV;
889 	}
890 
891 	lpi_data = buffer.pointer;
892 
893 	/* There must be at least 4 elements = 3 elements + 1 package */
894 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
895 	    lpi_data->package.count < 4) {
896 		pr_debug("not enough elements in _LPI\n");
897 		ret = -ENODATA;
898 		goto end;
899 	}
900 
901 	pkg_count = lpi_data->package.elements[2].integer.value;
902 
903 	/* Validate number of power states. */
904 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
905 		pr_debug("count given by _LPI is not valid\n");
906 		ret = -ENODATA;
907 		goto end;
908 	}
909 
910 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
911 	if (!lpi_state) {
912 		ret = -ENOMEM;
913 		goto end;
914 	}
915 
916 	info->size = pkg_count;
917 	info->entries = lpi_state;
918 
919 	/* LPI States start at index 3 */
920 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
921 		union acpi_object *element, *pkg_elem, *obj;
922 
923 		element = &lpi_data->package.elements[loop];
924 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
925 			continue;
926 
927 		pkg_elem = element->package.elements;
928 
929 		obj = pkg_elem + 6;
930 		if (obj->type == ACPI_TYPE_BUFFER) {
931 			struct acpi_power_register *reg;
932 
933 			reg = (struct acpi_power_register *)obj->buffer.pointer;
934 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
935 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
936 				continue;
937 
938 			lpi_state->address = reg->address;
939 			lpi_state->entry_method =
940 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
941 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
942 		} else if (obj->type == ACPI_TYPE_INTEGER) {
943 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
944 			lpi_state->address = obj->integer.value;
945 		} else {
946 			continue;
947 		}
948 
949 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
950 
951 		obj = pkg_elem + 9;
952 		if (obj->type == ACPI_TYPE_STRING)
953 			strlcpy(lpi_state->desc, obj->string.pointer,
954 				ACPI_CX_DESC_LEN);
955 
956 		lpi_state->index = state_idx;
957 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
958 			pr_debug("No min. residency found, assuming 10 us\n");
959 			lpi_state->min_residency = 10;
960 		}
961 
962 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
963 			pr_debug("No wakeup residency found, assuming 10 us\n");
964 			lpi_state->wake_latency = 10;
965 		}
966 
967 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
968 			lpi_state->flags = 0;
969 
970 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
971 			lpi_state->arch_flags = 0;
972 
973 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
974 			lpi_state->res_cnt_freq = 1;
975 
976 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
977 			lpi_state->enable_parent_state = 0;
978 	}
979 
980 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
981 end:
982 	kfree(buffer.pointer);
983 	return ret;
984 }
985 
986 /*
987  * flat_state_cnt - the number of composite LPI states after the process of flattening
988  */
989 static int flat_state_cnt;
990 
991 /**
992  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
993  *
994  * @local: local LPI state
995  * @parent: parent LPI state
996  * @result: composite LPI state
997  */
998 static bool combine_lpi_states(struct acpi_lpi_state *local,
999 			       struct acpi_lpi_state *parent,
1000 			       struct acpi_lpi_state *result)
1001 {
1002 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1003 		if (!parent->address) /* 0 means autopromotable */
1004 			return false;
1005 		result->address = local->address + parent->address;
1006 	} else {
1007 		result->address = parent->address;
1008 	}
1009 
1010 	result->min_residency = max(local->min_residency, parent->min_residency);
1011 	result->wake_latency = local->wake_latency + parent->wake_latency;
1012 	result->enable_parent_state = parent->enable_parent_state;
1013 	result->entry_method = local->entry_method;
1014 
1015 	result->flags = parent->flags;
1016 	result->arch_flags = parent->arch_flags;
1017 	result->index = parent->index;
1018 
1019 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1020 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1021 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1022 	return true;
1023 }
1024 
1025 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1026 
1027 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1028 				  struct acpi_lpi_state *t)
1029 {
1030 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1031 }
1032 
1033 static int flatten_lpi_states(struct acpi_processor *pr,
1034 			      struct acpi_lpi_states_array *curr_level,
1035 			      struct acpi_lpi_states_array *prev_level)
1036 {
1037 	int i, j, state_count = curr_level->size;
1038 	struct acpi_lpi_state *p, *t = curr_level->entries;
1039 
1040 	curr_level->composite_states_size = 0;
1041 	for (j = 0; j < state_count; j++, t++) {
1042 		struct acpi_lpi_state *flpi;
1043 
1044 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1045 			continue;
1046 
1047 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1048 			pr_warn("Limiting number of LPI states to max (%d)\n",
1049 				ACPI_PROCESSOR_MAX_POWER);
1050 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1051 			break;
1052 		}
1053 
1054 		flpi = &pr->power.lpi_states[flat_state_cnt];
1055 
1056 		if (!prev_level) { /* leaf/processor node */
1057 			memcpy(flpi, t, sizeof(*t));
1058 			stash_composite_state(curr_level, flpi);
1059 			flat_state_cnt++;
1060 			continue;
1061 		}
1062 
1063 		for (i = 0; i < prev_level->composite_states_size; i++) {
1064 			p = prev_level->composite_states[i];
1065 			if (t->index <= p->enable_parent_state &&
1066 			    combine_lpi_states(p, t, flpi)) {
1067 				stash_composite_state(curr_level, flpi);
1068 				flat_state_cnt++;
1069 				flpi++;
1070 			}
1071 		}
1072 	}
1073 
1074 	kfree(curr_level->entries);
1075 	return 0;
1076 }
1077 
1078 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1079 {
1080 	int ret, i;
1081 	acpi_status status;
1082 	acpi_handle handle = pr->handle, pr_ahandle;
1083 	struct acpi_device *d = NULL;
1084 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1085 
1086 	if (!osc_pc_lpi_support_confirmed)
1087 		return -EOPNOTSUPP;
1088 
1089 	if (!acpi_has_method(handle, "_LPI"))
1090 		return -EINVAL;
1091 
1092 	flat_state_cnt = 0;
1093 	prev = &info[0];
1094 	curr = &info[1];
1095 	handle = pr->handle;
1096 	ret = acpi_processor_evaluate_lpi(handle, prev);
1097 	if (ret)
1098 		return ret;
1099 	flatten_lpi_states(pr, prev, NULL);
1100 
1101 	status = acpi_get_parent(handle, &pr_ahandle);
1102 	while (ACPI_SUCCESS(status)) {
1103 		acpi_bus_get_device(pr_ahandle, &d);
1104 		handle = pr_ahandle;
1105 
1106 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1107 			break;
1108 
1109 		/* can be optional ? */
1110 		if (!acpi_has_method(handle, "_LPI"))
1111 			break;
1112 
1113 		ret = acpi_processor_evaluate_lpi(handle, curr);
1114 		if (ret)
1115 			break;
1116 
1117 		/* flatten all the LPI states in this level of hierarchy */
1118 		flatten_lpi_states(pr, curr, prev);
1119 
1120 		tmp = prev, prev = curr, curr = tmp;
1121 
1122 		status = acpi_get_parent(handle, &pr_ahandle);
1123 	}
1124 
1125 	pr->power.count = flat_state_cnt;
1126 	/* reset the index after flattening */
1127 	for (i = 0; i < pr->power.count; i++)
1128 		pr->power.lpi_states[i].index = i;
1129 
1130 	/* Tell driver that _LPI is supported. */
1131 	pr->flags.has_lpi = 1;
1132 	pr->flags.power = 1;
1133 
1134 	return 0;
1135 }
1136 
1137 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1138 {
1139 	return -ENODEV;
1140 }
1141 
1142 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1143 {
1144 	return -ENODEV;
1145 }
1146 
1147 /**
1148  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1149  * @dev: the target CPU
1150  * @drv: cpuidle driver containing cpuidle state info
1151  * @index: index of target state
1152  *
1153  * Return: 0 for success or negative value for error
1154  */
1155 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1156 			       struct cpuidle_driver *drv, int index)
1157 {
1158 	struct acpi_processor *pr;
1159 	struct acpi_lpi_state *lpi;
1160 
1161 	pr = __this_cpu_read(processors);
1162 
1163 	if (unlikely(!pr))
1164 		return -EINVAL;
1165 
1166 	lpi = &pr->power.lpi_states[index];
1167 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1168 		return acpi_processor_ffh_lpi_enter(lpi);
1169 
1170 	return -EINVAL;
1171 }
1172 
1173 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1174 {
1175 	int i;
1176 	struct acpi_lpi_state *lpi;
1177 	struct cpuidle_state *state;
1178 	struct cpuidle_driver *drv = &acpi_idle_driver;
1179 
1180 	if (!pr->flags.has_lpi)
1181 		return -EOPNOTSUPP;
1182 
1183 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1184 		lpi = &pr->power.lpi_states[i];
1185 
1186 		state = &drv->states[i];
1187 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1188 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1189 		state->exit_latency = lpi->wake_latency;
1190 		state->target_residency = lpi->min_residency;
1191 		if (lpi->arch_flags)
1192 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1193 		state->enter = acpi_idle_lpi_enter;
1194 		drv->safe_state_index = i;
1195 	}
1196 
1197 	drv->state_count = i;
1198 
1199 	return 0;
1200 }
1201 
1202 /**
1203  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1204  * global state data i.e. idle routines
1205  *
1206  * @pr: the ACPI processor
1207  */
1208 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1209 {
1210 	int i;
1211 	struct cpuidle_driver *drv = &acpi_idle_driver;
1212 
1213 	if (!pr->flags.power_setup_done || !pr->flags.power)
1214 		return -EINVAL;
1215 
1216 	drv->safe_state_index = -1;
1217 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1218 		drv->states[i].name[0] = '\0';
1219 		drv->states[i].desc[0] = '\0';
1220 	}
1221 
1222 	if (pr->flags.has_lpi)
1223 		return acpi_processor_setup_lpi_states(pr);
1224 
1225 	return acpi_processor_setup_cstates(pr);
1226 }
1227 
1228 /**
1229  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1230  * device i.e. per-cpu data
1231  *
1232  * @pr: the ACPI processor
1233  * @dev : the cpuidle device
1234  */
1235 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1236 					    struct cpuidle_device *dev)
1237 {
1238 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1239 		return -EINVAL;
1240 
1241 	dev->cpu = pr->id;
1242 	if (pr->flags.has_lpi)
1243 		return acpi_processor_ffh_lpi_probe(pr->id);
1244 
1245 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1246 }
1247 
1248 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1249 {
1250 	int ret;
1251 
1252 	ret = acpi_processor_get_lpi_info(pr);
1253 	if (ret)
1254 		ret = acpi_processor_get_cstate_info(pr);
1255 
1256 	return ret;
1257 }
1258 
1259 int acpi_processor_hotplug(struct acpi_processor *pr)
1260 {
1261 	int ret = 0;
1262 	struct cpuidle_device *dev;
1263 
1264 	if (disabled_by_idle_boot_param())
1265 		return 0;
1266 
1267 	if (!pr->flags.power_setup_done)
1268 		return -ENODEV;
1269 
1270 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1271 	cpuidle_pause_and_lock();
1272 	cpuidle_disable_device(dev);
1273 	ret = acpi_processor_get_power_info(pr);
1274 	if (!ret && pr->flags.power) {
1275 		acpi_processor_setup_cpuidle_dev(pr, dev);
1276 		ret = cpuidle_enable_device(dev);
1277 	}
1278 	cpuidle_resume_and_unlock();
1279 
1280 	return ret;
1281 }
1282 
1283 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1284 {
1285 	int cpu;
1286 	struct acpi_processor *_pr;
1287 	struct cpuidle_device *dev;
1288 
1289 	if (disabled_by_idle_boot_param())
1290 		return 0;
1291 
1292 	if (!pr->flags.power_setup_done)
1293 		return -ENODEV;
1294 
1295 	/*
1296 	 * FIXME:  Design the ACPI notification to make it once per
1297 	 * system instead of once per-cpu.  This condition is a hack
1298 	 * to make the code that updates C-States be called once.
1299 	 */
1300 
1301 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1302 
1303 		/* Protect against cpu-hotplug */
1304 		cpus_read_lock();
1305 		cpuidle_pause_and_lock();
1306 
1307 		/* Disable all cpuidle devices */
1308 		for_each_online_cpu(cpu) {
1309 			_pr = per_cpu(processors, cpu);
1310 			if (!_pr || !_pr->flags.power_setup_done)
1311 				continue;
1312 			dev = per_cpu(acpi_cpuidle_device, cpu);
1313 			cpuidle_disable_device(dev);
1314 		}
1315 
1316 		/* Populate Updated C-state information */
1317 		acpi_processor_get_power_info(pr);
1318 		acpi_processor_setup_cpuidle_states(pr);
1319 
1320 		/* Enable all cpuidle devices */
1321 		for_each_online_cpu(cpu) {
1322 			_pr = per_cpu(processors, cpu);
1323 			if (!_pr || !_pr->flags.power_setup_done)
1324 				continue;
1325 			acpi_processor_get_power_info(_pr);
1326 			if (_pr->flags.power) {
1327 				dev = per_cpu(acpi_cpuidle_device, cpu);
1328 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1329 				cpuidle_enable_device(dev);
1330 			}
1331 		}
1332 		cpuidle_resume_and_unlock();
1333 		cpus_read_unlock();
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 static int acpi_processor_registered;
1340 
1341 int acpi_processor_power_init(struct acpi_processor *pr)
1342 {
1343 	int retval;
1344 	struct cpuidle_device *dev;
1345 
1346 	if (disabled_by_idle_boot_param())
1347 		return 0;
1348 
1349 	acpi_processor_cstate_first_run_checks();
1350 
1351 	if (!acpi_processor_get_power_info(pr))
1352 		pr->flags.power_setup_done = 1;
1353 
1354 	/*
1355 	 * Install the idle handler if processor power management is supported.
1356 	 * Note that we use previously set idle handler will be used on
1357 	 * platforms that only support C1.
1358 	 */
1359 	if (pr->flags.power) {
1360 		/* Register acpi_idle_driver if not already registered */
1361 		if (!acpi_processor_registered) {
1362 			acpi_processor_setup_cpuidle_states(pr);
1363 			retval = cpuidle_register_driver(&acpi_idle_driver);
1364 			if (retval)
1365 				return retval;
1366 			pr_debug("%s registered with cpuidle\n",
1367 				 acpi_idle_driver.name);
1368 		}
1369 
1370 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1371 		if (!dev)
1372 			return -ENOMEM;
1373 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1374 
1375 		acpi_processor_setup_cpuidle_dev(pr, dev);
1376 
1377 		/* Register per-cpu cpuidle_device. Cpuidle driver
1378 		 * must already be registered before registering device
1379 		 */
1380 		retval = cpuidle_register_device(dev);
1381 		if (retval) {
1382 			if (acpi_processor_registered == 0)
1383 				cpuidle_unregister_driver(&acpi_idle_driver);
1384 			return retval;
1385 		}
1386 		acpi_processor_registered++;
1387 	}
1388 	return 0;
1389 }
1390 
1391 int acpi_processor_power_exit(struct acpi_processor *pr)
1392 {
1393 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1394 
1395 	if (disabled_by_idle_boot_param())
1396 		return 0;
1397 
1398 	if (pr->flags.power) {
1399 		cpuidle_unregister_device(dev);
1400 		acpi_processor_registered--;
1401 		if (acpi_processor_registered == 0)
1402 			cpuidle_unregister_driver(&acpi_idle_driver);
1403 	}
1404 
1405 	pr->flags.power_setup_done = 0;
1406 	return 0;
1407 }
1408