xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision e721eb06)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23 
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33 
34 #define ACPI_PROCESSOR_CLASS            "processor"
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37 
38 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39 
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46 
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49 
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51 
52 struct cpuidle_driver acpi_idle_driver = {
53 	.name =		"acpi_idle",
54 	.owner =	THIS_MODULE,
55 };
56 
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60 
61 static int disabled_by_idle_boot_param(void)
62 {
63 	return boot_option_idle_override == IDLE_POLL ||
64 		boot_option_idle_override == IDLE_HALT;
65 }
66 
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 		return 0;
77 
78 	pr_notice("%s detected - limiting to C%ld max_cstate."
79 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81 
82 	max_cstate = (long)id->driver_data;
83 
84 	return 0;
85 }
86 
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 	{ set_max_cstate, "Clevo 5600D", {
89 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 	 (void *)2},
92 	{ set_max_cstate, "Pavilion zv5000", {
93 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 	 (void *)1},
96 	{ set_max_cstate, "Asus L8400B", {
97 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 	 (void *)1},
100 	{},
101 };
102 
103 
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110 	if (!tif_need_resched()) {
111 		safe_halt();
112 		local_irq_disable();
113 	}
114 }
115 
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117 
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 				   struct acpi_processor_cx *cx)
126 {
127 	struct acpi_processor_power *pwr = &pr->power;
128 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129 
130 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 		return;
132 
133 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 		type = ACPI_STATE_C1;
135 
136 	/*
137 	 * Check, if one of the previous states already marked the lapic
138 	 * unstable
139 	 */
140 	if (pwr->timer_broadcast_on_state < state)
141 		return;
142 
143 	if (cx->type >= type)
144 		pr->power.timer_broadcast_on_state = state;
145 }
146 
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149 	struct acpi_processor *pr = (struct acpi_processor *) arg;
150 
151 	if (pr->power.timer_broadcast_on_state < INT_MAX)
152 		tick_broadcast_enable();
153 	else
154 		tick_broadcast_disable();
155 }
156 
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 				 (void *)pr, 1);
161 }
162 
163 /* Power(C) State timer broadcast control */
164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165 				       struct acpi_processor_cx *cx,
166 				       int broadcast)
167 {
168 	int state = cx - pr->power.states;
169 
170 	if (state >= pr->power.timer_broadcast_on_state) {
171 		if (broadcast)
172 			tick_broadcast_enter();
173 		else
174 			tick_broadcast_exit();
175 	}
176 }
177 
178 #else
179 
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181 				   struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184 				       struct acpi_processor_cx *cx,
185 				       int broadcast)
186 {
187 }
188 
189 #endif
190 
191 #if defined(CONFIG_X86)
192 static void tsc_check_state(int state)
193 {
194 	switch (boot_cpu_data.x86_vendor) {
195 	case X86_VENDOR_HYGON:
196 	case X86_VENDOR_AMD:
197 	case X86_VENDOR_INTEL:
198 	case X86_VENDOR_CENTAUR:
199 	case X86_VENDOR_ZHAOXIN:
200 		/*
201 		 * AMD Fam10h TSC will tick in all
202 		 * C/P/S0/S1 states when this bit is set.
203 		 */
204 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205 			return;
206 
207 		/*FALL THROUGH*/
208 	default:
209 		/* TSC could halt in idle, so notify users */
210 		if (state > ACPI_STATE_C1)
211 			mark_tsc_unstable("TSC halts in idle");
212 	}
213 }
214 #else
215 static void tsc_check_state(int state) { return; }
216 #endif
217 
218 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
219 {
220 
221 	if (!pr->pblk)
222 		return -ENODEV;
223 
224 	/* if info is obtained from pblk/fadt, type equals state */
225 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
226 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
227 
228 #ifndef CONFIG_HOTPLUG_CPU
229 	/*
230 	 * Check for P_LVL2_UP flag before entering C2 and above on
231 	 * an SMP system.
232 	 */
233 	if ((num_online_cpus() > 1) &&
234 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
235 		return -ENODEV;
236 #endif
237 
238 	/* determine C2 and C3 address from pblk */
239 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
240 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
241 
242 	/* determine latencies from FADT */
243 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
244 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
245 
246 	/*
247 	 * FADT specified C2 latency must be less than or equal to
248 	 * 100 microseconds.
249 	 */
250 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
251 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
252 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
253 		/* invalidate C2 */
254 		pr->power.states[ACPI_STATE_C2].address = 0;
255 	}
256 
257 	/*
258 	 * FADT supplied C3 latency must be less than or equal to
259 	 * 1000 microseconds.
260 	 */
261 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
262 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
264 		/* invalidate C3 */
265 		pr->power.states[ACPI_STATE_C3].address = 0;
266 	}
267 
268 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
269 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
270 			  pr->power.states[ACPI_STATE_C2].address,
271 			  pr->power.states[ACPI_STATE_C3].address));
272 
273 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
274 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
275 			 pr->power.states[ACPI_STATE_C2].address);
276 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
277 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
278 			 pr->power.states[ACPI_STATE_C3].address);
279 
280 	return 0;
281 }
282 
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285 	if (!pr->power.states[ACPI_STATE_C1].valid) {
286 		/* set the first C-State to C1 */
287 		/* all processors need to support C1 */
288 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289 		pr->power.states[ACPI_STATE_C1].valid = 1;
290 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291 
292 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
293 			 ACPI_CX_DESC_LEN, "ACPI HLT");
294 	}
295 	/* the C0 state only exists as a filler in our array */
296 	pr->power.states[ACPI_STATE_C0].valid = 1;
297 	return 0;
298 }
299 
300 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
301 {
302 	int ret;
303 
304 	if (nocst)
305 		return -ENODEV;
306 
307 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
308 	if (ret)
309 		return ret;
310 
311 	if (!pr->power.count)
312 		return -EFAULT;
313 
314 	pr->flags.has_cst = 1;
315 	return 0;
316 }
317 
318 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
319 					   struct acpi_processor_cx *cx)
320 {
321 	static int bm_check_flag = -1;
322 	static int bm_control_flag = -1;
323 
324 
325 	if (!cx->address)
326 		return;
327 
328 	/*
329 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
330 	 * DMA transfers are used by any ISA device to avoid livelock.
331 	 * Note that we could disable Type-F DMA (as recommended by
332 	 * the erratum), but this is known to disrupt certain ISA
333 	 * devices thus we take the conservative approach.
334 	 */
335 	else if (errata.piix4.fdma) {
336 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
337 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
338 		return;
339 	}
340 
341 	/* All the logic here assumes flags.bm_check is same across all CPUs */
342 	if (bm_check_flag == -1) {
343 		/* Determine whether bm_check is needed based on CPU  */
344 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
345 		bm_check_flag = pr->flags.bm_check;
346 		bm_control_flag = pr->flags.bm_control;
347 	} else {
348 		pr->flags.bm_check = bm_check_flag;
349 		pr->flags.bm_control = bm_control_flag;
350 	}
351 
352 	if (pr->flags.bm_check) {
353 		if (!pr->flags.bm_control) {
354 			if (pr->flags.has_cst != 1) {
355 				/* bus mastering control is necessary */
356 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
357 					"C3 support requires BM control\n"));
358 				return;
359 			} else {
360 				/* Here we enter C3 without bus mastering */
361 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
362 					"C3 support without BM control\n"));
363 			}
364 		}
365 	} else {
366 		/*
367 		 * WBINVD should be set in fadt, for C3 state to be
368 		 * supported on when bm_check is not required.
369 		 */
370 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
371 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
372 					  "Cache invalidation should work properly"
373 					  " for C3 to be enabled on SMP systems\n"));
374 			return;
375 		}
376 	}
377 
378 	/*
379 	 * Otherwise we've met all of our C3 requirements.
380 	 * Normalize the C3 latency to expidite policy.  Enable
381 	 * checking of bus mastering status (bm_check) so we can
382 	 * use this in our C3 policy
383 	 */
384 	cx->valid = 1;
385 
386 	/*
387 	 * On older chipsets, BM_RLD needs to be set
388 	 * in order for Bus Master activity to wake the
389 	 * system from C3.  Newer chipsets handle DMA
390 	 * during C3 automatically and BM_RLD is a NOP.
391 	 * In either case, the proper way to
392 	 * handle BM_RLD is to set it and leave it set.
393 	 */
394 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
395 
396 	return;
397 }
398 
399 static int acpi_processor_power_verify(struct acpi_processor *pr)
400 {
401 	unsigned int i;
402 	unsigned int working = 0;
403 
404 	pr->power.timer_broadcast_on_state = INT_MAX;
405 
406 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
407 		struct acpi_processor_cx *cx = &pr->power.states[i];
408 
409 		switch (cx->type) {
410 		case ACPI_STATE_C1:
411 			cx->valid = 1;
412 			break;
413 
414 		case ACPI_STATE_C2:
415 			if (!cx->address)
416 				break;
417 			cx->valid = 1;
418 			break;
419 
420 		case ACPI_STATE_C3:
421 			acpi_processor_power_verify_c3(pr, cx);
422 			break;
423 		}
424 		if (!cx->valid)
425 			continue;
426 
427 		lapic_timer_check_state(i, pr, cx);
428 		tsc_check_state(cx->type);
429 		working++;
430 	}
431 
432 	lapic_timer_propagate_broadcast(pr);
433 
434 	return (working);
435 }
436 
437 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
438 {
439 	unsigned int i;
440 	int result;
441 
442 
443 	/* NOTE: the idle thread may not be running while calling
444 	 * this function */
445 
446 	/* Zero initialize all the C-states info. */
447 	memset(pr->power.states, 0, sizeof(pr->power.states));
448 
449 	result = acpi_processor_get_power_info_cst(pr);
450 	if (result == -ENODEV)
451 		result = acpi_processor_get_power_info_fadt(pr);
452 
453 	if (result)
454 		return result;
455 
456 	acpi_processor_get_power_info_default(pr);
457 
458 	pr->power.count = acpi_processor_power_verify(pr);
459 
460 	/*
461 	 * if one state of type C2 or C3 is available, mark this
462 	 * CPU as being "idle manageable"
463 	 */
464 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
465 		if (pr->power.states[i].valid) {
466 			pr->power.count = i;
467 			pr->flags.power = 1;
468 		}
469 	}
470 
471 	return 0;
472 }
473 
474 /**
475  * acpi_idle_bm_check - checks if bus master activity was detected
476  */
477 static int acpi_idle_bm_check(void)
478 {
479 	u32 bm_status = 0;
480 
481 	if (bm_check_disable)
482 		return 0;
483 
484 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
485 	if (bm_status)
486 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
487 	/*
488 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
489 	 * the true state of bus mastering activity; forcing us to
490 	 * manually check the BMIDEA bit of each IDE channel.
491 	 */
492 	else if (errata.piix4.bmisx) {
493 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
494 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
495 			bm_status = 1;
496 	}
497 	return bm_status;
498 }
499 
500 static void wait_for_freeze(void)
501 {
502 #ifdef	CONFIG_X86
503 	/* No delay is needed if we are in guest */
504 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
505 		return;
506 #endif
507 	/* Dummy wait op - must do something useless after P_LVL2 read
508 	   because chipsets cannot guarantee that STPCLK# signal
509 	   gets asserted in time to freeze execution properly. */
510 	inl(acpi_gbl_FADT.xpm_timer_block.address);
511 }
512 
513 /**
514  * acpi_idle_do_entry - enter idle state using the appropriate method
515  * @cx: cstate data
516  *
517  * Caller disables interrupt before call and enables interrupt after return.
518  */
519 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
520 {
521 	if (cx->entry_method == ACPI_CSTATE_FFH) {
522 		/* Call into architectural FFH based C-state */
523 		acpi_processor_ffh_cstate_enter(cx);
524 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
525 		acpi_safe_halt();
526 	} else {
527 		/* IO port based C-state */
528 		inb(cx->address);
529 		wait_for_freeze();
530 	}
531 }
532 
533 /**
534  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
535  * @dev: the target CPU
536  * @index: the index of suggested state
537  */
538 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
539 {
540 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
541 
542 	ACPI_FLUSH_CPU_CACHE();
543 
544 	while (1) {
545 
546 		if (cx->entry_method == ACPI_CSTATE_HALT)
547 			safe_halt();
548 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
549 			inb(cx->address);
550 			wait_for_freeze();
551 		} else
552 			return -ENODEV;
553 	}
554 
555 	/* Never reached */
556 	return 0;
557 }
558 
559 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
560 {
561 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
562 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
563 }
564 
565 static int c3_cpu_count;
566 static DEFINE_RAW_SPINLOCK(c3_lock);
567 
568 /**
569  * acpi_idle_enter_bm - enters C3 with proper BM handling
570  * @pr: Target processor
571  * @cx: Target state context
572  * @timer_bc: Whether or not to change timer mode to broadcast
573  */
574 static void acpi_idle_enter_bm(struct acpi_processor *pr,
575 			       struct acpi_processor_cx *cx, bool timer_bc)
576 {
577 	acpi_unlazy_tlb(smp_processor_id());
578 
579 	/*
580 	 * Must be done before busmaster disable as we might need to
581 	 * access HPET !
582 	 */
583 	if (timer_bc)
584 		lapic_timer_state_broadcast(pr, cx, 1);
585 
586 	/*
587 	 * disable bus master
588 	 * bm_check implies we need ARB_DIS
589 	 * bm_control implies whether we can do ARB_DIS
590 	 *
591 	 * That leaves a case where bm_check is set and bm_control is
592 	 * not set. In that case we cannot do much, we enter C3
593 	 * without doing anything.
594 	 */
595 	if (pr->flags.bm_control) {
596 		raw_spin_lock(&c3_lock);
597 		c3_cpu_count++;
598 		/* Disable bus master arbitration when all CPUs are in C3 */
599 		if (c3_cpu_count == num_online_cpus())
600 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
601 		raw_spin_unlock(&c3_lock);
602 	}
603 
604 	acpi_idle_do_entry(cx);
605 
606 	/* Re-enable bus master arbitration */
607 	if (pr->flags.bm_control) {
608 		raw_spin_lock(&c3_lock);
609 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
610 		c3_cpu_count--;
611 		raw_spin_unlock(&c3_lock);
612 	}
613 
614 	if (timer_bc)
615 		lapic_timer_state_broadcast(pr, cx, 0);
616 }
617 
618 static int acpi_idle_enter(struct cpuidle_device *dev,
619 			   struct cpuidle_driver *drv, int index)
620 {
621 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
622 	struct acpi_processor *pr;
623 
624 	pr = __this_cpu_read(processors);
625 	if (unlikely(!pr))
626 		return -EINVAL;
627 
628 	if (cx->type != ACPI_STATE_C1) {
629 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
630 			index = ACPI_IDLE_STATE_START;
631 			cx = per_cpu(acpi_cstate[index], dev->cpu);
632 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
633 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
634 				acpi_idle_enter_bm(pr, cx, true);
635 				return index;
636 			} else if (drv->safe_state_index >= 0) {
637 				index = drv->safe_state_index;
638 				cx = per_cpu(acpi_cstate[index], dev->cpu);
639 			} else {
640 				acpi_safe_halt();
641 				return -EBUSY;
642 			}
643 		}
644 	}
645 
646 	lapic_timer_state_broadcast(pr, cx, 1);
647 
648 	if (cx->type == ACPI_STATE_C3)
649 		ACPI_FLUSH_CPU_CACHE();
650 
651 	acpi_idle_do_entry(cx);
652 
653 	lapic_timer_state_broadcast(pr, cx, 0);
654 
655 	return index;
656 }
657 
658 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
659 				   struct cpuidle_driver *drv, int index)
660 {
661 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
662 
663 	if (cx->type == ACPI_STATE_C3) {
664 		struct acpi_processor *pr = __this_cpu_read(processors);
665 
666 		if (unlikely(!pr))
667 			return;
668 
669 		if (pr->flags.bm_check) {
670 			acpi_idle_enter_bm(pr, cx, false);
671 			return;
672 		} else {
673 			ACPI_FLUSH_CPU_CACHE();
674 		}
675 	}
676 	acpi_idle_do_entry(cx);
677 }
678 
679 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
680 					   struct cpuidle_device *dev)
681 {
682 	int i, count = ACPI_IDLE_STATE_START;
683 	struct acpi_processor_cx *cx;
684 
685 	if (max_cstate == 0)
686 		max_cstate = 1;
687 
688 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
689 		cx = &pr->power.states[i];
690 
691 		if (!cx->valid)
692 			continue;
693 
694 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
695 
696 		count++;
697 		if (count == CPUIDLE_STATE_MAX)
698 			break;
699 	}
700 
701 	if (!count)
702 		return -EINVAL;
703 
704 	return 0;
705 }
706 
707 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
708 {
709 	int i, count;
710 	struct acpi_processor_cx *cx;
711 	struct cpuidle_state *state;
712 	struct cpuidle_driver *drv = &acpi_idle_driver;
713 
714 	if (max_cstate == 0)
715 		max_cstate = 1;
716 
717 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
718 		cpuidle_poll_state_init(drv);
719 		count = 1;
720 	} else {
721 		count = 0;
722 	}
723 
724 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
725 		cx = &pr->power.states[i];
726 
727 		if (!cx->valid)
728 			continue;
729 
730 		state = &drv->states[count];
731 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
732 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
733 		state->exit_latency = cx->latency;
734 		state->target_residency = cx->latency * latency_factor;
735 		state->enter = acpi_idle_enter;
736 
737 		state->flags = 0;
738 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
739 			state->enter_dead = acpi_idle_play_dead;
740 			drv->safe_state_index = count;
741 		}
742 		/*
743 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
744 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
745 		 * particularly interesting from the suspend-to-idle angle, so
746 		 * avoid C1 and the situations in which we may need to fall back
747 		 * to it altogether.
748 		 */
749 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
750 			state->enter_s2idle = acpi_idle_enter_s2idle;
751 
752 		count++;
753 		if (count == CPUIDLE_STATE_MAX)
754 			break;
755 	}
756 
757 	drv->state_count = count;
758 
759 	if (!count)
760 		return -EINVAL;
761 
762 	return 0;
763 }
764 
765 static inline void acpi_processor_cstate_first_run_checks(void)
766 {
767 	static int first_run;
768 
769 	if (first_run)
770 		return;
771 	dmi_check_system(processor_power_dmi_table);
772 	max_cstate = acpi_processor_cstate_check(max_cstate);
773 	if (max_cstate < ACPI_C_STATES_MAX)
774 		pr_notice("ACPI: processor limited to max C-state %d\n",
775 			  max_cstate);
776 	first_run++;
777 
778 	if (nocst)
779 		return;
780 
781 	acpi_processor_claim_cst_control();
782 }
783 #else
784 
785 static inline int disabled_by_idle_boot_param(void) { return 0; }
786 static inline void acpi_processor_cstate_first_run_checks(void) { }
787 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
788 {
789 	return -ENODEV;
790 }
791 
792 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
793 					   struct cpuidle_device *dev)
794 {
795 	return -EINVAL;
796 }
797 
798 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
799 {
800 	return -EINVAL;
801 }
802 
803 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
804 
805 struct acpi_lpi_states_array {
806 	unsigned int size;
807 	unsigned int composite_states_size;
808 	struct acpi_lpi_state *entries;
809 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
810 };
811 
812 static int obj_get_integer(union acpi_object *obj, u32 *value)
813 {
814 	if (obj->type != ACPI_TYPE_INTEGER)
815 		return -EINVAL;
816 
817 	*value = obj->integer.value;
818 	return 0;
819 }
820 
821 static int acpi_processor_evaluate_lpi(acpi_handle handle,
822 				       struct acpi_lpi_states_array *info)
823 {
824 	acpi_status status;
825 	int ret = 0;
826 	int pkg_count, state_idx = 1, loop;
827 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
828 	union acpi_object *lpi_data;
829 	struct acpi_lpi_state *lpi_state;
830 
831 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
832 	if (ACPI_FAILURE(status)) {
833 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
834 		return -ENODEV;
835 	}
836 
837 	lpi_data = buffer.pointer;
838 
839 	/* There must be at least 4 elements = 3 elements + 1 package */
840 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
841 	    lpi_data->package.count < 4) {
842 		pr_debug("not enough elements in _LPI\n");
843 		ret = -ENODATA;
844 		goto end;
845 	}
846 
847 	pkg_count = lpi_data->package.elements[2].integer.value;
848 
849 	/* Validate number of power states. */
850 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
851 		pr_debug("count given by _LPI is not valid\n");
852 		ret = -ENODATA;
853 		goto end;
854 	}
855 
856 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
857 	if (!lpi_state) {
858 		ret = -ENOMEM;
859 		goto end;
860 	}
861 
862 	info->size = pkg_count;
863 	info->entries = lpi_state;
864 
865 	/* LPI States start at index 3 */
866 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
867 		union acpi_object *element, *pkg_elem, *obj;
868 
869 		element = &lpi_data->package.elements[loop];
870 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
871 			continue;
872 
873 		pkg_elem = element->package.elements;
874 
875 		obj = pkg_elem + 6;
876 		if (obj->type == ACPI_TYPE_BUFFER) {
877 			struct acpi_power_register *reg;
878 
879 			reg = (struct acpi_power_register *)obj->buffer.pointer;
880 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
881 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
882 				continue;
883 
884 			lpi_state->address = reg->address;
885 			lpi_state->entry_method =
886 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
887 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
888 		} else if (obj->type == ACPI_TYPE_INTEGER) {
889 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
890 			lpi_state->address = obj->integer.value;
891 		} else {
892 			continue;
893 		}
894 
895 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
896 
897 		obj = pkg_elem + 9;
898 		if (obj->type == ACPI_TYPE_STRING)
899 			strlcpy(lpi_state->desc, obj->string.pointer,
900 				ACPI_CX_DESC_LEN);
901 
902 		lpi_state->index = state_idx;
903 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
904 			pr_debug("No min. residency found, assuming 10 us\n");
905 			lpi_state->min_residency = 10;
906 		}
907 
908 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
909 			pr_debug("No wakeup residency found, assuming 10 us\n");
910 			lpi_state->wake_latency = 10;
911 		}
912 
913 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
914 			lpi_state->flags = 0;
915 
916 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
917 			lpi_state->arch_flags = 0;
918 
919 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
920 			lpi_state->res_cnt_freq = 1;
921 
922 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
923 			lpi_state->enable_parent_state = 0;
924 	}
925 
926 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
927 end:
928 	kfree(buffer.pointer);
929 	return ret;
930 }
931 
932 /*
933  * flat_state_cnt - the number of composite LPI states after the process of flattening
934  */
935 static int flat_state_cnt;
936 
937 /**
938  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
939  *
940  * @local: local LPI state
941  * @parent: parent LPI state
942  * @result: composite LPI state
943  */
944 static bool combine_lpi_states(struct acpi_lpi_state *local,
945 			       struct acpi_lpi_state *parent,
946 			       struct acpi_lpi_state *result)
947 {
948 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
949 		if (!parent->address) /* 0 means autopromotable */
950 			return false;
951 		result->address = local->address + parent->address;
952 	} else {
953 		result->address = parent->address;
954 	}
955 
956 	result->min_residency = max(local->min_residency, parent->min_residency);
957 	result->wake_latency = local->wake_latency + parent->wake_latency;
958 	result->enable_parent_state = parent->enable_parent_state;
959 	result->entry_method = local->entry_method;
960 
961 	result->flags = parent->flags;
962 	result->arch_flags = parent->arch_flags;
963 	result->index = parent->index;
964 
965 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
966 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
967 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
968 	return true;
969 }
970 
971 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
972 
973 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
974 				  struct acpi_lpi_state *t)
975 {
976 	curr_level->composite_states[curr_level->composite_states_size++] = t;
977 }
978 
979 static int flatten_lpi_states(struct acpi_processor *pr,
980 			      struct acpi_lpi_states_array *curr_level,
981 			      struct acpi_lpi_states_array *prev_level)
982 {
983 	int i, j, state_count = curr_level->size;
984 	struct acpi_lpi_state *p, *t = curr_level->entries;
985 
986 	curr_level->composite_states_size = 0;
987 	for (j = 0; j < state_count; j++, t++) {
988 		struct acpi_lpi_state *flpi;
989 
990 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
991 			continue;
992 
993 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
994 			pr_warn("Limiting number of LPI states to max (%d)\n",
995 				ACPI_PROCESSOR_MAX_POWER);
996 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
997 			break;
998 		}
999 
1000 		flpi = &pr->power.lpi_states[flat_state_cnt];
1001 
1002 		if (!prev_level) { /* leaf/processor node */
1003 			memcpy(flpi, t, sizeof(*t));
1004 			stash_composite_state(curr_level, flpi);
1005 			flat_state_cnt++;
1006 			continue;
1007 		}
1008 
1009 		for (i = 0; i < prev_level->composite_states_size; i++) {
1010 			p = prev_level->composite_states[i];
1011 			if (t->index <= p->enable_parent_state &&
1012 			    combine_lpi_states(p, t, flpi)) {
1013 				stash_composite_state(curr_level, flpi);
1014 				flat_state_cnt++;
1015 				flpi++;
1016 			}
1017 		}
1018 	}
1019 
1020 	kfree(curr_level->entries);
1021 	return 0;
1022 }
1023 
1024 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1025 {
1026 	int ret, i;
1027 	acpi_status status;
1028 	acpi_handle handle = pr->handle, pr_ahandle;
1029 	struct acpi_device *d = NULL;
1030 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1031 
1032 	if (!osc_pc_lpi_support_confirmed)
1033 		return -EOPNOTSUPP;
1034 
1035 	if (!acpi_has_method(handle, "_LPI"))
1036 		return -EINVAL;
1037 
1038 	flat_state_cnt = 0;
1039 	prev = &info[0];
1040 	curr = &info[1];
1041 	handle = pr->handle;
1042 	ret = acpi_processor_evaluate_lpi(handle, prev);
1043 	if (ret)
1044 		return ret;
1045 	flatten_lpi_states(pr, prev, NULL);
1046 
1047 	status = acpi_get_parent(handle, &pr_ahandle);
1048 	while (ACPI_SUCCESS(status)) {
1049 		acpi_bus_get_device(pr_ahandle, &d);
1050 		handle = pr_ahandle;
1051 
1052 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1053 			break;
1054 
1055 		/* can be optional ? */
1056 		if (!acpi_has_method(handle, "_LPI"))
1057 			break;
1058 
1059 		ret = acpi_processor_evaluate_lpi(handle, curr);
1060 		if (ret)
1061 			break;
1062 
1063 		/* flatten all the LPI states in this level of hierarchy */
1064 		flatten_lpi_states(pr, curr, prev);
1065 
1066 		tmp = prev, prev = curr, curr = tmp;
1067 
1068 		status = acpi_get_parent(handle, &pr_ahandle);
1069 	}
1070 
1071 	pr->power.count = flat_state_cnt;
1072 	/* reset the index after flattening */
1073 	for (i = 0; i < pr->power.count; i++)
1074 		pr->power.lpi_states[i].index = i;
1075 
1076 	/* Tell driver that _LPI is supported. */
1077 	pr->flags.has_lpi = 1;
1078 	pr->flags.power = 1;
1079 
1080 	return 0;
1081 }
1082 
1083 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1084 {
1085 	return -ENODEV;
1086 }
1087 
1088 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1089 {
1090 	return -ENODEV;
1091 }
1092 
1093 /**
1094  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1095  * @dev: the target CPU
1096  * @drv: cpuidle driver containing cpuidle state info
1097  * @index: index of target state
1098  *
1099  * Return: 0 for success or negative value for error
1100  */
1101 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1102 			       struct cpuidle_driver *drv, int index)
1103 {
1104 	struct acpi_processor *pr;
1105 	struct acpi_lpi_state *lpi;
1106 
1107 	pr = __this_cpu_read(processors);
1108 
1109 	if (unlikely(!pr))
1110 		return -EINVAL;
1111 
1112 	lpi = &pr->power.lpi_states[index];
1113 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1114 		return acpi_processor_ffh_lpi_enter(lpi);
1115 
1116 	return -EINVAL;
1117 }
1118 
1119 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1120 {
1121 	int i;
1122 	struct acpi_lpi_state *lpi;
1123 	struct cpuidle_state *state;
1124 	struct cpuidle_driver *drv = &acpi_idle_driver;
1125 
1126 	if (!pr->flags.has_lpi)
1127 		return -EOPNOTSUPP;
1128 
1129 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1130 		lpi = &pr->power.lpi_states[i];
1131 
1132 		state = &drv->states[i];
1133 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1134 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1135 		state->exit_latency = lpi->wake_latency;
1136 		state->target_residency = lpi->min_residency;
1137 		if (lpi->arch_flags)
1138 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1139 		state->enter = acpi_idle_lpi_enter;
1140 		drv->safe_state_index = i;
1141 	}
1142 
1143 	drv->state_count = i;
1144 
1145 	return 0;
1146 }
1147 
1148 /**
1149  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1150  * global state data i.e. idle routines
1151  *
1152  * @pr: the ACPI processor
1153  */
1154 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1155 {
1156 	int i;
1157 	struct cpuidle_driver *drv = &acpi_idle_driver;
1158 
1159 	if (!pr->flags.power_setup_done || !pr->flags.power)
1160 		return -EINVAL;
1161 
1162 	drv->safe_state_index = -1;
1163 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1164 		drv->states[i].name[0] = '\0';
1165 		drv->states[i].desc[0] = '\0';
1166 	}
1167 
1168 	if (pr->flags.has_lpi)
1169 		return acpi_processor_setup_lpi_states(pr);
1170 
1171 	return acpi_processor_setup_cstates(pr);
1172 }
1173 
1174 /**
1175  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1176  * device i.e. per-cpu data
1177  *
1178  * @pr: the ACPI processor
1179  * @dev : the cpuidle device
1180  */
1181 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1182 					    struct cpuidle_device *dev)
1183 {
1184 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1185 		return -EINVAL;
1186 
1187 	dev->cpu = pr->id;
1188 	if (pr->flags.has_lpi)
1189 		return acpi_processor_ffh_lpi_probe(pr->id);
1190 
1191 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1192 }
1193 
1194 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1195 {
1196 	int ret;
1197 
1198 	ret = acpi_processor_get_lpi_info(pr);
1199 	if (ret)
1200 		ret = acpi_processor_get_cstate_info(pr);
1201 
1202 	return ret;
1203 }
1204 
1205 int acpi_processor_hotplug(struct acpi_processor *pr)
1206 {
1207 	int ret = 0;
1208 	struct cpuidle_device *dev;
1209 
1210 	if (disabled_by_idle_boot_param())
1211 		return 0;
1212 
1213 	if (!pr->flags.power_setup_done)
1214 		return -ENODEV;
1215 
1216 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1217 	cpuidle_pause_and_lock();
1218 	cpuidle_disable_device(dev);
1219 	ret = acpi_processor_get_power_info(pr);
1220 	if (!ret && pr->flags.power) {
1221 		acpi_processor_setup_cpuidle_dev(pr, dev);
1222 		ret = cpuidle_enable_device(dev);
1223 	}
1224 	cpuidle_resume_and_unlock();
1225 
1226 	return ret;
1227 }
1228 
1229 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1230 {
1231 	int cpu;
1232 	struct acpi_processor *_pr;
1233 	struct cpuidle_device *dev;
1234 
1235 	if (disabled_by_idle_boot_param())
1236 		return 0;
1237 
1238 	if (!pr->flags.power_setup_done)
1239 		return -ENODEV;
1240 
1241 	/*
1242 	 * FIXME:  Design the ACPI notification to make it once per
1243 	 * system instead of once per-cpu.  This condition is a hack
1244 	 * to make the code that updates C-States be called once.
1245 	 */
1246 
1247 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1248 
1249 		/* Protect against cpu-hotplug */
1250 		get_online_cpus();
1251 		cpuidle_pause_and_lock();
1252 
1253 		/* Disable all cpuidle devices */
1254 		for_each_online_cpu(cpu) {
1255 			_pr = per_cpu(processors, cpu);
1256 			if (!_pr || !_pr->flags.power_setup_done)
1257 				continue;
1258 			dev = per_cpu(acpi_cpuidle_device, cpu);
1259 			cpuidle_disable_device(dev);
1260 		}
1261 
1262 		/* Populate Updated C-state information */
1263 		acpi_processor_get_power_info(pr);
1264 		acpi_processor_setup_cpuidle_states(pr);
1265 
1266 		/* Enable all cpuidle devices */
1267 		for_each_online_cpu(cpu) {
1268 			_pr = per_cpu(processors, cpu);
1269 			if (!_pr || !_pr->flags.power_setup_done)
1270 				continue;
1271 			acpi_processor_get_power_info(_pr);
1272 			if (_pr->flags.power) {
1273 				dev = per_cpu(acpi_cpuidle_device, cpu);
1274 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1275 				cpuidle_enable_device(dev);
1276 			}
1277 		}
1278 		cpuidle_resume_and_unlock();
1279 		put_online_cpus();
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 static int acpi_processor_registered;
1286 
1287 int acpi_processor_power_init(struct acpi_processor *pr)
1288 {
1289 	int retval;
1290 	struct cpuidle_device *dev;
1291 
1292 	if (disabled_by_idle_boot_param())
1293 		return 0;
1294 
1295 	acpi_processor_cstate_first_run_checks();
1296 
1297 	if (!acpi_processor_get_power_info(pr))
1298 		pr->flags.power_setup_done = 1;
1299 
1300 	/*
1301 	 * Install the idle handler if processor power management is supported.
1302 	 * Note that we use previously set idle handler will be used on
1303 	 * platforms that only support C1.
1304 	 */
1305 	if (pr->flags.power) {
1306 		/* Register acpi_idle_driver if not already registered */
1307 		if (!acpi_processor_registered) {
1308 			acpi_processor_setup_cpuidle_states(pr);
1309 			retval = cpuidle_register_driver(&acpi_idle_driver);
1310 			if (retval)
1311 				return retval;
1312 			pr_debug("%s registered with cpuidle\n",
1313 				 acpi_idle_driver.name);
1314 		}
1315 
1316 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1317 		if (!dev)
1318 			return -ENOMEM;
1319 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1320 
1321 		acpi_processor_setup_cpuidle_dev(pr, dev);
1322 
1323 		/* Register per-cpu cpuidle_device. Cpuidle driver
1324 		 * must already be registered before registering device
1325 		 */
1326 		retval = cpuidle_register_device(dev);
1327 		if (retval) {
1328 			if (acpi_processor_registered == 0)
1329 				cpuidle_unregister_driver(&acpi_idle_driver);
1330 			return retval;
1331 		}
1332 		acpi_processor_registered++;
1333 	}
1334 	return 0;
1335 }
1336 
1337 int acpi_processor_power_exit(struct acpi_processor *pr)
1338 {
1339 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1340 
1341 	if (disabled_by_idle_boot_param())
1342 		return 0;
1343 
1344 	if (pr->flags.power) {
1345 		cpuidle_unregister_device(dev);
1346 		acpi_processor_registered--;
1347 		if (acpi_processor_registered == 0)
1348 			cpuidle_unregister_driver(&acpi_idle_driver);
1349 	}
1350 
1351 	pr->flags.power_setup_done = 0;
1352 	return 0;
1353 }
1354