xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision e0bf6c5c)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/module.h>
32 #include <linux/acpi.h>
33 #include <linux/dmi.h>
34 #include <linux/sched.h>       /* need_resched() */
35 #include <linux/clockchips.h>
36 #include <linux/cpuidle.h>
37 #include <linux/syscore_ops.h>
38 #include <acpi/processor.h>
39 
40 /*
41  * Include the apic definitions for x86 to have the APIC timer related defines
42  * available also for UP (on SMP it gets magically included via linux/smp.h).
43  * asm/acpi.h is not an option, as it would require more include magic. Also
44  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
45  */
46 #ifdef CONFIG_X86
47 #include <asm/apic.h>
48 #endif
49 
50 #define PREFIX "ACPI: "
51 
52 #define ACPI_PROCESSOR_CLASS            "processor"
53 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
54 ACPI_MODULE_NAME("processor_idle");
55 
56 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
57 module_param(max_cstate, uint, 0000);
58 static unsigned int nocst __read_mostly;
59 module_param(nocst, uint, 0000);
60 static int bm_check_disable __read_mostly;
61 module_param(bm_check_disable, uint, 0000);
62 
63 static unsigned int latency_factor __read_mostly = 2;
64 module_param(latency_factor, uint, 0644);
65 
66 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
67 
68 static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
69 								acpi_cstate);
70 
71 static int disabled_by_idle_boot_param(void)
72 {
73 	return boot_option_idle_override == IDLE_POLL ||
74 		boot_option_idle_override == IDLE_HALT;
75 }
76 
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(const struct dmi_system_id *id)
84 {
85 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 		return 0;
87 
88 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91 
92 	max_cstate = (long)id->driver_data;
93 
94 	return 0;
95 }
96 
97 static struct dmi_system_id processor_power_dmi_table[] = {
98 	{ set_max_cstate, "Clevo 5600D", {
99 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
101 	 (void *)2},
102 	{ set_max_cstate, "Pavilion zv5000", {
103 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
105 	 (void *)1},
106 	{ set_max_cstate, "Asus L8400B", {
107 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
109 	 (void *)1},
110 	{},
111 };
112 
113 
114 /*
115  * Callers should disable interrupts before the call and enable
116  * interrupts after return.
117  */
118 static void acpi_safe_halt(void)
119 {
120 	if (!tif_need_resched()) {
121 		safe_halt();
122 		local_irq_disable();
123 	}
124 }
125 
126 #ifdef ARCH_APICTIMER_STOPS_ON_C3
127 
128 /*
129  * Some BIOS implementations switch to C3 in the published C2 state.
130  * This seems to be a common problem on AMD boxen, but other vendors
131  * are affected too. We pick the most conservative approach: we assume
132  * that the local APIC stops in both C2 and C3.
133  */
134 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135 				   struct acpi_processor_cx *cx)
136 {
137 	struct acpi_processor_power *pwr = &pr->power;
138 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
139 
140 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
141 		return;
142 
143 	if (amd_e400_c1e_detected)
144 		type = ACPI_STATE_C1;
145 
146 	/*
147 	 * Check, if one of the previous states already marked the lapic
148 	 * unstable
149 	 */
150 	if (pwr->timer_broadcast_on_state < state)
151 		return;
152 
153 	if (cx->type >= type)
154 		pr->power.timer_broadcast_on_state = state;
155 }
156 
157 static void __lapic_timer_propagate_broadcast(void *arg)
158 {
159 	struct acpi_processor *pr = (struct acpi_processor *) arg;
160 	unsigned long reason;
161 
162 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
163 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
164 
165 	clockevents_notify(reason, &pr->id);
166 }
167 
168 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
169 {
170 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
171 				 (void *)pr, 1);
172 }
173 
174 /* Power(C) State timer broadcast control */
175 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
176 				       struct acpi_processor_cx *cx,
177 				       int broadcast)
178 {
179 	int state = cx - pr->power.states;
180 
181 	if (state >= pr->power.timer_broadcast_on_state) {
182 		unsigned long reason;
183 
184 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
185 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
186 		clockevents_notify(reason, &pr->id);
187 	}
188 }
189 
190 #else
191 
192 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
193 				   struct acpi_processor_cx *cstate) { }
194 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
195 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
196 				       struct acpi_processor_cx *cx,
197 				       int broadcast)
198 {
199 }
200 
201 #endif
202 
203 #ifdef CONFIG_PM_SLEEP
204 static u32 saved_bm_rld;
205 
206 static int acpi_processor_suspend(void)
207 {
208 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
209 	return 0;
210 }
211 
212 static void acpi_processor_resume(void)
213 {
214 	u32 resumed_bm_rld = 0;
215 
216 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
217 	if (resumed_bm_rld == saved_bm_rld)
218 		return;
219 
220 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
221 }
222 
223 static struct syscore_ops acpi_processor_syscore_ops = {
224 	.suspend = acpi_processor_suspend,
225 	.resume = acpi_processor_resume,
226 };
227 
228 void acpi_processor_syscore_init(void)
229 {
230 	register_syscore_ops(&acpi_processor_syscore_ops);
231 }
232 
233 void acpi_processor_syscore_exit(void)
234 {
235 	unregister_syscore_ops(&acpi_processor_syscore_ops);
236 }
237 #endif /* CONFIG_PM_SLEEP */
238 
239 #if defined(CONFIG_X86)
240 static void tsc_check_state(int state)
241 {
242 	switch (boot_cpu_data.x86_vendor) {
243 	case X86_VENDOR_AMD:
244 	case X86_VENDOR_INTEL:
245 		/*
246 		 * AMD Fam10h TSC will tick in all
247 		 * C/P/S0/S1 states when this bit is set.
248 		 */
249 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
250 			return;
251 
252 		/*FALL THROUGH*/
253 	default:
254 		/* TSC could halt in idle, so notify users */
255 		if (state > ACPI_STATE_C1)
256 			mark_tsc_unstable("TSC halts in idle");
257 	}
258 }
259 #else
260 static void tsc_check_state(int state) { return; }
261 #endif
262 
263 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
264 {
265 
266 	if (!pr->pblk)
267 		return -ENODEV;
268 
269 	/* if info is obtained from pblk/fadt, type equals state */
270 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
271 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
272 
273 #ifndef CONFIG_HOTPLUG_CPU
274 	/*
275 	 * Check for P_LVL2_UP flag before entering C2 and above on
276 	 * an SMP system.
277 	 */
278 	if ((num_online_cpus() > 1) &&
279 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
280 		return -ENODEV;
281 #endif
282 
283 	/* determine C2 and C3 address from pblk */
284 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
285 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
286 
287 	/* determine latencies from FADT */
288 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
289 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
290 
291 	/*
292 	 * FADT specified C2 latency must be less than or equal to
293 	 * 100 microseconds.
294 	 */
295 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
296 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
297 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
298 		/* invalidate C2 */
299 		pr->power.states[ACPI_STATE_C2].address = 0;
300 	}
301 
302 	/*
303 	 * FADT supplied C3 latency must be less than or equal to
304 	 * 1000 microseconds.
305 	 */
306 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
307 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
308 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
309 		/* invalidate C3 */
310 		pr->power.states[ACPI_STATE_C3].address = 0;
311 	}
312 
313 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
314 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
315 			  pr->power.states[ACPI_STATE_C2].address,
316 			  pr->power.states[ACPI_STATE_C3].address));
317 
318 	return 0;
319 }
320 
321 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
322 {
323 	if (!pr->power.states[ACPI_STATE_C1].valid) {
324 		/* set the first C-State to C1 */
325 		/* all processors need to support C1 */
326 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
327 		pr->power.states[ACPI_STATE_C1].valid = 1;
328 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
329 	}
330 	/* the C0 state only exists as a filler in our array */
331 	pr->power.states[ACPI_STATE_C0].valid = 1;
332 	return 0;
333 }
334 
335 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
336 {
337 	acpi_status status;
338 	u64 count;
339 	int current_count;
340 	int i, ret = 0;
341 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
342 	union acpi_object *cst;
343 
344 
345 	if (nocst)
346 		return -ENODEV;
347 
348 	current_count = 0;
349 
350 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
351 	if (ACPI_FAILURE(status)) {
352 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
353 		return -ENODEV;
354 	}
355 
356 	cst = buffer.pointer;
357 
358 	/* There must be at least 2 elements */
359 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
360 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
361 		ret = -EFAULT;
362 		goto end;
363 	}
364 
365 	count = cst->package.elements[0].integer.value;
366 
367 	/* Validate number of power states. */
368 	if (count < 1 || count != cst->package.count - 1) {
369 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
370 		ret = -EFAULT;
371 		goto end;
372 	}
373 
374 	/* Tell driver that at least _CST is supported. */
375 	pr->flags.has_cst = 1;
376 
377 	for (i = 1; i <= count; i++) {
378 		union acpi_object *element;
379 		union acpi_object *obj;
380 		struct acpi_power_register *reg;
381 		struct acpi_processor_cx cx;
382 
383 		memset(&cx, 0, sizeof(cx));
384 
385 		element = &(cst->package.elements[i]);
386 		if (element->type != ACPI_TYPE_PACKAGE)
387 			continue;
388 
389 		if (element->package.count != 4)
390 			continue;
391 
392 		obj = &(element->package.elements[0]);
393 
394 		if (obj->type != ACPI_TYPE_BUFFER)
395 			continue;
396 
397 		reg = (struct acpi_power_register *)obj->buffer.pointer;
398 
399 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
400 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
401 			continue;
402 
403 		/* There should be an easy way to extract an integer... */
404 		obj = &(element->package.elements[1]);
405 		if (obj->type != ACPI_TYPE_INTEGER)
406 			continue;
407 
408 		cx.type = obj->integer.value;
409 		/*
410 		 * Some buggy BIOSes won't list C1 in _CST -
411 		 * Let acpi_processor_get_power_info_default() handle them later
412 		 */
413 		if (i == 1 && cx.type != ACPI_STATE_C1)
414 			current_count++;
415 
416 		cx.address = reg->address;
417 		cx.index = current_count + 1;
418 
419 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
420 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
421 			if (acpi_processor_ffh_cstate_probe
422 					(pr->id, &cx, reg) == 0) {
423 				cx.entry_method = ACPI_CSTATE_FFH;
424 			} else if (cx.type == ACPI_STATE_C1) {
425 				/*
426 				 * C1 is a special case where FIXED_HARDWARE
427 				 * can be handled in non-MWAIT way as well.
428 				 * In that case, save this _CST entry info.
429 				 * Otherwise, ignore this info and continue.
430 				 */
431 				cx.entry_method = ACPI_CSTATE_HALT;
432 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
433 			} else {
434 				continue;
435 			}
436 			if (cx.type == ACPI_STATE_C1 &&
437 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
438 				/*
439 				 * In most cases the C1 space_id obtained from
440 				 * _CST object is FIXED_HARDWARE access mode.
441 				 * But when the option of idle=halt is added,
442 				 * the entry_method type should be changed from
443 				 * CSTATE_FFH to CSTATE_HALT.
444 				 * When the option of idle=nomwait is added,
445 				 * the C1 entry_method type should be
446 				 * CSTATE_HALT.
447 				 */
448 				cx.entry_method = ACPI_CSTATE_HALT;
449 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
450 			}
451 		} else {
452 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
453 				 cx.address);
454 		}
455 
456 		if (cx.type == ACPI_STATE_C1) {
457 			cx.valid = 1;
458 		}
459 
460 		obj = &(element->package.elements[2]);
461 		if (obj->type != ACPI_TYPE_INTEGER)
462 			continue;
463 
464 		cx.latency = obj->integer.value;
465 
466 		obj = &(element->package.elements[3]);
467 		if (obj->type != ACPI_TYPE_INTEGER)
468 			continue;
469 
470 		current_count++;
471 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
472 
473 		/*
474 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
475 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
476 		 */
477 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
478 			printk(KERN_WARNING
479 			       "Limiting number of power states to max (%d)\n",
480 			       ACPI_PROCESSOR_MAX_POWER);
481 			printk(KERN_WARNING
482 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
483 			break;
484 		}
485 	}
486 
487 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
488 			  current_count));
489 
490 	/* Validate number of power states discovered */
491 	if (current_count < 2)
492 		ret = -EFAULT;
493 
494       end:
495 	kfree(buffer.pointer);
496 
497 	return ret;
498 }
499 
500 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
501 					   struct acpi_processor_cx *cx)
502 {
503 	static int bm_check_flag = -1;
504 	static int bm_control_flag = -1;
505 
506 
507 	if (!cx->address)
508 		return;
509 
510 	/*
511 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
512 	 * DMA transfers are used by any ISA device to avoid livelock.
513 	 * Note that we could disable Type-F DMA (as recommended by
514 	 * the erratum), but this is known to disrupt certain ISA
515 	 * devices thus we take the conservative approach.
516 	 */
517 	else if (errata.piix4.fdma) {
518 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
519 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
520 		return;
521 	}
522 
523 	/* All the logic here assumes flags.bm_check is same across all CPUs */
524 	if (bm_check_flag == -1) {
525 		/* Determine whether bm_check is needed based on CPU  */
526 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
527 		bm_check_flag = pr->flags.bm_check;
528 		bm_control_flag = pr->flags.bm_control;
529 	} else {
530 		pr->flags.bm_check = bm_check_flag;
531 		pr->flags.bm_control = bm_control_flag;
532 	}
533 
534 	if (pr->flags.bm_check) {
535 		if (!pr->flags.bm_control) {
536 			if (pr->flags.has_cst != 1) {
537 				/* bus mastering control is necessary */
538 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
539 					"C3 support requires BM control\n"));
540 				return;
541 			} else {
542 				/* Here we enter C3 without bus mastering */
543 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
544 					"C3 support without BM control\n"));
545 			}
546 		}
547 	} else {
548 		/*
549 		 * WBINVD should be set in fadt, for C3 state to be
550 		 * supported on when bm_check is not required.
551 		 */
552 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
553 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
554 					  "Cache invalidation should work properly"
555 					  " for C3 to be enabled on SMP systems\n"));
556 			return;
557 		}
558 	}
559 
560 	/*
561 	 * Otherwise we've met all of our C3 requirements.
562 	 * Normalize the C3 latency to expidite policy.  Enable
563 	 * checking of bus mastering status (bm_check) so we can
564 	 * use this in our C3 policy
565 	 */
566 	cx->valid = 1;
567 
568 	/*
569 	 * On older chipsets, BM_RLD needs to be set
570 	 * in order for Bus Master activity to wake the
571 	 * system from C3.  Newer chipsets handle DMA
572 	 * during C3 automatically and BM_RLD is a NOP.
573 	 * In either case, the proper way to
574 	 * handle BM_RLD is to set it and leave it set.
575 	 */
576 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
577 
578 	return;
579 }
580 
581 static int acpi_processor_power_verify(struct acpi_processor *pr)
582 {
583 	unsigned int i;
584 	unsigned int working = 0;
585 
586 	pr->power.timer_broadcast_on_state = INT_MAX;
587 
588 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
589 		struct acpi_processor_cx *cx = &pr->power.states[i];
590 
591 		switch (cx->type) {
592 		case ACPI_STATE_C1:
593 			cx->valid = 1;
594 			break;
595 
596 		case ACPI_STATE_C2:
597 			if (!cx->address)
598 				break;
599 			cx->valid = 1;
600 			break;
601 
602 		case ACPI_STATE_C3:
603 			acpi_processor_power_verify_c3(pr, cx);
604 			break;
605 		}
606 		if (!cx->valid)
607 			continue;
608 
609 		lapic_timer_check_state(i, pr, cx);
610 		tsc_check_state(cx->type);
611 		working++;
612 	}
613 
614 	lapic_timer_propagate_broadcast(pr);
615 
616 	return (working);
617 }
618 
619 static int acpi_processor_get_power_info(struct acpi_processor *pr)
620 {
621 	unsigned int i;
622 	int result;
623 
624 
625 	/* NOTE: the idle thread may not be running while calling
626 	 * this function */
627 
628 	/* Zero initialize all the C-states info. */
629 	memset(pr->power.states, 0, sizeof(pr->power.states));
630 
631 	result = acpi_processor_get_power_info_cst(pr);
632 	if (result == -ENODEV)
633 		result = acpi_processor_get_power_info_fadt(pr);
634 
635 	if (result)
636 		return result;
637 
638 	acpi_processor_get_power_info_default(pr);
639 
640 	pr->power.count = acpi_processor_power_verify(pr);
641 
642 	/*
643 	 * if one state of type C2 or C3 is available, mark this
644 	 * CPU as being "idle manageable"
645 	 */
646 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
647 		if (pr->power.states[i].valid) {
648 			pr->power.count = i;
649 			if (pr->power.states[i].type >= ACPI_STATE_C2)
650 				pr->flags.power = 1;
651 		}
652 	}
653 
654 	return 0;
655 }
656 
657 /**
658  * acpi_idle_bm_check - checks if bus master activity was detected
659  */
660 static int acpi_idle_bm_check(void)
661 {
662 	u32 bm_status = 0;
663 
664 	if (bm_check_disable)
665 		return 0;
666 
667 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
668 	if (bm_status)
669 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
670 	/*
671 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
672 	 * the true state of bus mastering activity; forcing us to
673 	 * manually check the BMIDEA bit of each IDE channel.
674 	 */
675 	else if (errata.piix4.bmisx) {
676 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
677 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
678 			bm_status = 1;
679 	}
680 	return bm_status;
681 }
682 
683 /**
684  * acpi_idle_do_entry - enter idle state using the appropriate method
685  * @cx: cstate data
686  *
687  * Caller disables interrupt before call and enables interrupt after return.
688  */
689 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
690 {
691 	if (cx->entry_method == ACPI_CSTATE_FFH) {
692 		/* Call into architectural FFH based C-state */
693 		acpi_processor_ffh_cstate_enter(cx);
694 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
695 		acpi_safe_halt();
696 	} else {
697 		/* IO port based C-state */
698 		inb(cx->address);
699 		/* Dummy wait op - must do something useless after P_LVL2 read
700 		   because chipsets cannot guarantee that STPCLK# signal
701 		   gets asserted in time to freeze execution properly. */
702 		inl(acpi_gbl_FADT.xpm_timer_block.address);
703 	}
704 }
705 
706 /**
707  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
708  * @dev: the target CPU
709  * @index: the index of suggested state
710  */
711 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
712 {
713 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
714 
715 	ACPI_FLUSH_CPU_CACHE();
716 
717 	while (1) {
718 
719 		if (cx->entry_method == ACPI_CSTATE_HALT)
720 			safe_halt();
721 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
722 			inb(cx->address);
723 			/* See comment in acpi_idle_do_entry() */
724 			inl(acpi_gbl_FADT.xpm_timer_block.address);
725 		} else
726 			return -ENODEV;
727 	}
728 
729 	/* Never reached */
730 	return 0;
731 }
732 
733 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
734 {
735 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
736 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
737 }
738 
739 static int c3_cpu_count;
740 static DEFINE_RAW_SPINLOCK(c3_lock);
741 
742 /**
743  * acpi_idle_enter_bm - enters C3 with proper BM handling
744  * @pr: Target processor
745  * @cx: Target state context
746  * @timer_bc: Whether or not to change timer mode to broadcast
747  */
748 static void acpi_idle_enter_bm(struct acpi_processor *pr,
749 			       struct acpi_processor_cx *cx, bool timer_bc)
750 {
751 	acpi_unlazy_tlb(smp_processor_id());
752 
753 	/*
754 	 * Must be done before busmaster disable as we might need to
755 	 * access HPET !
756 	 */
757 	if (timer_bc)
758 		lapic_timer_state_broadcast(pr, cx, 1);
759 
760 	/*
761 	 * disable bus master
762 	 * bm_check implies we need ARB_DIS
763 	 * bm_control implies whether we can do ARB_DIS
764 	 *
765 	 * That leaves a case where bm_check is set and bm_control is
766 	 * not set. In that case we cannot do much, we enter C3
767 	 * without doing anything.
768 	 */
769 	if (pr->flags.bm_control) {
770 		raw_spin_lock(&c3_lock);
771 		c3_cpu_count++;
772 		/* Disable bus master arbitration when all CPUs are in C3 */
773 		if (c3_cpu_count == num_online_cpus())
774 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
775 		raw_spin_unlock(&c3_lock);
776 	}
777 
778 	acpi_idle_do_entry(cx);
779 
780 	/* Re-enable bus master arbitration */
781 	if (pr->flags.bm_control) {
782 		raw_spin_lock(&c3_lock);
783 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
784 		c3_cpu_count--;
785 		raw_spin_unlock(&c3_lock);
786 	}
787 
788 	if (timer_bc)
789 		lapic_timer_state_broadcast(pr, cx, 0);
790 }
791 
792 static int acpi_idle_enter(struct cpuidle_device *dev,
793 			   struct cpuidle_driver *drv, int index)
794 {
795 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
796 	struct acpi_processor *pr;
797 
798 	pr = __this_cpu_read(processors);
799 	if (unlikely(!pr))
800 		return -EINVAL;
801 
802 	if (cx->type != ACPI_STATE_C1) {
803 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
804 			index = CPUIDLE_DRIVER_STATE_START;
805 			cx = per_cpu(acpi_cstate[index], dev->cpu);
806 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
807 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
808 				acpi_idle_enter_bm(pr, cx, true);
809 				return index;
810 			} else if (drv->safe_state_index >= 0) {
811 				index = drv->safe_state_index;
812 				cx = per_cpu(acpi_cstate[index], dev->cpu);
813 			} else {
814 				acpi_safe_halt();
815 				return -EBUSY;
816 			}
817 		}
818 	}
819 
820 	lapic_timer_state_broadcast(pr, cx, 1);
821 
822 	if (cx->type == ACPI_STATE_C3)
823 		ACPI_FLUSH_CPU_CACHE();
824 
825 	acpi_idle_do_entry(cx);
826 
827 	lapic_timer_state_broadcast(pr, cx, 0);
828 
829 	return index;
830 }
831 
832 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
833 				   struct cpuidle_driver *drv, int index)
834 {
835 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
836 
837 	if (cx->type == ACPI_STATE_C3) {
838 		struct acpi_processor *pr = __this_cpu_read(processors);
839 
840 		if (unlikely(!pr))
841 			return;
842 
843 		if (pr->flags.bm_check) {
844 			acpi_idle_enter_bm(pr, cx, false);
845 			return;
846 		} else {
847 			ACPI_FLUSH_CPU_CACHE();
848 		}
849 	}
850 	acpi_idle_do_entry(cx);
851 }
852 
853 struct cpuidle_driver acpi_idle_driver = {
854 	.name =		"acpi_idle",
855 	.owner =	THIS_MODULE,
856 };
857 
858 /**
859  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
860  * device i.e. per-cpu data
861  *
862  * @pr: the ACPI processor
863  * @dev : the cpuidle device
864  */
865 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
866 					   struct cpuidle_device *dev)
867 {
868 	int i, count = CPUIDLE_DRIVER_STATE_START;
869 	struct acpi_processor_cx *cx;
870 
871 	if (!pr->flags.power_setup_done)
872 		return -EINVAL;
873 
874 	if (pr->flags.power == 0) {
875 		return -EINVAL;
876 	}
877 
878 	if (!dev)
879 		return -EINVAL;
880 
881 	dev->cpu = pr->id;
882 
883 	if (max_cstate == 0)
884 		max_cstate = 1;
885 
886 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
887 		cx = &pr->power.states[i];
888 
889 		if (!cx->valid)
890 			continue;
891 
892 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
893 
894 		count++;
895 		if (count == CPUIDLE_STATE_MAX)
896 			break;
897 	}
898 
899 	if (!count)
900 		return -EINVAL;
901 
902 	return 0;
903 }
904 
905 /**
906  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
907  * global state data i.e. idle routines
908  *
909  * @pr: the ACPI processor
910  */
911 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
912 {
913 	int i, count = CPUIDLE_DRIVER_STATE_START;
914 	struct acpi_processor_cx *cx;
915 	struct cpuidle_state *state;
916 	struct cpuidle_driver *drv = &acpi_idle_driver;
917 
918 	if (!pr->flags.power_setup_done)
919 		return -EINVAL;
920 
921 	if (pr->flags.power == 0)
922 		return -EINVAL;
923 
924 	drv->safe_state_index = -1;
925 	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
926 		drv->states[i].name[0] = '\0';
927 		drv->states[i].desc[0] = '\0';
928 	}
929 
930 	if (max_cstate == 0)
931 		max_cstate = 1;
932 
933 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
934 		cx = &pr->power.states[i];
935 
936 		if (!cx->valid)
937 			continue;
938 
939 		state = &drv->states[count];
940 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
941 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
942 		state->exit_latency = cx->latency;
943 		state->target_residency = cx->latency * latency_factor;
944 		state->enter = acpi_idle_enter;
945 
946 		state->flags = 0;
947 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
948 			state->enter_dead = acpi_idle_play_dead;
949 			drv->safe_state_index = count;
950 		}
951 		/*
952 		 * Halt-induced C1 is not good for ->enter_freeze, because it
953 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
954 		 * particularly interesting from the suspend-to-idle angle, so
955 		 * avoid C1 and the situations in which we may need to fall back
956 		 * to it altogether.
957 		 */
958 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
959 			state->enter_freeze = acpi_idle_enter_freeze;
960 
961 		count++;
962 		if (count == CPUIDLE_STATE_MAX)
963 			break;
964 	}
965 
966 	drv->state_count = count;
967 
968 	if (!count)
969 		return -EINVAL;
970 
971 	return 0;
972 }
973 
974 int acpi_processor_hotplug(struct acpi_processor *pr)
975 {
976 	int ret = 0;
977 	struct cpuidle_device *dev;
978 
979 	if (disabled_by_idle_boot_param())
980 		return 0;
981 
982 	if (nocst)
983 		return -ENODEV;
984 
985 	if (!pr->flags.power_setup_done)
986 		return -ENODEV;
987 
988 	dev = per_cpu(acpi_cpuidle_device, pr->id);
989 	cpuidle_pause_and_lock();
990 	cpuidle_disable_device(dev);
991 	acpi_processor_get_power_info(pr);
992 	if (pr->flags.power) {
993 		acpi_processor_setup_cpuidle_cx(pr, dev);
994 		ret = cpuidle_enable_device(dev);
995 	}
996 	cpuidle_resume_and_unlock();
997 
998 	return ret;
999 }
1000 
1001 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1002 {
1003 	int cpu;
1004 	struct acpi_processor *_pr;
1005 	struct cpuidle_device *dev;
1006 
1007 	if (disabled_by_idle_boot_param())
1008 		return 0;
1009 
1010 	if (nocst)
1011 		return -ENODEV;
1012 
1013 	if (!pr->flags.power_setup_done)
1014 		return -ENODEV;
1015 
1016 	/*
1017 	 * FIXME:  Design the ACPI notification to make it once per
1018 	 * system instead of once per-cpu.  This condition is a hack
1019 	 * to make the code that updates C-States be called once.
1020 	 */
1021 
1022 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1023 
1024 		/* Protect against cpu-hotplug */
1025 		get_online_cpus();
1026 		cpuidle_pause_and_lock();
1027 
1028 		/* Disable all cpuidle devices */
1029 		for_each_online_cpu(cpu) {
1030 			_pr = per_cpu(processors, cpu);
1031 			if (!_pr || !_pr->flags.power_setup_done)
1032 				continue;
1033 			dev = per_cpu(acpi_cpuidle_device, cpu);
1034 			cpuidle_disable_device(dev);
1035 		}
1036 
1037 		/* Populate Updated C-state information */
1038 		acpi_processor_get_power_info(pr);
1039 		acpi_processor_setup_cpuidle_states(pr);
1040 
1041 		/* Enable all cpuidle devices */
1042 		for_each_online_cpu(cpu) {
1043 			_pr = per_cpu(processors, cpu);
1044 			if (!_pr || !_pr->flags.power_setup_done)
1045 				continue;
1046 			acpi_processor_get_power_info(_pr);
1047 			if (_pr->flags.power) {
1048 				dev = per_cpu(acpi_cpuidle_device, cpu);
1049 				acpi_processor_setup_cpuidle_cx(_pr, dev);
1050 				cpuidle_enable_device(dev);
1051 			}
1052 		}
1053 		cpuidle_resume_and_unlock();
1054 		put_online_cpus();
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 static int acpi_processor_registered;
1061 
1062 int acpi_processor_power_init(struct acpi_processor *pr)
1063 {
1064 	acpi_status status;
1065 	int retval;
1066 	struct cpuidle_device *dev;
1067 	static int first_run;
1068 
1069 	if (disabled_by_idle_boot_param())
1070 		return 0;
1071 
1072 	if (!first_run) {
1073 		dmi_check_system(processor_power_dmi_table);
1074 		max_cstate = acpi_processor_cstate_check(max_cstate);
1075 		if (max_cstate < ACPI_C_STATES_MAX)
1076 			printk(KERN_NOTICE
1077 			       "ACPI: processor limited to max C-state %d\n",
1078 			       max_cstate);
1079 		first_run++;
1080 	}
1081 
1082 	if (acpi_gbl_FADT.cst_control && !nocst) {
1083 		status =
1084 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1085 		if (ACPI_FAILURE(status)) {
1086 			ACPI_EXCEPTION((AE_INFO, status,
1087 					"Notifying BIOS of _CST ability failed"));
1088 		}
1089 	}
1090 
1091 	acpi_processor_get_power_info(pr);
1092 	pr->flags.power_setup_done = 1;
1093 
1094 	/*
1095 	 * Install the idle handler if processor power management is supported.
1096 	 * Note that we use previously set idle handler will be used on
1097 	 * platforms that only support C1.
1098 	 */
1099 	if (pr->flags.power) {
1100 		/* Register acpi_idle_driver if not already registered */
1101 		if (!acpi_processor_registered) {
1102 			acpi_processor_setup_cpuidle_states(pr);
1103 			retval = cpuidle_register_driver(&acpi_idle_driver);
1104 			if (retval)
1105 				return retval;
1106 			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1107 					acpi_idle_driver.name);
1108 		}
1109 
1110 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1111 		if (!dev)
1112 			return -ENOMEM;
1113 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1114 
1115 		acpi_processor_setup_cpuidle_cx(pr, dev);
1116 
1117 		/* Register per-cpu cpuidle_device. Cpuidle driver
1118 		 * must already be registered before registering device
1119 		 */
1120 		retval = cpuidle_register_device(dev);
1121 		if (retval) {
1122 			if (acpi_processor_registered == 0)
1123 				cpuidle_unregister_driver(&acpi_idle_driver);
1124 			return retval;
1125 		}
1126 		acpi_processor_registered++;
1127 	}
1128 	return 0;
1129 }
1130 
1131 int acpi_processor_power_exit(struct acpi_processor *pr)
1132 {
1133 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1134 
1135 	if (disabled_by_idle_boot_param())
1136 		return 0;
1137 
1138 	if (pr->flags.power) {
1139 		cpuidle_unregister_device(dev);
1140 		acpi_processor_registered--;
1141 		if (acpi_processor_registered == 0)
1142 			cpuidle_unregister_driver(&acpi_idle_driver);
1143 	}
1144 
1145 	pr->flags.power_setup_done = 0;
1146 	return 0;
1147 }
1148