1 /* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/slab.h> 36 #include <linux/acpi.h> 37 #include <linux/dmi.h> 38 #include <linux/moduleparam.h> 39 #include <linux/sched.h> /* need_resched() */ 40 #include <linux/pm_qos.h> 41 #include <linux/clockchips.h> 42 #include <linux/cpuidle.h> 43 #include <linux/irqflags.h> 44 45 /* 46 * Include the apic definitions for x86 to have the APIC timer related defines 47 * available also for UP (on SMP it gets magically included via linux/smp.h). 48 * asm/acpi.h is not an option, as it would require more include magic. Also 49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 50 */ 51 #ifdef CONFIG_X86 52 #include <asm/apic.h> 53 #endif 54 55 #include <asm/io.h> 56 #include <asm/uaccess.h> 57 58 #include <acpi/acpi_bus.h> 59 #include <acpi/processor.h> 60 #include <asm/processor.h> 61 62 #define PREFIX "ACPI: " 63 64 #define ACPI_PROCESSOR_CLASS "processor" 65 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 66 ACPI_MODULE_NAME("processor_idle"); 67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY) 68 #define C2_OVERHEAD 1 /* 1us */ 69 #define C3_OVERHEAD 1 /* 1us */ 70 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) 71 72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; 73 module_param(max_cstate, uint, 0000); 74 static unsigned int nocst __read_mostly; 75 module_param(nocst, uint, 0000); 76 static int bm_check_disable __read_mostly; 77 module_param(bm_check_disable, uint, 0000); 78 79 static unsigned int latency_factor __read_mostly = 2; 80 module_param(latency_factor, uint, 0644); 81 82 static int disabled_by_idle_boot_param(void) 83 { 84 return boot_option_idle_override == IDLE_POLL || 85 boot_option_idle_override == IDLE_FORCE_MWAIT || 86 boot_option_idle_override == IDLE_HALT; 87 } 88 89 /* 90 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 91 * For now disable this. Probably a bug somewhere else. 92 * 93 * To skip this limit, boot/load with a large max_cstate limit. 94 */ 95 static int set_max_cstate(const struct dmi_system_id *id) 96 { 97 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 98 return 0; 99 100 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 101 " Override with \"processor.max_cstate=%d\"\n", id->ident, 102 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 103 104 max_cstate = (long)id->driver_data; 105 106 return 0; 107 } 108 109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the 110 callers to only run once -AK */ 111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 112 { set_max_cstate, "Clevo 5600D", { 113 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 114 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 115 (void *)2}, 116 { set_max_cstate, "Pavilion zv5000", { 117 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 118 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")}, 119 (void *)1}, 120 { set_max_cstate, "Asus L8400B", { 121 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), 122 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")}, 123 (void *)1}, 124 {}, 125 }; 126 127 128 /* 129 * Callers should disable interrupts before the call and enable 130 * interrupts after return. 131 */ 132 static void acpi_safe_halt(void) 133 { 134 current_thread_info()->status &= ~TS_POLLING; 135 /* 136 * TS_POLLING-cleared state must be visible before we 137 * test NEED_RESCHED: 138 */ 139 smp_mb(); 140 if (!need_resched()) { 141 safe_halt(); 142 local_irq_disable(); 143 } 144 current_thread_info()->status |= TS_POLLING; 145 } 146 147 #ifdef ARCH_APICTIMER_STOPS_ON_C3 148 149 /* 150 * Some BIOS implementations switch to C3 in the published C2 state. 151 * This seems to be a common problem on AMD boxen, but other vendors 152 * are affected too. We pick the most conservative approach: we assume 153 * that the local APIC stops in both C2 and C3. 154 */ 155 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 156 struct acpi_processor_cx *cx) 157 { 158 struct acpi_processor_power *pwr = &pr->power; 159 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 160 161 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) 162 return; 163 164 if (amd_e400_c1e_detected) 165 type = ACPI_STATE_C1; 166 167 /* 168 * Check, if one of the previous states already marked the lapic 169 * unstable 170 */ 171 if (pwr->timer_broadcast_on_state < state) 172 return; 173 174 if (cx->type >= type) 175 pr->power.timer_broadcast_on_state = state; 176 } 177 178 static void __lapic_timer_propagate_broadcast(void *arg) 179 { 180 struct acpi_processor *pr = (struct acpi_processor *) arg; 181 unsigned long reason; 182 183 reason = pr->power.timer_broadcast_on_state < INT_MAX ? 184 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; 185 186 clockevents_notify(reason, &pr->id); 187 } 188 189 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) 190 { 191 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, 192 (void *)pr, 1); 193 } 194 195 /* Power(C) State timer broadcast control */ 196 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 197 struct acpi_processor_cx *cx, 198 int broadcast) 199 { 200 int state = cx - pr->power.states; 201 202 if (state >= pr->power.timer_broadcast_on_state) { 203 unsigned long reason; 204 205 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : 206 CLOCK_EVT_NOTIFY_BROADCAST_EXIT; 207 clockevents_notify(reason, &pr->id); 208 } 209 } 210 211 #else 212 213 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 214 struct acpi_processor_cx *cstate) { } 215 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } 216 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 217 struct acpi_processor_cx *cx, 218 int broadcast) 219 { 220 } 221 222 #endif 223 224 /* 225 * Suspend / resume control 226 */ 227 static u32 saved_bm_rld; 228 229 static void acpi_idle_bm_rld_save(void) 230 { 231 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); 232 } 233 static void acpi_idle_bm_rld_restore(void) 234 { 235 u32 resumed_bm_rld; 236 237 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); 238 239 if (resumed_bm_rld != saved_bm_rld) 240 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); 241 } 242 243 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) 244 { 245 acpi_idle_bm_rld_save(); 246 return 0; 247 } 248 249 int acpi_processor_resume(struct acpi_device * device) 250 { 251 acpi_idle_bm_rld_restore(); 252 return 0; 253 } 254 255 #if defined(CONFIG_X86) 256 static void tsc_check_state(int state) 257 { 258 switch (boot_cpu_data.x86_vendor) { 259 case X86_VENDOR_AMD: 260 case X86_VENDOR_INTEL: 261 /* 262 * AMD Fam10h TSC will tick in all 263 * C/P/S0/S1 states when this bit is set. 264 */ 265 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 266 return; 267 268 /*FALL THROUGH*/ 269 default: 270 /* TSC could halt in idle, so notify users */ 271 if (state > ACPI_STATE_C1) 272 mark_tsc_unstable("TSC halts in idle"); 273 } 274 } 275 #else 276 static void tsc_check_state(int state) { return; } 277 #endif 278 279 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 280 { 281 282 if (!pr) 283 return -EINVAL; 284 285 if (!pr->pblk) 286 return -ENODEV; 287 288 /* if info is obtained from pblk/fadt, type equals state */ 289 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 290 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 291 292 #ifndef CONFIG_HOTPLUG_CPU 293 /* 294 * Check for P_LVL2_UP flag before entering C2 and above on 295 * an SMP system. 296 */ 297 if ((num_online_cpus() > 1) && 298 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 299 return -ENODEV; 300 #endif 301 302 /* determine C2 and C3 address from pblk */ 303 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 304 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 305 306 /* determine latencies from FADT */ 307 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; 308 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; 309 310 /* 311 * FADT specified C2 latency must be less than or equal to 312 * 100 microseconds. 313 */ 314 if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 315 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 316 "C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency)); 317 /* invalidate C2 */ 318 pr->power.states[ACPI_STATE_C2].address = 0; 319 } 320 321 /* 322 * FADT supplied C3 latency must be less than or equal to 323 * 1000 microseconds. 324 */ 325 if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 326 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 327 "C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency)); 328 /* invalidate C3 */ 329 pr->power.states[ACPI_STATE_C3].address = 0; 330 } 331 332 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 333 "lvl2[0x%08x] lvl3[0x%08x]\n", 334 pr->power.states[ACPI_STATE_C2].address, 335 pr->power.states[ACPI_STATE_C3].address)); 336 337 return 0; 338 } 339 340 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 341 { 342 if (!pr->power.states[ACPI_STATE_C1].valid) { 343 /* set the first C-State to C1 */ 344 /* all processors need to support C1 */ 345 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 346 pr->power.states[ACPI_STATE_C1].valid = 1; 347 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; 348 } 349 /* the C0 state only exists as a filler in our array */ 350 pr->power.states[ACPI_STATE_C0].valid = 1; 351 return 0; 352 } 353 354 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 355 { 356 acpi_status status = 0; 357 u64 count; 358 int current_count; 359 int i; 360 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 361 union acpi_object *cst; 362 363 364 if (nocst) 365 return -ENODEV; 366 367 current_count = 0; 368 369 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 370 if (ACPI_FAILURE(status)) { 371 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 372 return -ENODEV; 373 } 374 375 cst = buffer.pointer; 376 377 /* There must be at least 2 elements */ 378 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 379 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 380 status = -EFAULT; 381 goto end; 382 } 383 384 count = cst->package.elements[0].integer.value; 385 386 /* Validate number of power states. */ 387 if (count < 1 || count != cst->package.count - 1) { 388 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 389 status = -EFAULT; 390 goto end; 391 } 392 393 /* Tell driver that at least _CST is supported. */ 394 pr->flags.has_cst = 1; 395 396 for (i = 1; i <= count; i++) { 397 union acpi_object *element; 398 union acpi_object *obj; 399 struct acpi_power_register *reg; 400 struct acpi_processor_cx cx; 401 402 memset(&cx, 0, sizeof(cx)); 403 404 element = &(cst->package.elements[i]); 405 if (element->type != ACPI_TYPE_PACKAGE) 406 continue; 407 408 if (element->package.count != 4) 409 continue; 410 411 obj = &(element->package.elements[0]); 412 413 if (obj->type != ACPI_TYPE_BUFFER) 414 continue; 415 416 reg = (struct acpi_power_register *)obj->buffer.pointer; 417 418 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 419 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 420 continue; 421 422 /* There should be an easy way to extract an integer... */ 423 obj = &(element->package.elements[1]); 424 if (obj->type != ACPI_TYPE_INTEGER) 425 continue; 426 427 cx.type = obj->integer.value; 428 /* 429 * Some buggy BIOSes won't list C1 in _CST - 430 * Let acpi_processor_get_power_info_default() handle them later 431 */ 432 if (i == 1 && cx.type != ACPI_STATE_C1) 433 current_count++; 434 435 cx.address = reg->address; 436 cx.index = current_count + 1; 437 438 cx.entry_method = ACPI_CSTATE_SYSTEMIO; 439 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 440 if (acpi_processor_ffh_cstate_probe 441 (pr->id, &cx, reg) == 0) { 442 cx.entry_method = ACPI_CSTATE_FFH; 443 } else if (cx.type == ACPI_STATE_C1) { 444 /* 445 * C1 is a special case where FIXED_HARDWARE 446 * can be handled in non-MWAIT way as well. 447 * In that case, save this _CST entry info. 448 * Otherwise, ignore this info and continue. 449 */ 450 cx.entry_method = ACPI_CSTATE_HALT; 451 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 452 } else { 453 continue; 454 } 455 if (cx.type == ACPI_STATE_C1 && 456 (boot_option_idle_override == IDLE_NOMWAIT)) { 457 /* 458 * In most cases the C1 space_id obtained from 459 * _CST object is FIXED_HARDWARE access mode. 460 * But when the option of idle=halt is added, 461 * the entry_method type should be changed from 462 * CSTATE_FFH to CSTATE_HALT. 463 * When the option of idle=nomwait is added, 464 * the C1 entry_method type should be 465 * CSTATE_HALT. 466 */ 467 cx.entry_method = ACPI_CSTATE_HALT; 468 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 469 } 470 } else { 471 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", 472 cx.address); 473 } 474 475 if (cx.type == ACPI_STATE_C1) { 476 cx.valid = 1; 477 } 478 479 obj = &(element->package.elements[2]); 480 if (obj->type != ACPI_TYPE_INTEGER) 481 continue; 482 483 cx.latency = obj->integer.value; 484 485 obj = &(element->package.elements[3]); 486 if (obj->type != ACPI_TYPE_INTEGER) 487 continue; 488 489 cx.power = obj->integer.value; 490 491 current_count++; 492 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 493 494 /* 495 * We support total ACPI_PROCESSOR_MAX_POWER - 1 496 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 497 */ 498 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 499 printk(KERN_WARNING 500 "Limiting number of power states to max (%d)\n", 501 ACPI_PROCESSOR_MAX_POWER); 502 printk(KERN_WARNING 503 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 504 break; 505 } 506 } 507 508 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 509 current_count)); 510 511 /* Validate number of power states discovered */ 512 if (current_count < 2) 513 status = -EFAULT; 514 515 end: 516 kfree(buffer.pointer); 517 518 return status; 519 } 520 521 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 522 struct acpi_processor_cx *cx) 523 { 524 static int bm_check_flag = -1; 525 static int bm_control_flag = -1; 526 527 528 if (!cx->address) 529 return; 530 531 /* 532 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 533 * DMA transfers are used by any ISA device to avoid livelock. 534 * Note that we could disable Type-F DMA (as recommended by 535 * the erratum), but this is known to disrupt certain ISA 536 * devices thus we take the conservative approach. 537 */ 538 else if (errata.piix4.fdma) { 539 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 540 "C3 not supported on PIIX4 with Type-F DMA\n")); 541 return; 542 } 543 544 /* All the logic here assumes flags.bm_check is same across all CPUs */ 545 if (bm_check_flag == -1) { 546 /* Determine whether bm_check is needed based on CPU */ 547 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 548 bm_check_flag = pr->flags.bm_check; 549 bm_control_flag = pr->flags.bm_control; 550 } else { 551 pr->flags.bm_check = bm_check_flag; 552 pr->flags.bm_control = bm_control_flag; 553 } 554 555 if (pr->flags.bm_check) { 556 if (!pr->flags.bm_control) { 557 if (pr->flags.has_cst != 1) { 558 /* bus mastering control is necessary */ 559 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 560 "C3 support requires BM control\n")); 561 return; 562 } else { 563 /* Here we enter C3 without bus mastering */ 564 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 565 "C3 support without BM control\n")); 566 } 567 } 568 } else { 569 /* 570 * WBINVD should be set in fadt, for C3 state to be 571 * supported on when bm_check is not required. 572 */ 573 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 574 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 575 "Cache invalidation should work properly" 576 " for C3 to be enabled on SMP systems\n")); 577 return; 578 } 579 } 580 581 /* 582 * Otherwise we've met all of our C3 requirements. 583 * Normalize the C3 latency to expidite policy. Enable 584 * checking of bus mastering status (bm_check) so we can 585 * use this in our C3 policy 586 */ 587 cx->valid = 1; 588 589 cx->latency_ticks = cx->latency; 590 /* 591 * On older chipsets, BM_RLD needs to be set 592 * in order for Bus Master activity to wake the 593 * system from C3. Newer chipsets handle DMA 594 * during C3 automatically and BM_RLD is a NOP. 595 * In either case, the proper way to 596 * handle BM_RLD is to set it and leave it set. 597 */ 598 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 599 600 return; 601 } 602 603 static int acpi_processor_power_verify(struct acpi_processor *pr) 604 { 605 unsigned int i; 606 unsigned int working = 0; 607 608 pr->power.timer_broadcast_on_state = INT_MAX; 609 610 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 611 struct acpi_processor_cx *cx = &pr->power.states[i]; 612 613 switch (cx->type) { 614 case ACPI_STATE_C1: 615 cx->valid = 1; 616 break; 617 618 case ACPI_STATE_C2: 619 if (!cx->address) 620 break; 621 cx->valid = 1; 622 cx->latency_ticks = cx->latency; /* Normalize latency */ 623 break; 624 625 case ACPI_STATE_C3: 626 acpi_processor_power_verify_c3(pr, cx); 627 break; 628 } 629 if (!cx->valid) 630 continue; 631 632 lapic_timer_check_state(i, pr, cx); 633 tsc_check_state(cx->type); 634 working++; 635 } 636 637 lapic_timer_propagate_broadcast(pr); 638 639 return (working); 640 } 641 642 static int acpi_processor_get_power_info(struct acpi_processor *pr) 643 { 644 unsigned int i; 645 int result; 646 647 648 /* NOTE: the idle thread may not be running while calling 649 * this function */ 650 651 /* Zero initialize all the C-states info. */ 652 memset(pr->power.states, 0, sizeof(pr->power.states)); 653 654 result = acpi_processor_get_power_info_cst(pr); 655 if (result == -ENODEV) 656 result = acpi_processor_get_power_info_fadt(pr); 657 658 if (result) 659 return result; 660 661 acpi_processor_get_power_info_default(pr); 662 663 pr->power.count = acpi_processor_power_verify(pr); 664 665 /* 666 * if one state of type C2 or C3 is available, mark this 667 * CPU as being "idle manageable" 668 */ 669 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 670 if (pr->power.states[i].valid) { 671 pr->power.count = i; 672 if (pr->power.states[i].type >= ACPI_STATE_C2) 673 pr->flags.power = 1; 674 } 675 } 676 677 return 0; 678 } 679 680 /** 681 * acpi_idle_bm_check - checks if bus master activity was detected 682 */ 683 static int acpi_idle_bm_check(void) 684 { 685 u32 bm_status = 0; 686 687 if (bm_check_disable) 688 return 0; 689 690 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 691 if (bm_status) 692 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 693 /* 694 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 695 * the true state of bus mastering activity; forcing us to 696 * manually check the BMIDEA bit of each IDE channel. 697 */ 698 else if (errata.piix4.bmisx) { 699 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 700 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 701 bm_status = 1; 702 } 703 return bm_status; 704 } 705 706 /** 707 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry 708 * @cx: cstate data 709 * 710 * Caller disables interrupt before call and enables interrupt after return. 711 */ 712 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) 713 { 714 /* Don't trace irqs off for idle */ 715 stop_critical_timings(); 716 if (cx->entry_method == ACPI_CSTATE_FFH) { 717 /* Call into architectural FFH based C-state */ 718 acpi_processor_ffh_cstate_enter(cx); 719 } else if (cx->entry_method == ACPI_CSTATE_HALT) { 720 acpi_safe_halt(); 721 } else { 722 /* IO port based C-state */ 723 inb(cx->address); 724 /* Dummy wait op - must do something useless after P_LVL2 read 725 because chipsets cannot guarantee that STPCLK# signal 726 gets asserted in time to freeze execution properly. */ 727 inl(acpi_gbl_FADT.xpm_timer_block.address); 728 } 729 start_critical_timings(); 730 } 731 732 /** 733 * acpi_idle_enter_c1 - enters an ACPI C1 state-type 734 * @dev: the target CPU 735 * @drv: cpuidle driver containing cpuidle state info 736 * @index: index of target state 737 * 738 * This is equivalent to the HALT instruction. 739 */ 740 static int acpi_idle_enter_c1(struct cpuidle_device *dev, 741 struct cpuidle_driver *drv, int index) 742 { 743 ktime_t kt1, kt2; 744 s64 idle_time; 745 struct acpi_processor *pr; 746 struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; 747 struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage); 748 749 pr = __this_cpu_read(processors); 750 dev->last_residency = 0; 751 752 if (unlikely(!pr)) 753 return -EINVAL; 754 755 local_irq_disable(); 756 757 lapic_timer_state_broadcast(pr, cx, 1); 758 kt1 = ktime_get_real(); 759 acpi_idle_do_entry(cx); 760 kt2 = ktime_get_real(); 761 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 762 763 /* Update device last_residency*/ 764 dev->last_residency = (int)idle_time; 765 766 local_irq_enable(); 767 cx->usage++; 768 lapic_timer_state_broadcast(pr, cx, 0); 769 770 return index; 771 } 772 773 774 /** 775 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining) 776 * @dev: the target CPU 777 * @index: the index of suggested state 778 */ 779 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index) 780 { 781 struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; 782 struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage); 783 784 ACPI_FLUSH_CPU_CACHE(); 785 786 while (1) { 787 788 if (cx->entry_method == ACPI_CSTATE_HALT) 789 safe_halt(); 790 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) { 791 inb(cx->address); 792 /* See comment in acpi_idle_do_entry() */ 793 inl(acpi_gbl_FADT.xpm_timer_block.address); 794 } else 795 return -ENODEV; 796 } 797 798 /* Never reached */ 799 return 0; 800 } 801 802 /** 803 * acpi_idle_enter_simple - enters an ACPI state without BM handling 804 * @dev: the target CPU 805 * @drv: cpuidle driver with cpuidle state information 806 * @index: the index of suggested state 807 */ 808 static int acpi_idle_enter_simple(struct cpuidle_device *dev, 809 struct cpuidle_driver *drv, int index) 810 { 811 struct acpi_processor *pr; 812 struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; 813 struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage); 814 ktime_t kt1, kt2; 815 s64 idle_time_ns; 816 s64 idle_time; 817 818 pr = __this_cpu_read(processors); 819 dev->last_residency = 0; 820 821 if (unlikely(!pr)) 822 return -EINVAL; 823 824 local_irq_disable(); 825 826 if (cx->entry_method != ACPI_CSTATE_FFH) { 827 current_thread_info()->status &= ~TS_POLLING; 828 /* 829 * TS_POLLING-cleared state must be visible before we test 830 * NEED_RESCHED: 831 */ 832 smp_mb(); 833 834 if (unlikely(need_resched())) { 835 current_thread_info()->status |= TS_POLLING; 836 local_irq_enable(); 837 return -EINVAL; 838 } 839 } 840 841 /* 842 * Must be done before busmaster disable as we might need to 843 * access HPET ! 844 */ 845 lapic_timer_state_broadcast(pr, cx, 1); 846 847 if (cx->type == ACPI_STATE_C3) 848 ACPI_FLUSH_CPU_CACHE(); 849 850 kt1 = ktime_get_real(); 851 /* Tell the scheduler that we are going deep-idle: */ 852 sched_clock_idle_sleep_event(); 853 acpi_idle_do_entry(cx); 854 kt2 = ktime_get_real(); 855 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); 856 idle_time = idle_time_ns; 857 do_div(idle_time, NSEC_PER_USEC); 858 859 /* Update device last_residency*/ 860 dev->last_residency = (int)idle_time; 861 862 /* Tell the scheduler how much we idled: */ 863 sched_clock_idle_wakeup_event(idle_time_ns); 864 865 local_irq_enable(); 866 if (cx->entry_method != ACPI_CSTATE_FFH) 867 current_thread_info()->status |= TS_POLLING; 868 869 cx->usage++; 870 871 lapic_timer_state_broadcast(pr, cx, 0); 872 cx->time += idle_time; 873 return index; 874 } 875 876 static int c3_cpu_count; 877 static DEFINE_RAW_SPINLOCK(c3_lock); 878 879 /** 880 * acpi_idle_enter_bm - enters C3 with proper BM handling 881 * @dev: the target CPU 882 * @drv: cpuidle driver containing state data 883 * @index: the index of suggested state 884 * 885 * If BM is detected, the deepest non-C3 idle state is entered instead. 886 */ 887 static int acpi_idle_enter_bm(struct cpuidle_device *dev, 888 struct cpuidle_driver *drv, int index) 889 { 890 struct acpi_processor *pr; 891 struct cpuidle_state_usage *state_usage = &dev->states_usage[index]; 892 struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage); 893 ktime_t kt1, kt2; 894 s64 idle_time_ns; 895 s64 idle_time; 896 897 898 pr = __this_cpu_read(processors); 899 dev->last_residency = 0; 900 901 if (unlikely(!pr)) 902 return -EINVAL; 903 904 if (!cx->bm_sts_skip && acpi_idle_bm_check()) { 905 if (drv->safe_state_index >= 0) { 906 return drv->states[drv->safe_state_index].enter(dev, 907 drv, drv->safe_state_index); 908 } else { 909 local_irq_disable(); 910 acpi_safe_halt(); 911 local_irq_enable(); 912 return -EINVAL; 913 } 914 } 915 916 local_irq_disable(); 917 918 if (cx->entry_method != ACPI_CSTATE_FFH) { 919 current_thread_info()->status &= ~TS_POLLING; 920 /* 921 * TS_POLLING-cleared state must be visible before we test 922 * NEED_RESCHED: 923 */ 924 smp_mb(); 925 926 if (unlikely(need_resched())) { 927 current_thread_info()->status |= TS_POLLING; 928 local_irq_enable(); 929 return -EINVAL; 930 } 931 } 932 933 acpi_unlazy_tlb(smp_processor_id()); 934 935 /* Tell the scheduler that we are going deep-idle: */ 936 sched_clock_idle_sleep_event(); 937 /* 938 * Must be done before busmaster disable as we might need to 939 * access HPET ! 940 */ 941 lapic_timer_state_broadcast(pr, cx, 1); 942 943 kt1 = ktime_get_real(); 944 /* 945 * disable bus master 946 * bm_check implies we need ARB_DIS 947 * !bm_check implies we need cache flush 948 * bm_control implies whether we can do ARB_DIS 949 * 950 * That leaves a case where bm_check is set and bm_control is 951 * not set. In that case we cannot do much, we enter C3 952 * without doing anything. 953 */ 954 if (pr->flags.bm_check && pr->flags.bm_control) { 955 raw_spin_lock(&c3_lock); 956 c3_cpu_count++; 957 /* Disable bus master arbitration when all CPUs are in C3 */ 958 if (c3_cpu_count == num_online_cpus()) 959 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); 960 raw_spin_unlock(&c3_lock); 961 } else if (!pr->flags.bm_check) { 962 ACPI_FLUSH_CPU_CACHE(); 963 } 964 965 acpi_idle_do_entry(cx); 966 967 /* Re-enable bus master arbitration */ 968 if (pr->flags.bm_check && pr->flags.bm_control) { 969 raw_spin_lock(&c3_lock); 970 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); 971 c3_cpu_count--; 972 raw_spin_unlock(&c3_lock); 973 } 974 kt2 = ktime_get_real(); 975 idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1)); 976 idle_time = idle_time_ns; 977 do_div(idle_time, NSEC_PER_USEC); 978 979 /* Update device last_residency*/ 980 dev->last_residency = (int)idle_time; 981 982 /* Tell the scheduler how much we idled: */ 983 sched_clock_idle_wakeup_event(idle_time_ns); 984 985 local_irq_enable(); 986 if (cx->entry_method != ACPI_CSTATE_FFH) 987 current_thread_info()->status |= TS_POLLING; 988 989 cx->usage++; 990 991 lapic_timer_state_broadcast(pr, cx, 0); 992 cx->time += idle_time; 993 return index; 994 } 995 996 struct cpuidle_driver acpi_idle_driver = { 997 .name = "acpi_idle", 998 .owner = THIS_MODULE, 999 }; 1000 1001 /** 1002 * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE 1003 * device i.e. per-cpu data 1004 * 1005 * @pr: the ACPI processor 1006 */ 1007 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr) 1008 { 1009 int i, count = CPUIDLE_DRIVER_STATE_START; 1010 struct acpi_processor_cx *cx; 1011 struct cpuidle_state_usage *state_usage; 1012 struct cpuidle_device *dev = &pr->power.dev; 1013 1014 if (!pr->flags.power_setup_done) 1015 return -EINVAL; 1016 1017 if (pr->flags.power == 0) { 1018 return -EINVAL; 1019 } 1020 1021 dev->cpu = pr->id; 1022 1023 if (max_cstate == 0) 1024 max_cstate = 1; 1025 1026 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 1027 cx = &pr->power.states[i]; 1028 state_usage = &dev->states_usage[count]; 1029 1030 if (!cx->valid) 1031 continue; 1032 1033 #ifdef CONFIG_HOTPLUG_CPU 1034 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 1035 !pr->flags.has_cst && 1036 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 1037 continue; 1038 #endif 1039 1040 cpuidle_set_statedata(state_usage, cx); 1041 1042 count++; 1043 if (count == CPUIDLE_STATE_MAX) 1044 break; 1045 } 1046 1047 dev->state_count = count; 1048 1049 if (!count) 1050 return -EINVAL; 1051 1052 return 0; 1053 } 1054 1055 /** 1056 * acpi_processor_setup_cpuidle states- prepares and configures cpuidle 1057 * global state data i.e. idle routines 1058 * 1059 * @pr: the ACPI processor 1060 */ 1061 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr) 1062 { 1063 int i, count = CPUIDLE_DRIVER_STATE_START; 1064 struct acpi_processor_cx *cx; 1065 struct cpuidle_state *state; 1066 struct cpuidle_driver *drv = &acpi_idle_driver; 1067 1068 if (!pr->flags.power_setup_done) 1069 return -EINVAL; 1070 1071 if (pr->flags.power == 0) 1072 return -EINVAL; 1073 1074 drv->safe_state_index = -1; 1075 for (i = 0; i < CPUIDLE_STATE_MAX; i++) { 1076 drv->states[i].name[0] = '\0'; 1077 drv->states[i].desc[0] = '\0'; 1078 } 1079 1080 if (max_cstate == 0) 1081 max_cstate = 1; 1082 1083 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 1084 cx = &pr->power.states[i]; 1085 1086 if (!cx->valid) 1087 continue; 1088 1089 #ifdef CONFIG_HOTPLUG_CPU 1090 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 1091 !pr->flags.has_cst && 1092 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 1093 continue; 1094 #endif 1095 1096 state = &drv->states[count]; 1097 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); 1098 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); 1099 state->exit_latency = cx->latency; 1100 state->target_residency = cx->latency * latency_factor; 1101 1102 state->flags = 0; 1103 switch (cx->type) { 1104 case ACPI_STATE_C1: 1105 if (cx->entry_method == ACPI_CSTATE_FFH) 1106 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1107 1108 state->enter = acpi_idle_enter_c1; 1109 state->enter_dead = acpi_idle_play_dead; 1110 drv->safe_state_index = count; 1111 break; 1112 1113 case ACPI_STATE_C2: 1114 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1115 state->enter = acpi_idle_enter_simple; 1116 state->enter_dead = acpi_idle_play_dead; 1117 drv->safe_state_index = count; 1118 break; 1119 1120 case ACPI_STATE_C3: 1121 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1122 state->enter = pr->flags.bm_check ? 1123 acpi_idle_enter_bm : 1124 acpi_idle_enter_simple; 1125 break; 1126 } 1127 1128 count++; 1129 if (count == CPUIDLE_STATE_MAX) 1130 break; 1131 } 1132 1133 drv->state_count = count; 1134 1135 if (!count) 1136 return -EINVAL; 1137 1138 return 0; 1139 } 1140 1141 int acpi_processor_hotplug(struct acpi_processor *pr) 1142 { 1143 int ret = 0; 1144 1145 if (disabled_by_idle_boot_param()) 1146 return 0; 1147 1148 if (!pr) 1149 return -EINVAL; 1150 1151 if (nocst) { 1152 return -ENODEV; 1153 } 1154 1155 if (!pr->flags.power_setup_done) 1156 return -ENODEV; 1157 1158 cpuidle_pause_and_lock(); 1159 cpuidle_disable_device(&pr->power.dev); 1160 acpi_processor_get_power_info(pr); 1161 if (pr->flags.power) { 1162 acpi_processor_setup_cpuidle_cx(pr); 1163 ret = cpuidle_enable_device(&pr->power.dev); 1164 } 1165 cpuidle_resume_and_unlock(); 1166 1167 return ret; 1168 } 1169 1170 int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1171 { 1172 int cpu; 1173 struct acpi_processor *_pr; 1174 1175 if (disabled_by_idle_boot_param()) 1176 return 0; 1177 1178 if (!pr) 1179 return -EINVAL; 1180 1181 if (nocst) 1182 return -ENODEV; 1183 1184 if (!pr->flags.power_setup_done) 1185 return -ENODEV; 1186 1187 /* 1188 * FIXME: Design the ACPI notification to make it once per 1189 * system instead of once per-cpu. This condition is a hack 1190 * to make the code that updates C-States be called once. 1191 */ 1192 1193 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) { 1194 1195 cpuidle_pause_and_lock(); 1196 /* Protect against cpu-hotplug */ 1197 get_online_cpus(); 1198 1199 /* Disable all cpuidle devices */ 1200 for_each_online_cpu(cpu) { 1201 _pr = per_cpu(processors, cpu); 1202 if (!_pr || !_pr->flags.power_setup_done) 1203 continue; 1204 cpuidle_disable_device(&_pr->power.dev); 1205 } 1206 1207 /* Populate Updated C-state information */ 1208 acpi_processor_setup_cpuidle_states(pr); 1209 1210 /* Enable all cpuidle devices */ 1211 for_each_online_cpu(cpu) { 1212 _pr = per_cpu(processors, cpu); 1213 if (!_pr || !_pr->flags.power_setup_done) 1214 continue; 1215 acpi_processor_get_power_info(_pr); 1216 if (_pr->flags.power) { 1217 acpi_processor_setup_cpuidle_cx(_pr); 1218 cpuidle_enable_device(&_pr->power.dev); 1219 } 1220 } 1221 put_online_cpus(); 1222 cpuidle_resume_and_unlock(); 1223 } 1224 1225 return 0; 1226 } 1227 1228 static int acpi_processor_registered; 1229 1230 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1231 struct acpi_device *device) 1232 { 1233 acpi_status status = 0; 1234 int retval; 1235 static int first_run; 1236 1237 if (disabled_by_idle_boot_param()) 1238 return 0; 1239 1240 if (!first_run) { 1241 dmi_check_system(processor_power_dmi_table); 1242 max_cstate = acpi_processor_cstate_check(max_cstate); 1243 if (max_cstate < ACPI_C_STATES_MAX) 1244 printk(KERN_NOTICE 1245 "ACPI: processor limited to max C-state %d\n", 1246 max_cstate); 1247 first_run++; 1248 } 1249 1250 if (!pr) 1251 return -EINVAL; 1252 1253 if (acpi_gbl_FADT.cst_control && !nocst) { 1254 status = 1255 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); 1256 if (ACPI_FAILURE(status)) { 1257 ACPI_EXCEPTION((AE_INFO, status, 1258 "Notifying BIOS of _CST ability failed")); 1259 } 1260 } 1261 1262 acpi_processor_get_power_info(pr); 1263 pr->flags.power_setup_done = 1; 1264 1265 /* 1266 * Install the idle handler if processor power management is supported. 1267 * Note that we use previously set idle handler will be used on 1268 * platforms that only support C1. 1269 */ 1270 if (pr->flags.power) { 1271 /* Register acpi_idle_driver if not already registered */ 1272 if (!acpi_processor_registered) { 1273 acpi_processor_setup_cpuidle_states(pr); 1274 retval = cpuidle_register_driver(&acpi_idle_driver); 1275 if (retval) 1276 return retval; 1277 printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n", 1278 acpi_idle_driver.name); 1279 } 1280 /* Register per-cpu cpuidle_device. Cpuidle driver 1281 * must already be registered before registering device 1282 */ 1283 acpi_processor_setup_cpuidle_cx(pr); 1284 retval = cpuidle_register_device(&pr->power.dev); 1285 if (retval) { 1286 if (acpi_processor_registered == 0) 1287 cpuidle_unregister_driver(&acpi_idle_driver); 1288 return retval; 1289 } 1290 acpi_processor_registered++; 1291 } 1292 return 0; 1293 } 1294 1295 int acpi_processor_power_exit(struct acpi_processor *pr, 1296 struct acpi_device *device) 1297 { 1298 if (disabled_by_idle_boot_param()) 1299 return 0; 1300 1301 if (pr->flags.power) { 1302 cpuidle_unregister_device(&pr->power.dev); 1303 acpi_processor_registered--; 1304 if (acpi_processor_registered == 0) 1305 cpuidle_unregister_driver(&acpi_idle_driver); 1306 } 1307 1308 pr->flags.power_setup_done = 0; 1309 return 0; 1310 } 1311