xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <acpi/processor.h>
25 
26 /*
27  * Include the apic definitions for x86 to have the APIC timer related defines
28  * available also for UP (on SMP it gets magically included via linux/smp.h).
29  * asm/acpi.h is not an option, as it would require more include magic. Also
30  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
31  */
32 #ifdef CONFIG_X86
33 #include <asm/apic.h>
34 #include <asm/cpu.h>
35 #endif
36 
37 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
38 
39 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
40 module_param(max_cstate, uint, 0000);
41 static unsigned int nocst __read_mostly;
42 module_param(nocst, uint, 0000);
43 static int bm_check_disable __read_mostly;
44 module_param(bm_check_disable, uint, 0000);
45 
46 static unsigned int latency_factor __read_mostly = 2;
47 module_param(latency_factor, uint, 0644);
48 
49 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
50 
51 struct cpuidle_driver acpi_idle_driver = {
52 	.name =		"acpi_idle",
53 	.owner =	THIS_MODULE,
54 };
55 
56 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
57 static
58 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
59 
60 static int disabled_by_idle_boot_param(void)
61 {
62 	return boot_option_idle_override == IDLE_POLL ||
63 		boot_option_idle_override == IDLE_HALT;
64 }
65 
66 /*
67  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
68  * For now disable this. Probably a bug somewhere else.
69  *
70  * To skip this limit, boot/load with a large max_cstate limit.
71  */
72 static int set_max_cstate(const struct dmi_system_id *id)
73 {
74 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
75 		return 0;
76 
77 	pr_notice("%s detected - limiting to C%ld max_cstate."
78 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
79 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
80 
81 	max_cstate = (long)id->driver_data;
82 
83 	return 0;
84 }
85 
86 static const struct dmi_system_id processor_power_dmi_table[] = {
87 	{ set_max_cstate, "Clevo 5600D", {
88 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
89 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
90 	 (void *)2},
91 	{ set_max_cstate, "Pavilion zv5000", {
92 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
93 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
94 	 (void *)1},
95 	{ set_max_cstate, "Asus L8400B", {
96 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
97 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
98 	 (void *)1},
99 	{},
100 };
101 
102 
103 /*
104  * Callers should disable interrupts before the call and enable
105  * interrupts after return.
106  */
107 static void __cpuidle acpi_safe_halt(void)
108 {
109 	if (!tif_need_resched()) {
110 		safe_halt();
111 		local_irq_disable();
112 	}
113 }
114 
115 #ifdef ARCH_APICTIMER_STOPS_ON_C3
116 
117 /*
118  * Some BIOS implementations switch to C3 in the published C2 state.
119  * This seems to be a common problem on AMD boxen, but other vendors
120  * are affected too. We pick the most conservative approach: we assume
121  * that the local APIC stops in both C2 and C3.
122  */
123 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
124 				   struct acpi_processor_cx *cx)
125 {
126 	struct acpi_processor_power *pwr = &pr->power;
127 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
128 
129 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
130 		return;
131 
132 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
133 		type = ACPI_STATE_C1;
134 
135 	/*
136 	 * Check, if one of the previous states already marked the lapic
137 	 * unstable
138 	 */
139 	if (pwr->timer_broadcast_on_state < state)
140 		return;
141 
142 	if (cx->type >= type)
143 		pr->power.timer_broadcast_on_state = state;
144 }
145 
146 static void __lapic_timer_propagate_broadcast(void *arg)
147 {
148 	struct acpi_processor *pr = (struct acpi_processor *) arg;
149 
150 	if (pr->power.timer_broadcast_on_state < INT_MAX)
151 		tick_broadcast_enable();
152 	else
153 		tick_broadcast_disable();
154 }
155 
156 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
157 {
158 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
159 				 (void *)pr, 1);
160 }
161 
162 /* Power(C) State timer broadcast control */
163 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
164 					struct acpi_processor_cx *cx)
165 {
166 	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
167 }
168 
169 #else
170 
171 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
172 				   struct acpi_processor_cx *cstate) { }
173 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
174 
175 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
176 					struct acpi_processor_cx *cx)
177 {
178 	return false;
179 }
180 
181 #endif
182 
183 #if defined(CONFIG_X86)
184 static void tsc_check_state(int state)
185 {
186 	switch (boot_cpu_data.x86_vendor) {
187 	case X86_VENDOR_HYGON:
188 	case X86_VENDOR_AMD:
189 	case X86_VENDOR_INTEL:
190 	case X86_VENDOR_CENTAUR:
191 	case X86_VENDOR_ZHAOXIN:
192 		/*
193 		 * AMD Fam10h TSC will tick in all
194 		 * C/P/S0/S1 states when this bit is set.
195 		 */
196 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
197 			return;
198 		fallthrough;
199 	default:
200 		/* TSC could halt in idle, so notify users */
201 		if (state > ACPI_STATE_C1)
202 			mark_tsc_unstable("TSC halts in idle");
203 	}
204 }
205 #else
206 static void tsc_check_state(int state) { return; }
207 #endif
208 
209 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
210 {
211 
212 	if (!pr->pblk)
213 		return -ENODEV;
214 
215 	/* if info is obtained from pblk/fadt, type equals state */
216 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
217 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
218 
219 #ifndef CONFIG_HOTPLUG_CPU
220 	/*
221 	 * Check for P_LVL2_UP flag before entering C2 and above on
222 	 * an SMP system.
223 	 */
224 	if ((num_online_cpus() > 1) &&
225 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
226 		return -ENODEV;
227 #endif
228 
229 	/* determine C2 and C3 address from pblk */
230 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
231 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
232 
233 	/* determine latencies from FADT */
234 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
235 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
236 
237 	/*
238 	 * FADT specified C2 latency must be less than or equal to
239 	 * 100 microseconds.
240 	 */
241 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
242 		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
243 				  acpi_gbl_FADT.c2_latency);
244 		/* invalidate C2 */
245 		pr->power.states[ACPI_STATE_C2].address = 0;
246 	}
247 
248 	/*
249 	 * FADT supplied C3 latency must be less than or equal to
250 	 * 1000 microseconds.
251 	 */
252 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
253 		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
254 				  acpi_gbl_FADT.c3_latency);
255 		/* invalidate C3 */
256 		pr->power.states[ACPI_STATE_C3].address = 0;
257 	}
258 
259 	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
260 			  pr->power.states[ACPI_STATE_C2].address,
261 			  pr->power.states[ACPI_STATE_C3].address);
262 
263 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
264 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
265 			 pr->power.states[ACPI_STATE_C2].address);
266 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
267 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
268 			 pr->power.states[ACPI_STATE_C3].address);
269 
270 	return 0;
271 }
272 
273 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
274 {
275 	if (!pr->power.states[ACPI_STATE_C1].valid) {
276 		/* set the first C-State to C1 */
277 		/* all processors need to support C1 */
278 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
279 		pr->power.states[ACPI_STATE_C1].valid = 1;
280 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
281 
282 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
283 			 ACPI_CX_DESC_LEN, "ACPI HLT");
284 	}
285 	/* the C0 state only exists as a filler in our array */
286 	pr->power.states[ACPI_STATE_C0].valid = 1;
287 	return 0;
288 }
289 
290 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
291 {
292 	int ret;
293 
294 	if (nocst)
295 		return -ENODEV;
296 
297 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
298 	if (ret)
299 		return ret;
300 
301 	if (!pr->power.count)
302 		return -EFAULT;
303 
304 	pr->flags.has_cst = 1;
305 	return 0;
306 }
307 
308 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
309 					   struct acpi_processor_cx *cx)
310 {
311 	static int bm_check_flag = -1;
312 	static int bm_control_flag = -1;
313 
314 
315 	if (!cx->address)
316 		return;
317 
318 	/*
319 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
320 	 * DMA transfers are used by any ISA device to avoid livelock.
321 	 * Note that we could disable Type-F DMA (as recommended by
322 	 * the erratum), but this is known to disrupt certain ISA
323 	 * devices thus we take the conservative approach.
324 	 */
325 	else if (errata.piix4.fdma) {
326 		acpi_handle_debug(pr->handle,
327 				  "C3 not supported on PIIX4 with Type-F DMA\n");
328 		return;
329 	}
330 
331 	/* All the logic here assumes flags.bm_check is same across all CPUs */
332 	if (bm_check_flag == -1) {
333 		/* Determine whether bm_check is needed based on CPU  */
334 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
335 		bm_check_flag = pr->flags.bm_check;
336 		bm_control_flag = pr->flags.bm_control;
337 	} else {
338 		pr->flags.bm_check = bm_check_flag;
339 		pr->flags.bm_control = bm_control_flag;
340 	}
341 
342 	if (pr->flags.bm_check) {
343 		if (!pr->flags.bm_control) {
344 			if (pr->flags.has_cst != 1) {
345 				/* bus mastering control is necessary */
346 				acpi_handle_debug(pr->handle,
347 						  "C3 support requires BM control\n");
348 				return;
349 			} else {
350 				/* Here we enter C3 without bus mastering */
351 				acpi_handle_debug(pr->handle,
352 						  "C3 support without BM control\n");
353 			}
354 		}
355 	} else {
356 		/*
357 		 * WBINVD should be set in fadt, for C3 state to be
358 		 * supported on when bm_check is not required.
359 		 */
360 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
361 			acpi_handle_debug(pr->handle,
362 					  "Cache invalidation should work properly"
363 					  " for C3 to be enabled on SMP systems\n");
364 			return;
365 		}
366 	}
367 
368 	/*
369 	 * Otherwise we've met all of our C3 requirements.
370 	 * Normalize the C3 latency to expidite policy.  Enable
371 	 * checking of bus mastering status (bm_check) so we can
372 	 * use this in our C3 policy
373 	 */
374 	cx->valid = 1;
375 
376 	/*
377 	 * On older chipsets, BM_RLD needs to be set
378 	 * in order for Bus Master activity to wake the
379 	 * system from C3.  Newer chipsets handle DMA
380 	 * during C3 automatically and BM_RLD is a NOP.
381 	 * In either case, the proper way to
382 	 * handle BM_RLD is to set it and leave it set.
383 	 */
384 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
385 
386 	return;
387 }
388 
389 static int acpi_cst_latency_cmp(const void *a, const void *b)
390 {
391 	const struct acpi_processor_cx *x = a, *y = b;
392 
393 	if (!(x->valid && y->valid))
394 		return 0;
395 	if (x->latency > y->latency)
396 		return 1;
397 	if (x->latency < y->latency)
398 		return -1;
399 	return 0;
400 }
401 static void acpi_cst_latency_swap(void *a, void *b, int n)
402 {
403 	struct acpi_processor_cx *x = a, *y = b;
404 
405 	if (!(x->valid && y->valid))
406 		return;
407 	swap(x->latency, y->latency);
408 }
409 
410 static int acpi_processor_power_verify(struct acpi_processor *pr)
411 {
412 	unsigned int i;
413 	unsigned int working = 0;
414 	unsigned int last_latency = 0;
415 	unsigned int last_type = 0;
416 	bool buggy_latency = false;
417 
418 	pr->power.timer_broadcast_on_state = INT_MAX;
419 
420 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
421 		struct acpi_processor_cx *cx = &pr->power.states[i];
422 
423 		switch (cx->type) {
424 		case ACPI_STATE_C1:
425 			cx->valid = 1;
426 			break;
427 
428 		case ACPI_STATE_C2:
429 			if (!cx->address)
430 				break;
431 			cx->valid = 1;
432 			break;
433 
434 		case ACPI_STATE_C3:
435 			acpi_processor_power_verify_c3(pr, cx);
436 			break;
437 		}
438 		if (!cx->valid)
439 			continue;
440 		if (cx->type >= last_type && cx->latency < last_latency)
441 			buggy_latency = true;
442 		last_latency = cx->latency;
443 		last_type = cx->type;
444 
445 		lapic_timer_check_state(i, pr, cx);
446 		tsc_check_state(cx->type);
447 		working++;
448 	}
449 
450 	if (buggy_latency) {
451 		pr_notice("FW issue: working around C-state latencies out of order\n");
452 		sort(&pr->power.states[1], max_cstate,
453 		     sizeof(struct acpi_processor_cx),
454 		     acpi_cst_latency_cmp,
455 		     acpi_cst_latency_swap);
456 	}
457 
458 	lapic_timer_propagate_broadcast(pr);
459 
460 	return (working);
461 }
462 
463 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
464 {
465 	unsigned int i;
466 	int result;
467 
468 
469 	/* NOTE: the idle thread may not be running while calling
470 	 * this function */
471 
472 	/* Zero initialize all the C-states info. */
473 	memset(pr->power.states, 0, sizeof(pr->power.states));
474 
475 	result = acpi_processor_get_power_info_cst(pr);
476 	if (result == -ENODEV)
477 		result = acpi_processor_get_power_info_fadt(pr);
478 
479 	if (result)
480 		return result;
481 
482 	acpi_processor_get_power_info_default(pr);
483 
484 	pr->power.count = acpi_processor_power_verify(pr);
485 
486 	/*
487 	 * if one state of type C2 or C3 is available, mark this
488 	 * CPU as being "idle manageable"
489 	 */
490 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
491 		if (pr->power.states[i].valid) {
492 			pr->power.count = i;
493 			pr->flags.power = 1;
494 		}
495 	}
496 
497 	return 0;
498 }
499 
500 /**
501  * acpi_idle_bm_check - checks if bus master activity was detected
502  */
503 static int acpi_idle_bm_check(void)
504 {
505 	u32 bm_status = 0;
506 
507 	if (bm_check_disable)
508 		return 0;
509 
510 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
511 	if (bm_status)
512 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
513 	/*
514 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
515 	 * the true state of bus mastering activity; forcing us to
516 	 * manually check the BMIDEA bit of each IDE channel.
517 	 */
518 	else if (errata.piix4.bmisx) {
519 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
520 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
521 			bm_status = 1;
522 	}
523 	return bm_status;
524 }
525 
526 static void wait_for_freeze(void)
527 {
528 #ifdef	CONFIG_X86
529 	/* No delay is needed if we are in guest */
530 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
531 		return;
532 #endif
533 	/* Dummy wait op - must do something useless after P_LVL2 read
534 	   because chipsets cannot guarantee that STPCLK# signal
535 	   gets asserted in time to freeze execution properly. */
536 	inl(acpi_gbl_FADT.xpm_timer_block.address);
537 }
538 
539 /**
540  * acpi_idle_do_entry - enter idle state using the appropriate method
541  * @cx: cstate data
542  *
543  * Caller disables interrupt before call and enables interrupt after return.
544  */
545 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
546 {
547 	if (cx->entry_method == ACPI_CSTATE_FFH) {
548 		/* Call into architectural FFH based C-state */
549 		acpi_processor_ffh_cstate_enter(cx);
550 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
551 		acpi_safe_halt();
552 	} else {
553 		/* IO port based C-state */
554 		inb(cx->address);
555 		wait_for_freeze();
556 	}
557 }
558 
559 /**
560  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
561  * @dev: the target CPU
562  * @index: the index of suggested state
563  */
564 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
565 {
566 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
567 
568 	ACPI_FLUSH_CPU_CACHE();
569 
570 	while (1) {
571 
572 		if (cx->entry_method == ACPI_CSTATE_HALT)
573 			safe_halt();
574 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
575 			inb(cx->address);
576 			wait_for_freeze();
577 		} else
578 			return -ENODEV;
579 
580 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
581 		cond_wakeup_cpu0();
582 #endif
583 	}
584 
585 	/* Never reached */
586 	return 0;
587 }
588 
589 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
590 {
591 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
592 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
593 }
594 
595 static int c3_cpu_count;
596 static DEFINE_RAW_SPINLOCK(c3_lock);
597 
598 /**
599  * acpi_idle_enter_bm - enters C3 with proper BM handling
600  * @drv: cpuidle driver
601  * @pr: Target processor
602  * @cx: Target state context
603  * @index: index of target state
604  */
605 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
606 			       struct acpi_processor *pr,
607 			       struct acpi_processor_cx *cx,
608 			       int index)
609 {
610 	static struct acpi_processor_cx safe_cx = {
611 		.entry_method = ACPI_CSTATE_HALT,
612 	};
613 
614 	/*
615 	 * disable bus master
616 	 * bm_check implies we need ARB_DIS
617 	 * bm_control implies whether we can do ARB_DIS
618 	 *
619 	 * That leaves a case where bm_check is set and bm_control is not set.
620 	 * In that case we cannot do much, we enter C3 without doing anything.
621 	 */
622 	bool dis_bm = pr->flags.bm_control;
623 
624 	/* If we can skip BM, demote to a safe state. */
625 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
626 		dis_bm = false;
627 		index = drv->safe_state_index;
628 		if (index >= 0) {
629 			cx = this_cpu_read(acpi_cstate[index]);
630 		} else {
631 			cx = &safe_cx;
632 			index = -EBUSY;
633 		}
634 	}
635 
636 	if (dis_bm) {
637 		raw_spin_lock(&c3_lock);
638 		c3_cpu_count++;
639 		/* Disable bus master arbitration when all CPUs are in C3 */
640 		if (c3_cpu_count == num_online_cpus())
641 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
642 		raw_spin_unlock(&c3_lock);
643 	}
644 
645 	rcu_idle_enter();
646 
647 	acpi_idle_do_entry(cx);
648 
649 	rcu_idle_exit();
650 
651 	/* Re-enable bus master arbitration */
652 	if (dis_bm) {
653 		raw_spin_lock(&c3_lock);
654 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
655 		c3_cpu_count--;
656 		raw_spin_unlock(&c3_lock);
657 	}
658 
659 	return index;
660 }
661 
662 static int acpi_idle_enter(struct cpuidle_device *dev,
663 			   struct cpuidle_driver *drv, int index)
664 {
665 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
666 	struct acpi_processor *pr;
667 
668 	pr = __this_cpu_read(processors);
669 	if (unlikely(!pr))
670 		return -EINVAL;
671 
672 	if (cx->type != ACPI_STATE_C1) {
673 		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
674 			return acpi_idle_enter_bm(drv, pr, cx, index);
675 
676 		/* C2 to C1 demotion. */
677 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
678 			index = ACPI_IDLE_STATE_START;
679 			cx = per_cpu(acpi_cstate[index], dev->cpu);
680 		}
681 	}
682 
683 	if (cx->type == ACPI_STATE_C3)
684 		ACPI_FLUSH_CPU_CACHE();
685 
686 	acpi_idle_do_entry(cx);
687 
688 	return index;
689 }
690 
691 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
692 				  struct cpuidle_driver *drv, int index)
693 {
694 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
695 
696 	if (cx->type == ACPI_STATE_C3) {
697 		struct acpi_processor *pr = __this_cpu_read(processors);
698 
699 		if (unlikely(!pr))
700 			return 0;
701 
702 		if (pr->flags.bm_check) {
703 			u8 bm_sts_skip = cx->bm_sts_skip;
704 
705 			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
706 			cx->bm_sts_skip = 1;
707 			acpi_idle_enter_bm(drv, pr, cx, index);
708 			cx->bm_sts_skip = bm_sts_skip;
709 
710 			return 0;
711 		} else {
712 			ACPI_FLUSH_CPU_CACHE();
713 		}
714 	}
715 	acpi_idle_do_entry(cx);
716 
717 	return 0;
718 }
719 
720 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
721 					   struct cpuidle_device *dev)
722 {
723 	int i, count = ACPI_IDLE_STATE_START;
724 	struct acpi_processor_cx *cx;
725 	struct cpuidle_state *state;
726 
727 	if (max_cstate == 0)
728 		max_cstate = 1;
729 
730 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
731 		state = &acpi_idle_driver.states[count];
732 		cx = &pr->power.states[i];
733 
734 		if (!cx->valid)
735 			continue;
736 
737 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
738 
739 		if (lapic_timer_needs_broadcast(pr, cx))
740 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
741 
742 		if (cx->type == ACPI_STATE_C3) {
743 			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
744 			if (pr->flags.bm_check)
745 				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
746 		}
747 
748 		count++;
749 		if (count == CPUIDLE_STATE_MAX)
750 			break;
751 	}
752 
753 	if (!count)
754 		return -EINVAL;
755 
756 	return 0;
757 }
758 
759 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
760 {
761 	int i, count;
762 	struct acpi_processor_cx *cx;
763 	struct cpuidle_state *state;
764 	struct cpuidle_driver *drv = &acpi_idle_driver;
765 
766 	if (max_cstate == 0)
767 		max_cstate = 1;
768 
769 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
770 		cpuidle_poll_state_init(drv);
771 		count = 1;
772 	} else {
773 		count = 0;
774 	}
775 
776 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
777 		cx = &pr->power.states[i];
778 
779 		if (!cx->valid)
780 			continue;
781 
782 		state = &drv->states[count];
783 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
784 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
785 		state->exit_latency = cx->latency;
786 		state->target_residency = cx->latency * latency_factor;
787 		state->enter = acpi_idle_enter;
788 
789 		state->flags = 0;
790 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
791 		    cx->type == ACPI_STATE_C3) {
792 			state->enter_dead = acpi_idle_play_dead;
793 			if (cx->type != ACPI_STATE_C3)
794 				drv->safe_state_index = count;
795 		}
796 		/*
797 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
798 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
799 		 * particularly interesting from the suspend-to-idle angle, so
800 		 * avoid C1 and the situations in which we may need to fall back
801 		 * to it altogether.
802 		 */
803 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
804 			state->enter_s2idle = acpi_idle_enter_s2idle;
805 
806 		count++;
807 		if (count == CPUIDLE_STATE_MAX)
808 			break;
809 	}
810 
811 	drv->state_count = count;
812 
813 	if (!count)
814 		return -EINVAL;
815 
816 	return 0;
817 }
818 
819 static inline void acpi_processor_cstate_first_run_checks(void)
820 {
821 	static int first_run;
822 
823 	if (first_run)
824 		return;
825 	dmi_check_system(processor_power_dmi_table);
826 	max_cstate = acpi_processor_cstate_check(max_cstate);
827 	if (max_cstate < ACPI_C_STATES_MAX)
828 		pr_notice("processor limited to max C-state %d\n", max_cstate);
829 
830 	first_run++;
831 
832 	if (nocst)
833 		return;
834 
835 	acpi_processor_claim_cst_control();
836 }
837 #else
838 
839 static inline int disabled_by_idle_boot_param(void) { return 0; }
840 static inline void acpi_processor_cstate_first_run_checks(void) { }
841 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
842 {
843 	return -ENODEV;
844 }
845 
846 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
847 					   struct cpuidle_device *dev)
848 {
849 	return -EINVAL;
850 }
851 
852 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
853 {
854 	return -EINVAL;
855 }
856 
857 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
858 
859 struct acpi_lpi_states_array {
860 	unsigned int size;
861 	unsigned int composite_states_size;
862 	struct acpi_lpi_state *entries;
863 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
864 };
865 
866 static int obj_get_integer(union acpi_object *obj, u32 *value)
867 {
868 	if (obj->type != ACPI_TYPE_INTEGER)
869 		return -EINVAL;
870 
871 	*value = obj->integer.value;
872 	return 0;
873 }
874 
875 static int acpi_processor_evaluate_lpi(acpi_handle handle,
876 				       struct acpi_lpi_states_array *info)
877 {
878 	acpi_status status;
879 	int ret = 0;
880 	int pkg_count, state_idx = 1, loop;
881 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
882 	union acpi_object *lpi_data;
883 	struct acpi_lpi_state *lpi_state;
884 
885 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
886 	if (ACPI_FAILURE(status)) {
887 		acpi_handle_debug(handle, "No _LPI, giving up\n");
888 		return -ENODEV;
889 	}
890 
891 	lpi_data = buffer.pointer;
892 
893 	/* There must be at least 4 elements = 3 elements + 1 package */
894 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
895 	    lpi_data->package.count < 4) {
896 		pr_debug("not enough elements in _LPI\n");
897 		ret = -ENODATA;
898 		goto end;
899 	}
900 
901 	pkg_count = lpi_data->package.elements[2].integer.value;
902 
903 	/* Validate number of power states. */
904 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
905 		pr_debug("count given by _LPI is not valid\n");
906 		ret = -ENODATA;
907 		goto end;
908 	}
909 
910 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
911 	if (!lpi_state) {
912 		ret = -ENOMEM;
913 		goto end;
914 	}
915 
916 	info->size = pkg_count;
917 	info->entries = lpi_state;
918 
919 	/* LPI States start at index 3 */
920 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
921 		union acpi_object *element, *pkg_elem, *obj;
922 
923 		element = &lpi_data->package.elements[loop];
924 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
925 			continue;
926 
927 		pkg_elem = element->package.elements;
928 
929 		obj = pkg_elem + 6;
930 		if (obj->type == ACPI_TYPE_BUFFER) {
931 			struct acpi_power_register *reg;
932 
933 			reg = (struct acpi_power_register *)obj->buffer.pointer;
934 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
935 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
936 				continue;
937 
938 			lpi_state->address = reg->address;
939 			lpi_state->entry_method =
940 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
941 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
942 		} else if (obj->type == ACPI_TYPE_INTEGER) {
943 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
944 			lpi_state->address = obj->integer.value;
945 		} else {
946 			continue;
947 		}
948 
949 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
950 
951 		obj = pkg_elem + 9;
952 		if (obj->type == ACPI_TYPE_STRING)
953 			strlcpy(lpi_state->desc, obj->string.pointer,
954 				ACPI_CX_DESC_LEN);
955 
956 		lpi_state->index = state_idx;
957 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
958 			pr_debug("No min. residency found, assuming 10 us\n");
959 			lpi_state->min_residency = 10;
960 		}
961 
962 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
963 			pr_debug("No wakeup residency found, assuming 10 us\n");
964 			lpi_state->wake_latency = 10;
965 		}
966 
967 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
968 			lpi_state->flags = 0;
969 
970 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
971 			lpi_state->arch_flags = 0;
972 
973 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
974 			lpi_state->res_cnt_freq = 1;
975 
976 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
977 			lpi_state->enable_parent_state = 0;
978 	}
979 
980 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
981 end:
982 	kfree(buffer.pointer);
983 	return ret;
984 }
985 
986 /*
987  * flat_state_cnt - the number of composite LPI states after the process of flattening
988  */
989 static int flat_state_cnt;
990 
991 /**
992  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
993  *
994  * @local: local LPI state
995  * @parent: parent LPI state
996  * @result: composite LPI state
997  */
998 static bool combine_lpi_states(struct acpi_lpi_state *local,
999 			       struct acpi_lpi_state *parent,
1000 			       struct acpi_lpi_state *result)
1001 {
1002 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1003 		if (!parent->address) /* 0 means autopromotable */
1004 			return false;
1005 		result->address = local->address + parent->address;
1006 	} else {
1007 		result->address = parent->address;
1008 	}
1009 
1010 	result->min_residency = max(local->min_residency, parent->min_residency);
1011 	result->wake_latency = local->wake_latency + parent->wake_latency;
1012 	result->enable_parent_state = parent->enable_parent_state;
1013 	result->entry_method = local->entry_method;
1014 
1015 	result->flags = parent->flags;
1016 	result->arch_flags = parent->arch_flags;
1017 	result->index = parent->index;
1018 
1019 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1020 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1021 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1022 	return true;
1023 }
1024 
1025 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1026 
1027 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1028 				  struct acpi_lpi_state *t)
1029 {
1030 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1031 }
1032 
1033 static int flatten_lpi_states(struct acpi_processor *pr,
1034 			      struct acpi_lpi_states_array *curr_level,
1035 			      struct acpi_lpi_states_array *prev_level)
1036 {
1037 	int i, j, state_count = curr_level->size;
1038 	struct acpi_lpi_state *p, *t = curr_level->entries;
1039 
1040 	curr_level->composite_states_size = 0;
1041 	for (j = 0; j < state_count; j++, t++) {
1042 		struct acpi_lpi_state *flpi;
1043 
1044 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1045 			continue;
1046 
1047 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1048 			pr_warn("Limiting number of LPI states to max (%d)\n",
1049 				ACPI_PROCESSOR_MAX_POWER);
1050 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1051 			break;
1052 		}
1053 
1054 		flpi = &pr->power.lpi_states[flat_state_cnt];
1055 
1056 		if (!prev_level) { /* leaf/processor node */
1057 			memcpy(flpi, t, sizeof(*t));
1058 			stash_composite_state(curr_level, flpi);
1059 			flat_state_cnt++;
1060 			continue;
1061 		}
1062 
1063 		for (i = 0; i < prev_level->composite_states_size; i++) {
1064 			p = prev_level->composite_states[i];
1065 			if (t->index <= p->enable_parent_state &&
1066 			    combine_lpi_states(p, t, flpi)) {
1067 				stash_composite_state(curr_level, flpi);
1068 				flat_state_cnt++;
1069 				flpi++;
1070 			}
1071 		}
1072 	}
1073 
1074 	kfree(curr_level->entries);
1075 	return 0;
1076 }
1077 
1078 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1079 {
1080 	return -EOPNOTSUPP;
1081 }
1082 
1083 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1084 {
1085 	int ret, i;
1086 	acpi_status status;
1087 	acpi_handle handle = pr->handle, pr_ahandle;
1088 	struct acpi_device *d = NULL;
1089 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1090 
1091 	/* make sure our architecture has support */
1092 	ret = acpi_processor_ffh_lpi_probe(pr->id);
1093 	if (ret == -EOPNOTSUPP)
1094 		return ret;
1095 
1096 	if (!osc_pc_lpi_support_confirmed)
1097 		return -EOPNOTSUPP;
1098 
1099 	if (!acpi_has_method(handle, "_LPI"))
1100 		return -EINVAL;
1101 
1102 	flat_state_cnt = 0;
1103 	prev = &info[0];
1104 	curr = &info[1];
1105 	handle = pr->handle;
1106 	ret = acpi_processor_evaluate_lpi(handle, prev);
1107 	if (ret)
1108 		return ret;
1109 	flatten_lpi_states(pr, prev, NULL);
1110 
1111 	status = acpi_get_parent(handle, &pr_ahandle);
1112 	while (ACPI_SUCCESS(status)) {
1113 		d = acpi_fetch_acpi_dev(pr_ahandle);
1114 		handle = pr_ahandle;
1115 
1116 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1117 			break;
1118 
1119 		/* can be optional ? */
1120 		if (!acpi_has_method(handle, "_LPI"))
1121 			break;
1122 
1123 		ret = acpi_processor_evaluate_lpi(handle, curr);
1124 		if (ret)
1125 			break;
1126 
1127 		/* flatten all the LPI states in this level of hierarchy */
1128 		flatten_lpi_states(pr, curr, prev);
1129 
1130 		tmp = prev, prev = curr, curr = tmp;
1131 
1132 		status = acpi_get_parent(handle, &pr_ahandle);
1133 	}
1134 
1135 	pr->power.count = flat_state_cnt;
1136 	/* reset the index after flattening */
1137 	for (i = 0; i < pr->power.count; i++)
1138 		pr->power.lpi_states[i].index = i;
1139 
1140 	/* Tell driver that _LPI is supported. */
1141 	pr->flags.has_lpi = 1;
1142 	pr->flags.power = 1;
1143 
1144 	return 0;
1145 }
1146 
1147 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1148 {
1149 	return -ENODEV;
1150 }
1151 
1152 /**
1153  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1154  * @dev: the target CPU
1155  * @drv: cpuidle driver containing cpuidle state info
1156  * @index: index of target state
1157  *
1158  * Return: 0 for success or negative value for error
1159  */
1160 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1161 			       struct cpuidle_driver *drv, int index)
1162 {
1163 	struct acpi_processor *pr;
1164 	struct acpi_lpi_state *lpi;
1165 
1166 	pr = __this_cpu_read(processors);
1167 
1168 	if (unlikely(!pr))
1169 		return -EINVAL;
1170 
1171 	lpi = &pr->power.lpi_states[index];
1172 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1173 		return acpi_processor_ffh_lpi_enter(lpi);
1174 
1175 	return -EINVAL;
1176 }
1177 
1178 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1179 {
1180 	int i;
1181 	struct acpi_lpi_state *lpi;
1182 	struct cpuidle_state *state;
1183 	struct cpuidle_driver *drv = &acpi_idle_driver;
1184 
1185 	if (!pr->flags.has_lpi)
1186 		return -EOPNOTSUPP;
1187 
1188 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1189 		lpi = &pr->power.lpi_states[i];
1190 
1191 		state = &drv->states[i];
1192 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1193 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1194 		state->exit_latency = lpi->wake_latency;
1195 		state->target_residency = lpi->min_residency;
1196 		if (lpi->arch_flags)
1197 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1198 		state->enter = acpi_idle_lpi_enter;
1199 		drv->safe_state_index = i;
1200 	}
1201 
1202 	drv->state_count = i;
1203 
1204 	return 0;
1205 }
1206 
1207 /**
1208  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1209  * global state data i.e. idle routines
1210  *
1211  * @pr: the ACPI processor
1212  */
1213 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1214 {
1215 	int i;
1216 	struct cpuidle_driver *drv = &acpi_idle_driver;
1217 
1218 	if (!pr->flags.power_setup_done || !pr->flags.power)
1219 		return -EINVAL;
1220 
1221 	drv->safe_state_index = -1;
1222 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1223 		drv->states[i].name[0] = '\0';
1224 		drv->states[i].desc[0] = '\0';
1225 	}
1226 
1227 	if (pr->flags.has_lpi)
1228 		return acpi_processor_setup_lpi_states(pr);
1229 
1230 	return acpi_processor_setup_cstates(pr);
1231 }
1232 
1233 /**
1234  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1235  * device i.e. per-cpu data
1236  *
1237  * @pr: the ACPI processor
1238  * @dev : the cpuidle device
1239  */
1240 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1241 					    struct cpuidle_device *dev)
1242 {
1243 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1244 		return -EINVAL;
1245 
1246 	dev->cpu = pr->id;
1247 	if (pr->flags.has_lpi)
1248 		return acpi_processor_ffh_lpi_probe(pr->id);
1249 
1250 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1251 }
1252 
1253 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1254 {
1255 	int ret;
1256 
1257 	ret = acpi_processor_get_lpi_info(pr);
1258 	if (ret)
1259 		ret = acpi_processor_get_cstate_info(pr);
1260 
1261 	return ret;
1262 }
1263 
1264 int acpi_processor_hotplug(struct acpi_processor *pr)
1265 {
1266 	int ret = 0;
1267 	struct cpuidle_device *dev;
1268 
1269 	if (disabled_by_idle_boot_param())
1270 		return 0;
1271 
1272 	if (!pr->flags.power_setup_done)
1273 		return -ENODEV;
1274 
1275 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1276 	cpuidle_pause_and_lock();
1277 	cpuidle_disable_device(dev);
1278 	ret = acpi_processor_get_power_info(pr);
1279 	if (!ret && pr->flags.power) {
1280 		acpi_processor_setup_cpuidle_dev(pr, dev);
1281 		ret = cpuidle_enable_device(dev);
1282 	}
1283 	cpuidle_resume_and_unlock();
1284 
1285 	return ret;
1286 }
1287 
1288 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1289 {
1290 	int cpu;
1291 	struct acpi_processor *_pr;
1292 	struct cpuidle_device *dev;
1293 
1294 	if (disabled_by_idle_boot_param())
1295 		return 0;
1296 
1297 	if (!pr->flags.power_setup_done)
1298 		return -ENODEV;
1299 
1300 	/*
1301 	 * FIXME:  Design the ACPI notification to make it once per
1302 	 * system instead of once per-cpu.  This condition is a hack
1303 	 * to make the code that updates C-States be called once.
1304 	 */
1305 
1306 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1307 
1308 		/* Protect against cpu-hotplug */
1309 		cpus_read_lock();
1310 		cpuidle_pause_and_lock();
1311 
1312 		/* Disable all cpuidle devices */
1313 		for_each_online_cpu(cpu) {
1314 			_pr = per_cpu(processors, cpu);
1315 			if (!_pr || !_pr->flags.power_setup_done)
1316 				continue;
1317 			dev = per_cpu(acpi_cpuidle_device, cpu);
1318 			cpuidle_disable_device(dev);
1319 		}
1320 
1321 		/* Populate Updated C-state information */
1322 		acpi_processor_get_power_info(pr);
1323 		acpi_processor_setup_cpuidle_states(pr);
1324 
1325 		/* Enable all cpuidle devices */
1326 		for_each_online_cpu(cpu) {
1327 			_pr = per_cpu(processors, cpu);
1328 			if (!_pr || !_pr->flags.power_setup_done)
1329 				continue;
1330 			acpi_processor_get_power_info(_pr);
1331 			if (_pr->flags.power) {
1332 				dev = per_cpu(acpi_cpuidle_device, cpu);
1333 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1334 				cpuidle_enable_device(dev);
1335 			}
1336 		}
1337 		cpuidle_resume_and_unlock();
1338 		cpus_read_unlock();
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int acpi_processor_registered;
1345 
1346 int acpi_processor_power_init(struct acpi_processor *pr)
1347 {
1348 	int retval;
1349 	struct cpuidle_device *dev;
1350 
1351 	if (disabled_by_idle_boot_param())
1352 		return 0;
1353 
1354 	acpi_processor_cstate_first_run_checks();
1355 
1356 	if (!acpi_processor_get_power_info(pr))
1357 		pr->flags.power_setup_done = 1;
1358 
1359 	/*
1360 	 * Install the idle handler if processor power management is supported.
1361 	 * Note that we use previously set idle handler will be used on
1362 	 * platforms that only support C1.
1363 	 */
1364 	if (pr->flags.power) {
1365 		/* Register acpi_idle_driver if not already registered */
1366 		if (!acpi_processor_registered) {
1367 			acpi_processor_setup_cpuidle_states(pr);
1368 			retval = cpuidle_register_driver(&acpi_idle_driver);
1369 			if (retval)
1370 				return retval;
1371 			pr_debug("%s registered with cpuidle\n",
1372 				 acpi_idle_driver.name);
1373 		}
1374 
1375 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1376 		if (!dev)
1377 			return -ENOMEM;
1378 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1379 
1380 		acpi_processor_setup_cpuidle_dev(pr, dev);
1381 
1382 		/* Register per-cpu cpuidle_device. Cpuidle driver
1383 		 * must already be registered before registering device
1384 		 */
1385 		retval = cpuidle_register_device(dev);
1386 		if (retval) {
1387 			if (acpi_processor_registered == 0)
1388 				cpuidle_unregister_driver(&acpi_idle_driver);
1389 			return retval;
1390 		}
1391 		acpi_processor_registered++;
1392 	}
1393 	return 0;
1394 }
1395 
1396 int acpi_processor_power_exit(struct acpi_processor *pr)
1397 {
1398 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1399 
1400 	if (disabled_by_idle_boot_param())
1401 		return 0;
1402 
1403 	if (pr->flags.power) {
1404 		cpuidle_unregister_device(dev);
1405 		acpi_processor_registered--;
1406 		if (acpi_processor_registered == 0)
1407 			cpuidle_unregister_driver(&acpi_idle_driver);
1408 	}
1409 
1410 	pr->flags.power_setup_done = 0;
1411 	return 0;
1412 }
1413