1 /* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/proc_fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/acpi.h> 38 #include <linux/dmi.h> 39 #include <linux/moduleparam.h> 40 #include <linux/sched.h> /* need_resched() */ 41 #include <linux/latency.h> 42 #include <linux/clockchips.h> 43 44 /* 45 * Include the apic definitions for x86 to have the APIC timer related defines 46 * available also for UP (on SMP it gets magically included via linux/smp.h). 47 * asm/acpi.h is not an option, as it would require more include magic. Also 48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 49 */ 50 #ifdef CONFIG_X86 51 #include <asm/apic.h> 52 #endif 53 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 57 #include <acpi/acpi_bus.h> 58 #include <acpi/processor.h> 59 60 #define ACPI_PROCESSOR_COMPONENT 0x01000000 61 #define ACPI_PROCESSOR_CLASS "processor" 62 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 63 ACPI_MODULE_NAME("processor_idle"); 64 #define ACPI_PROCESSOR_FILE_POWER "power" 65 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000) 66 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */ 67 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */ 68 static void (*pm_idle_save) (void) __read_mostly; 69 module_param(max_cstate, uint, 0644); 70 71 static unsigned int nocst __read_mostly; 72 module_param(nocst, uint, 0000); 73 74 /* 75 * bm_history -- bit-mask with a bit per jiffy of bus-master activity 76 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms 77 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms 78 * 100 HZ: 0x0000000F: 4 jiffies = 40ms 79 * reduce history for more aggressive entry into C3 80 */ 81 static unsigned int bm_history __read_mostly = 82 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1)); 83 module_param(bm_history, uint, 0644); 84 /* -------------------------------------------------------------------------- 85 Power Management 86 -------------------------------------------------------------------------- */ 87 88 /* 89 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 90 * For now disable this. Probably a bug somewhere else. 91 * 92 * To skip this limit, boot/load with a large max_cstate limit. 93 */ 94 static int set_max_cstate(struct dmi_system_id *id) 95 { 96 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 97 return 0; 98 99 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 100 " Override with \"processor.max_cstate=%d\"\n", id->ident, 101 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 102 103 max_cstate = (long)id->driver_data; 104 105 return 0; 106 } 107 108 /* Actually this shouldn't be __cpuinitdata, would be better to fix the 109 callers to only run once -AK */ 110 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 111 { set_max_cstate, "IBM ThinkPad R40e", { 112 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 113 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1}, 114 { set_max_cstate, "IBM ThinkPad R40e", { 115 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 116 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1}, 117 { set_max_cstate, "IBM ThinkPad R40e", { 118 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 119 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1}, 120 { set_max_cstate, "IBM ThinkPad R40e", { 121 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 122 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1}, 123 { set_max_cstate, "IBM ThinkPad R40e", { 124 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 125 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1}, 126 { set_max_cstate, "IBM ThinkPad R40e", { 127 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 128 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1}, 129 { set_max_cstate, "IBM ThinkPad R40e", { 130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 131 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1}, 132 { set_max_cstate, "IBM ThinkPad R40e", { 133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 134 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1}, 135 { set_max_cstate, "IBM ThinkPad R40e", { 136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 137 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1}, 138 { set_max_cstate, "IBM ThinkPad R40e", { 139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 140 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1}, 141 { set_max_cstate, "IBM ThinkPad R40e", { 142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 143 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1}, 144 { set_max_cstate, "IBM ThinkPad R40e", { 145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 146 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1}, 147 { set_max_cstate, "IBM ThinkPad R40e", { 148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 149 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1}, 150 { set_max_cstate, "IBM ThinkPad R40e", { 151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 152 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1}, 153 { set_max_cstate, "IBM ThinkPad R40e", { 154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 155 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1}, 156 { set_max_cstate, "IBM ThinkPad R40e", { 157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 158 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1}, 159 { set_max_cstate, "Medion 41700", { 160 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 161 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1}, 162 { set_max_cstate, "Clevo 5600D", { 163 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 164 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 165 (void *)2}, 166 {}, 167 }; 168 169 static inline u32 ticks_elapsed(u32 t1, u32 t2) 170 { 171 if (t2 >= t1) 172 return (t2 - t1); 173 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER)) 174 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF); 175 else 176 return ((0xFFFFFFFF - t1) + t2); 177 } 178 179 static void 180 acpi_processor_power_activate(struct acpi_processor *pr, 181 struct acpi_processor_cx *new) 182 { 183 struct acpi_processor_cx *old; 184 185 if (!pr || !new) 186 return; 187 188 old = pr->power.state; 189 190 if (old) 191 old->promotion.count = 0; 192 new->demotion.count = 0; 193 194 /* Cleanup from old state. */ 195 if (old) { 196 switch (old->type) { 197 case ACPI_STATE_C3: 198 /* Disable bus master reload */ 199 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check) 200 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); 201 break; 202 } 203 } 204 205 /* Prepare to use new state. */ 206 switch (new->type) { 207 case ACPI_STATE_C3: 208 /* Enable bus master reload */ 209 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check) 210 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 211 break; 212 } 213 214 pr->power.state = new; 215 216 return; 217 } 218 219 static void acpi_safe_halt(void) 220 { 221 current_thread_info()->status &= ~TS_POLLING; 222 /* 223 * TS_POLLING-cleared state must be visible before we 224 * test NEED_RESCHED: 225 */ 226 smp_mb(); 227 if (!need_resched()) 228 safe_halt(); 229 current_thread_info()->status |= TS_POLLING; 230 } 231 232 static atomic_t c3_cpu_count; 233 234 /* Common C-state entry for C2, C3, .. */ 235 static void acpi_cstate_enter(struct acpi_processor_cx *cstate) 236 { 237 if (cstate->space_id == ACPI_CSTATE_FFH) { 238 /* Call into architectural FFH based C-state */ 239 acpi_processor_ffh_cstate_enter(cstate); 240 } else { 241 int unused; 242 /* IO port based C-state */ 243 inb(cstate->address); 244 /* Dummy wait op - must do something useless after P_LVL2 read 245 because chipsets cannot guarantee that STPCLK# signal 246 gets asserted in time to freeze execution properly. */ 247 unused = inl(acpi_gbl_FADT.xpm_timer_block.address); 248 } 249 } 250 251 #ifdef ARCH_APICTIMER_STOPS_ON_C3 252 253 /* 254 * Some BIOS implementations switch to C3 in the published C2 state. 255 * This seems to be a common problem on AMD boxen, but other vendors 256 * are affected too. We pick the most conservative approach: we assume 257 * that the local APIC stops in both C2 and C3. 258 */ 259 static void acpi_timer_check_state(int state, struct acpi_processor *pr, 260 struct acpi_processor_cx *cx) 261 { 262 struct acpi_processor_power *pwr = &pr->power; 263 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 264 265 /* 266 * Check, if one of the previous states already marked the lapic 267 * unstable 268 */ 269 if (pwr->timer_broadcast_on_state < state) 270 return; 271 272 if (cx->type >= type) 273 pr->power.timer_broadcast_on_state = state; 274 } 275 276 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) 277 { 278 #ifdef CONFIG_GENERIC_CLOCKEVENTS 279 unsigned long reason; 280 281 reason = pr->power.timer_broadcast_on_state < INT_MAX ? 282 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; 283 284 clockevents_notify(reason, &pr->id); 285 #else 286 cpumask_t mask = cpumask_of_cpu(pr->id); 287 288 if (pr->power.timer_broadcast_on_state < INT_MAX) 289 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1); 290 else 291 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1); 292 #endif 293 } 294 295 /* Power(C) State timer broadcast control */ 296 static void acpi_state_timer_broadcast(struct acpi_processor *pr, 297 struct acpi_processor_cx *cx, 298 int broadcast) 299 { 300 #ifdef CONFIG_GENERIC_CLOCKEVENTS 301 302 int state = cx - pr->power.states; 303 304 if (state >= pr->power.timer_broadcast_on_state) { 305 unsigned long reason; 306 307 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : 308 CLOCK_EVT_NOTIFY_BROADCAST_EXIT; 309 clockevents_notify(reason, &pr->id); 310 } 311 #endif 312 } 313 314 #else 315 316 static void acpi_timer_check_state(int state, struct acpi_processor *pr, 317 struct acpi_processor_cx *cstate) { } 318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { } 319 static void acpi_state_timer_broadcast(struct acpi_processor *pr, 320 struct acpi_processor_cx *cx, 321 int broadcast) 322 { 323 } 324 325 #endif 326 327 static void acpi_processor_idle(void) 328 { 329 struct acpi_processor *pr = NULL; 330 struct acpi_processor_cx *cx = NULL; 331 struct acpi_processor_cx *next_state = NULL; 332 int sleep_ticks = 0; 333 u32 t1, t2 = 0; 334 335 /* 336 * Interrupts must be disabled during bus mastering calculations and 337 * for C2/C3 transitions. 338 */ 339 local_irq_disable(); 340 341 pr = processors[smp_processor_id()]; 342 if (!pr) { 343 local_irq_enable(); 344 return; 345 } 346 347 /* 348 * Check whether we truly need to go idle, or should 349 * reschedule: 350 */ 351 if (unlikely(need_resched())) { 352 local_irq_enable(); 353 return; 354 } 355 356 cx = pr->power.state; 357 if (!cx) { 358 if (pm_idle_save) 359 pm_idle_save(); 360 else 361 acpi_safe_halt(); 362 return; 363 } 364 365 /* 366 * Check BM Activity 367 * ----------------- 368 * Check for bus mastering activity (if required), record, and check 369 * for demotion. 370 */ 371 if (pr->flags.bm_check) { 372 u32 bm_status = 0; 373 unsigned long diff = jiffies - pr->power.bm_check_timestamp; 374 375 if (diff > 31) 376 diff = 31; 377 378 pr->power.bm_activity <<= diff; 379 380 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 381 if (bm_status) { 382 pr->power.bm_activity |= 0x1; 383 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 384 } 385 /* 386 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 387 * the true state of bus mastering activity; forcing us to 388 * manually check the BMIDEA bit of each IDE channel. 389 */ 390 else if (errata.piix4.bmisx) { 391 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 392 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 393 pr->power.bm_activity |= 0x1; 394 } 395 396 pr->power.bm_check_timestamp = jiffies; 397 398 /* 399 * If bus mastering is or was active this jiffy, demote 400 * to avoid a faulty transition. Note that the processor 401 * won't enter a low-power state during this call (to this 402 * function) but should upon the next. 403 * 404 * TBD: A better policy might be to fallback to the demotion 405 * state (use it for this quantum only) istead of 406 * demoting -- and rely on duration as our sole demotion 407 * qualification. This may, however, introduce DMA 408 * issues (e.g. floppy DMA transfer overrun/underrun). 409 */ 410 if ((pr->power.bm_activity & 0x1) && 411 cx->demotion.threshold.bm) { 412 local_irq_enable(); 413 next_state = cx->demotion.state; 414 goto end; 415 } 416 } 417 418 #ifdef CONFIG_HOTPLUG_CPU 419 /* 420 * Check for P_LVL2_UP flag before entering C2 and above on 421 * an SMP system. We do it here instead of doing it at _CST/P_LVL 422 * detection phase, to work cleanly with logical CPU hotplug. 423 */ 424 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 425 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 426 cx = &pr->power.states[ACPI_STATE_C1]; 427 #endif 428 429 /* 430 * Sleep: 431 * ------ 432 * Invoke the current Cx state to put the processor to sleep. 433 */ 434 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) { 435 current_thread_info()->status &= ~TS_POLLING; 436 /* 437 * TS_POLLING-cleared state must be visible before we 438 * test NEED_RESCHED: 439 */ 440 smp_mb(); 441 if (need_resched()) { 442 current_thread_info()->status |= TS_POLLING; 443 local_irq_enable(); 444 return; 445 } 446 } 447 448 switch (cx->type) { 449 450 case ACPI_STATE_C1: 451 /* 452 * Invoke C1. 453 * Use the appropriate idle routine, the one that would 454 * be used without acpi C-states. 455 */ 456 if (pm_idle_save) 457 pm_idle_save(); 458 else 459 acpi_safe_halt(); 460 461 /* 462 * TBD: Can't get time duration while in C1, as resumes 463 * go to an ISR rather than here. Need to instrument 464 * base interrupt handler. 465 */ 466 sleep_ticks = 0xFFFFFFFF; 467 break; 468 469 case ACPI_STATE_C2: 470 /* Get start time (ticks) */ 471 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); 472 /* Invoke C2 */ 473 acpi_state_timer_broadcast(pr, cx, 1); 474 acpi_cstate_enter(cx); 475 /* Get end time (ticks) */ 476 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); 477 478 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC) 479 /* TSC halts in C2, so notify users */ 480 mark_tsc_unstable("possible TSC halt in C2"); 481 #endif 482 /* Re-enable interrupts */ 483 local_irq_enable(); 484 current_thread_info()->status |= TS_POLLING; 485 /* Compute time (ticks) that we were actually asleep */ 486 sleep_ticks = 487 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD; 488 acpi_state_timer_broadcast(pr, cx, 0); 489 break; 490 491 case ACPI_STATE_C3: 492 493 /* 494 * disable bus master 495 * bm_check implies we need ARB_DIS 496 * !bm_check implies we need cache flush 497 * bm_control implies whether we can do ARB_DIS 498 * 499 * That leaves a case where bm_check is set and bm_control is 500 * not set. In that case we cannot do much, we enter C3 501 * without doing anything. 502 */ 503 if (pr->flags.bm_check && pr->flags.bm_control) { 504 if (atomic_inc_return(&c3_cpu_count) == 505 num_online_cpus()) { 506 /* 507 * All CPUs are trying to go to C3 508 * Disable bus master arbitration 509 */ 510 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1); 511 } 512 } else if (!pr->flags.bm_check) { 513 /* SMP with no shared cache... Invalidate cache */ 514 ACPI_FLUSH_CPU_CACHE(); 515 } 516 517 /* Get start time (ticks) */ 518 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); 519 /* Invoke C3 */ 520 acpi_state_timer_broadcast(pr, cx, 1); 521 acpi_cstate_enter(cx); 522 /* Get end time (ticks) */ 523 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); 524 if (pr->flags.bm_check && pr->flags.bm_control) { 525 /* Enable bus master arbitration */ 526 atomic_dec(&c3_cpu_count); 527 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0); 528 } 529 530 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC) 531 /* TSC halts in C3, so notify users */ 532 mark_tsc_unstable("TSC halts in C3"); 533 #endif 534 /* Re-enable interrupts */ 535 local_irq_enable(); 536 current_thread_info()->status |= TS_POLLING; 537 /* Compute time (ticks) that we were actually asleep */ 538 sleep_ticks = 539 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD; 540 acpi_state_timer_broadcast(pr, cx, 0); 541 break; 542 543 default: 544 local_irq_enable(); 545 return; 546 } 547 cx->usage++; 548 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0)) 549 cx->time += sleep_ticks; 550 551 next_state = pr->power.state; 552 553 #ifdef CONFIG_HOTPLUG_CPU 554 /* Don't do promotion/demotion */ 555 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) && 556 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) { 557 next_state = cx; 558 goto end; 559 } 560 #endif 561 562 /* 563 * Promotion? 564 * ---------- 565 * Track the number of longs (time asleep is greater than threshold) 566 * and promote when the count threshold is reached. Note that bus 567 * mastering activity may prevent promotions. 568 * Do not promote above max_cstate. 569 */ 570 if (cx->promotion.state && 571 ((cx->promotion.state - pr->power.states) <= max_cstate)) { 572 if (sleep_ticks > cx->promotion.threshold.ticks && 573 cx->promotion.state->latency <= system_latency_constraint()) { 574 cx->promotion.count++; 575 cx->demotion.count = 0; 576 if (cx->promotion.count >= 577 cx->promotion.threshold.count) { 578 if (pr->flags.bm_check) { 579 if (! 580 (pr->power.bm_activity & cx-> 581 promotion.threshold.bm)) { 582 next_state = 583 cx->promotion.state; 584 goto end; 585 } 586 } else { 587 next_state = cx->promotion.state; 588 goto end; 589 } 590 } 591 } 592 } 593 594 /* 595 * Demotion? 596 * --------- 597 * Track the number of shorts (time asleep is less than time threshold) 598 * and demote when the usage threshold is reached. 599 */ 600 if (cx->demotion.state) { 601 if (sleep_ticks < cx->demotion.threshold.ticks) { 602 cx->demotion.count++; 603 cx->promotion.count = 0; 604 if (cx->demotion.count >= cx->demotion.threshold.count) { 605 next_state = cx->demotion.state; 606 goto end; 607 } 608 } 609 } 610 611 end: 612 /* 613 * Demote if current state exceeds max_cstate 614 * or if the latency of the current state is unacceptable 615 */ 616 if ((pr->power.state - pr->power.states) > max_cstate || 617 pr->power.state->latency > system_latency_constraint()) { 618 if (cx->demotion.state) 619 next_state = cx->demotion.state; 620 } 621 622 /* 623 * New Cx State? 624 * ------------- 625 * If we're going to start using a new Cx state we must clean up 626 * from the previous and prepare to use the new. 627 */ 628 if (next_state != pr->power.state) 629 acpi_processor_power_activate(pr, next_state); 630 } 631 632 static int acpi_processor_set_power_policy(struct acpi_processor *pr) 633 { 634 unsigned int i; 635 unsigned int state_is_set = 0; 636 struct acpi_processor_cx *lower = NULL; 637 struct acpi_processor_cx *higher = NULL; 638 struct acpi_processor_cx *cx; 639 640 641 if (!pr) 642 return -EINVAL; 643 644 /* 645 * This function sets the default Cx state policy (OS idle handler). 646 * Our scheme is to promote quickly to C2 but more conservatively 647 * to C3. We're favoring C2 for its characteristics of low latency 648 * (quick response), good power savings, and ability to allow bus 649 * mastering activity. Note that the Cx state policy is completely 650 * customizable and can be altered dynamically. 651 */ 652 653 /* startup state */ 654 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 655 cx = &pr->power.states[i]; 656 if (!cx->valid) 657 continue; 658 659 if (!state_is_set) 660 pr->power.state = cx; 661 state_is_set++; 662 break; 663 } 664 665 if (!state_is_set) 666 return -ENODEV; 667 668 /* demotion */ 669 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 670 cx = &pr->power.states[i]; 671 if (!cx->valid) 672 continue; 673 674 if (lower) { 675 cx->demotion.state = lower; 676 cx->demotion.threshold.ticks = cx->latency_ticks; 677 cx->demotion.threshold.count = 1; 678 if (cx->type == ACPI_STATE_C3) 679 cx->demotion.threshold.bm = bm_history; 680 } 681 682 lower = cx; 683 } 684 685 /* promotion */ 686 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) { 687 cx = &pr->power.states[i]; 688 if (!cx->valid) 689 continue; 690 691 if (higher) { 692 cx->promotion.state = higher; 693 cx->promotion.threshold.ticks = cx->latency_ticks; 694 if (cx->type >= ACPI_STATE_C2) 695 cx->promotion.threshold.count = 4; 696 else 697 cx->promotion.threshold.count = 10; 698 if (higher->type == ACPI_STATE_C3) 699 cx->promotion.threshold.bm = bm_history; 700 } 701 702 higher = cx; 703 } 704 705 return 0; 706 } 707 708 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 709 { 710 711 if (!pr) 712 return -EINVAL; 713 714 if (!pr->pblk) 715 return -ENODEV; 716 717 /* if info is obtained from pblk/fadt, type equals state */ 718 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 719 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 720 721 #ifndef CONFIG_HOTPLUG_CPU 722 /* 723 * Check for P_LVL2_UP flag before entering C2 and above on 724 * an SMP system. 725 */ 726 if ((num_online_cpus() > 1) && 727 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 728 return -ENODEV; 729 #endif 730 731 /* determine C2 and C3 address from pblk */ 732 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 733 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 734 735 /* determine latencies from FADT */ 736 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; 737 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; 738 739 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 740 "lvl2[0x%08x] lvl3[0x%08x]\n", 741 pr->power.states[ACPI_STATE_C2].address, 742 pr->power.states[ACPI_STATE_C3].address)); 743 744 return 0; 745 } 746 747 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 748 { 749 if (!pr->power.states[ACPI_STATE_C1].valid) { 750 /* set the first C-State to C1 */ 751 /* all processors need to support C1 */ 752 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 753 pr->power.states[ACPI_STATE_C1].valid = 1; 754 } 755 /* the C0 state only exists as a filler in our array */ 756 pr->power.states[ACPI_STATE_C0].valid = 1; 757 return 0; 758 } 759 760 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 761 { 762 acpi_status status = 0; 763 acpi_integer count; 764 int current_count; 765 int i; 766 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 767 union acpi_object *cst; 768 769 770 if (nocst) 771 return -ENODEV; 772 773 current_count = 0; 774 775 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 776 if (ACPI_FAILURE(status)) { 777 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 778 return -ENODEV; 779 } 780 781 cst = buffer.pointer; 782 783 /* There must be at least 2 elements */ 784 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 785 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 786 status = -EFAULT; 787 goto end; 788 } 789 790 count = cst->package.elements[0].integer.value; 791 792 /* Validate number of power states. */ 793 if (count < 1 || count != cst->package.count - 1) { 794 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 795 status = -EFAULT; 796 goto end; 797 } 798 799 /* Tell driver that at least _CST is supported. */ 800 pr->flags.has_cst = 1; 801 802 for (i = 1; i <= count; i++) { 803 union acpi_object *element; 804 union acpi_object *obj; 805 struct acpi_power_register *reg; 806 struct acpi_processor_cx cx; 807 808 memset(&cx, 0, sizeof(cx)); 809 810 element = &(cst->package.elements[i]); 811 if (element->type != ACPI_TYPE_PACKAGE) 812 continue; 813 814 if (element->package.count != 4) 815 continue; 816 817 obj = &(element->package.elements[0]); 818 819 if (obj->type != ACPI_TYPE_BUFFER) 820 continue; 821 822 reg = (struct acpi_power_register *)obj->buffer.pointer; 823 824 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 825 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 826 continue; 827 828 /* There should be an easy way to extract an integer... */ 829 obj = &(element->package.elements[1]); 830 if (obj->type != ACPI_TYPE_INTEGER) 831 continue; 832 833 cx.type = obj->integer.value; 834 /* 835 * Some buggy BIOSes won't list C1 in _CST - 836 * Let acpi_processor_get_power_info_default() handle them later 837 */ 838 if (i == 1 && cx.type != ACPI_STATE_C1) 839 current_count++; 840 841 cx.address = reg->address; 842 cx.index = current_count + 1; 843 844 cx.space_id = ACPI_CSTATE_SYSTEMIO; 845 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 846 if (acpi_processor_ffh_cstate_probe 847 (pr->id, &cx, reg) == 0) { 848 cx.space_id = ACPI_CSTATE_FFH; 849 } else if (cx.type != ACPI_STATE_C1) { 850 /* 851 * C1 is a special case where FIXED_HARDWARE 852 * can be handled in non-MWAIT way as well. 853 * In that case, save this _CST entry info. 854 * That is, we retain space_id of SYSTEM_IO for 855 * halt based C1. 856 * Otherwise, ignore this info and continue. 857 */ 858 continue; 859 } 860 } 861 862 obj = &(element->package.elements[2]); 863 if (obj->type != ACPI_TYPE_INTEGER) 864 continue; 865 866 cx.latency = obj->integer.value; 867 868 obj = &(element->package.elements[3]); 869 if (obj->type != ACPI_TYPE_INTEGER) 870 continue; 871 872 cx.power = obj->integer.value; 873 874 current_count++; 875 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 876 877 /* 878 * We support total ACPI_PROCESSOR_MAX_POWER - 1 879 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 880 */ 881 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 882 printk(KERN_WARNING 883 "Limiting number of power states to max (%d)\n", 884 ACPI_PROCESSOR_MAX_POWER); 885 printk(KERN_WARNING 886 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 887 break; 888 } 889 } 890 891 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 892 current_count)); 893 894 /* Validate number of power states discovered */ 895 if (current_count < 2) 896 status = -EFAULT; 897 898 end: 899 kfree(buffer.pointer); 900 901 return status; 902 } 903 904 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx) 905 { 906 907 if (!cx->address) 908 return; 909 910 /* 911 * C2 latency must be less than or equal to 100 912 * microseconds. 913 */ 914 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 915 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 916 "latency too large [%d]\n", cx->latency)); 917 return; 918 } 919 920 /* 921 * Otherwise we've met all of our C2 requirements. 922 * Normalize the C2 latency to expidite policy 923 */ 924 cx->valid = 1; 925 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); 926 927 return; 928 } 929 930 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 931 struct acpi_processor_cx *cx) 932 { 933 static int bm_check_flag; 934 935 936 if (!cx->address) 937 return; 938 939 /* 940 * C3 latency must be less than or equal to 1000 941 * microseconds. 942 */ 943 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 944 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 945 "latency too large [%d]\n", cx->latency)); 946 return; 947 } 948 949 /* 950 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 951 * DMA transfers are used by any ISA device to avoid livelock. 952 * Note that we could disable Type-F DMA (as recommended by 953 * the erratum), but this is known to disrupt certain ISA 954 * devices thus we take the conservative approach. 955 */ 956 else if (errata.piix4.fdma) { 957 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 958 "C3 not supported on PIIX4 with Type-F DMA\n")); 959 return; 960 } 961 962 /* All the logic here assumes flags.bm_check is same across all CPUs */ 963 if (!bm_check_flag) { 964 /* Determine whether bm_check is needed based on CPU */ 965 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 966 bm_check_flag = pr->flags.bm_check; 967 } else { 968 pr->flags.bm_check = bm_check_flag; 969 } 970 971 if (pr->flags.bm_check) { 972 /* bus mastering control is necessary */ 973 if (!pr->flags.bm_control) { 974 /* In this case we enter C3 without bus mastering */ 975 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 976 "C3 support without bus mastering control\n")); 977 } 978 } else { 979 /* 980 * WBINVD should be set in fadt, for C3 state to be 981 * supported on when bm_check is not required. 982 */ 983 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 984 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 985 "Cache invalidation should work properly" 986 " for C3 to be enabled on SMP systems\n")); 987 return; 988 } 989 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); 990 } 991 992 /* 993 * Otherwise we've met all of our C3 requirements. 994 * Normalize the C3 latency to expidite policy. Enable 995 * checking of bus mastering status (bm_check) so we can 996 * use this in our C3 policy 997 */ 998 cx->valid = 1; 999 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); 1000 1001 return; 1002 } 1003 1004 static int acpi_processor_power_verify(struct acpi_processor *pr) 1005 { 1006 unsigned int i; 1007 unsigned int working = 0; 1008 1009 pr->power.timer_broadcast_on_state = INT_MAX; 1010 1011 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 1012 struct acpi_processor_cx *cx = &pr->power.states[i]; 1013 1014 switch (cx->type) { 1015 case ACPI_STATE_C1: 1016 cx->valid = 1; 1017 break; 1018 1019 case ACPI_STATE_C2: 1020 acpi_processor_power_verify_c2(cx); 1021 if (cx->valid) 1022 acpi_timer_check_state(i, pr, cx); 1023 break; 1024 1025 case ACPI_STATE_C3: 1026 acpi_processor_power_verify_c3(pr, cx); 1027 if (cx->valid) 1028 acpi_timer_check_state(i, pr, cx); 1029 break; 1030 } 1031 1032 if (cx->valid) 1033 working++; 1034 } 1035 1036 acpi_propagate_timer_broadcast(pr); 1037 1038 return (working); 1039 } 1040 1041 static int acpi_processor_get_power_info(struct acpi_processor *pr) 1042 { 1043 unsigned int i; 1044 int result; 1045 1046 1047 /* NOTE: the idle thread may not be running while calling 1048 * this function */ 1049 1050 /* Zero initialize all the C-states info. */ 1051 memset(pr->power.states, 0, sizeof(pr->power.states)); 1052 1053 result = acpi_processor_get_power_info_cst(pr); 1054 if (result == -ENODEV) 1055 result = acpi_processor_get_power_info_fadt(pr); 1056 1057 if (result) 1058 return result; 1059 1060 acpi_processor_get_power_info_default(pr); 1061 1062 pr->power.count = acpi_processor_power_verify(pr); 1063 1064 /* 1065 * Set Default Policy 1066 * ------------------ 1067 * Now that we know which states are supported, set the default 1068 * policy. Note that this policy can be changed dynamically 1069 * (e.g. encourage deeper sleeps to conserve battery life when 1070 * not on AC). 1071 */ 1072 result = acpi_processor_set_power_policy(pr); 1073 if (result) 1074 return result; 1075 1076 /* 1077 * if one state of type C2 or C3 is available, mark this 1078 * CPU as being "idle manageable" 1079 */ 1080 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 1081 if (pr->power.states[i].valid) { 1082 pr->power.count = i; 1083 if (pr->power.states[i].type >= ACPI_STATE_C2) 1084 pr->flags.power = 1; 1085 } 1086 } 1087 1088 return 0; 1089 } 1090 1091 int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1092 { 1093 int result = 0; 1094 1095 1096 if (!pr) 1097 return -EINVAL; 1098 1099 if (nocst) { 1100 return -ENODEV; 1101 } 1102 1103 if (!pr->flags.power_setup_done) 1104 return -ENODEV; 1105 1106 /* Fall back to the default idle loop */ 1107 pm_idle = pm_idle_save; 1108 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */ 1109 1110 pr->flags.power = 0; 1111 result = acpi_processor_get_power_info(pr); 1112 if ((pr->flags.power == 1) && (pr->flags.power_setup_done)) 1113 pm_idle = acpi_processor_idle; 1114 1115 return result; 1116 } 1117 1118 /* proc interface */ 1119 1120 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 1121 { 1122 struct acpi_processor *pr = seq->private; 1123 unsigned int i; 1124 1125 1126 if (!pr) 1127 goto end; 1128 1129 seq_printf(seq, "active state: C%zd\n" 1130 "max_cstate: C%d\n" 1131 "bus master activity: %08x\n" 1132 "maximum allowed latency: %d usec\n", 1133 pr->power.state ? pr->power.state - pr->power.states : 0, 1134 max_cstate, (unsigned)pr->power.bm_activity, 1135 system_latency_constraint()); 1136 1137 seq_puts(seq, "states:\n"); 1138 1139 for (i = 1; i <= pr->power.count; i++) { 1140 seq_printf(seq, " %cC%d: ", 1141 (&pr->power.states[i] == 1142 pr->power.state ? '*' : ' '), i); 1143 1144 if (!pr->power.states[i].valid) { 1145 seq_puts(seq, "<not supported>\n"); 1146 continue; 1147 } 1148 1149 switch (pr->power.states[i].type) { 1150 case ACPI_STATE_C1: 1151 seq_printf(seq, "type[C1] "); 1152 break; 1153 case ACPI_STATE_C2: 1154 seq_printf(seq, "type[C2] "); 1155 break; 1156 case ACPI_STATE_C3: 1157 seq_printf(seq, "type[C3] "); 1158 break; 1159 default: 1160 seq_printf(seq, "type[--] "); 1161 break; 1162 } 1163 1164 if (pr->power.states[i].promotion.state) 1165 seq_printf(seq, "promotion[C%zd] ", 1166 (pr->power.states[i].promotion.state - 1167 pr->power.states)); 1168 else 1169 seq_puts(seq, "promotion[--] "); 1170 1171 if (pr->power.states[i].demotion.state) 1172 seq_printf(seq, "demotion[C%zd] ", 1173 (pr->power.states[i].demotion.state - 1174 pr->power.states)); 1175 else 1176 seq_puts(seq, "demotion[--] "); 1177 1178 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", 1179 pr->power.states[i].latency, 1180 pr->power.states[i].usage, 1181 (unsigned long long)pr->power.states[i].time); 1182 } 1183 1184 end: 1185 return 0; 1186 } 1187 1188 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 1189 { 1190 return single_open(file, acpi_processor_power_seq_show, 1191 PDE(inode)->data); 1192 } 1193 1194 static const struct file_operations acpi_processor_power_fops = { 1195 .open = acpi_processor_power_open_fs, 1196 .read = seq_read, 1197 .llseek = seq_lseek, 1198 .release = single_release, 1199 }; 1200 1201 #ifdef CONFIG_SMP 1202 static void smp_callback(void *v) 1203 { 1204 /* we already woke the CPU up, nothing more to do */ 1205 } 1206 1207 /* 1208 * This function gets called when a part of the kernel has a new latency 1209 * requirement. This means we need to get all processors out of their C-state, 1210 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that 1211 * wakes them all right up. 1212 */ 1213 static int acpi_processor_latency_notify(struct notifier_block *b, 1214 unsigned long l, void *v) 1215 { 1216 smp_call_function(smp_callback, NULL, 0, 1); 1217 return NOTIFY_OK; 1218 } 1219 1220 static struct notifier_block acpi_processor_latency_notifier = { 1221 .notifier_call = acpi_processor_latency_notify, 1222 }; 1223 #endif 1224 1225 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1226 struct acpi_device *device) 1227 { 1228 acpi_status status = 0; 1229 static int first_run; 1230 struct proc_dir_entry *entry = NULL; 1231 unsigned int i; 1232 1233 1234 if (!first_run) { 1235 dmi_check_system(processor_power_dmi_table); 1236 if (max_cstate < ACPI_C_STATES_MAX) 1237 printk(KERN_NOTICE 1238 "ACPI: processor limited to max C-state %d\n", 1239 max_cstate); 1240 first_run++; 1241 #ifdef CONFIG_SMP 1242 register_latency_notifier(&acpi_processor_latency_notifier); 1243 #endif 1244 } 1245 1246 if (!pr) 1247 return -EINVAL; 1248 1249 if (acpi_gbl_FADT.cst_control && !nocst) { 1250 status = 1251 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); 1252 if (ACPI_FAILURE(status)) { 1253 ACPI_EXCEPTION((AE_INFO, status, 1254 "Notifying BIOS of _CST ability failed")); 1255 } 1256 } 1257 1258 acpi_processor_get_power_info(pr); 1259 1260 /* 1261 * Install the idle handler if processor power management is supported. 1262 * Note that we use previously set idle handler will be used on 1263 * platforms that only support C1. 1264 */ 1265 if ((pr->flags.power) && (!boot_option_idle_override)) { 1266 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id); 1267 for (i = 1; i <= pr->power.count; i++) 1268 if (pr->power.states[i].valid) 1269 printk(" C%d[C%d]", i, 1270 pr->power.states[i].type); 1271 printk(")\n"); 1272 1273 if (pr->id == 0) { 1274 pm_idle_save = pm_idle; 1275 pm_idle = acpi_processor_idle; 1276 } 1277 } 1278 1279 /* 'power' [R] */ 1280 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1281 S_IRUGO, acpi_device_dir(device)); 1282 if (!entry) 1283 return -EIO; 1284 else { 1285 entry->proc_fops = &acpi_processor_power_fops; 1286 entry->data = acpi_driver_data(device); 1287 entry->owner = THIS_MODULE; 1288 } 1289 1290 pr->flags.power_setup_done = 1; 1291 1292 return 0; 1293 } 1294 1295 int acpi_processor_power_exit(struct acpi_processor *pr, 1296 struct acpi_device *device) 1297 { 1298 1299 pr->flags.power_setup_done = 0; 1300 1301 if (acpi_device_dir(device)) 1302 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1303 acpi_device_dir(device)); 1304 1305 /* Unregister the idle handler when processor #0 is removed. */ 1306 if (pr->id == 0) { 1307 pm_idle = pm_idle_save; 1308 1309 /* 1310 * We are about to unload the current idle thread pm callback 1311 * (pm_idle), Wait for all processors to update cached/local 1312 * copies of pm_idle before proceeding. 1313 */ 1314 cpu_idle_wait(); 1315 #ifdef CONFIG_SMP 1316 unregister_latency_notifier(&acpi_processor_latency_notifier); 1317 #endif 1318 } 1319 1320 return 0; 1321 } 1322