xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision c21b37f6)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 
44 /*
45  * Include the apic definitions for x86 to have the APIC timer related defines
46  * available also for UP (on SMP it gets magically included via linux/smp.h).
47  * asm/acpi.h is not an option, as it would require more include magic. Also
48  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
49  */
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
53 
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
59 
60 #define ACPI_PROCESSOR_COMPONENT        0x01000000
61 #define ACPI_PROCESSOR_CLASS            "processor"
62 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER	"power"
65 #define US_TO_PM_TIMER_TICKS(t)		((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define C2_OVERHEAD			4	/* 1us (3.579 ticks per us) */
67 #define C3_OVERHEAD			4	/* 1us (3.579 ticks per us) */
68 static void (*pm_idle_save) (void) __read_mostly;
69 module_param(max_cstate, uint, 0644);
70 
71 static unsigned int nocst __read_mostly;
72 module_param(nocst, uint, 0000);
73 
74 /*
75  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
76  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
77  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
78  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
79  * reduce history for more aggressive entry into C3
80  */
81 static unsigned int bm_history __read_mostly =
82     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
83 module_param(bm_history, uint, 0644);
84 /* --------------------------------------------------------------------------
85                                 Power Management
86    -------------------------------------------------------------------------- */
87 
88 /*
89  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
90  * For now disable this. Probably a bug somewhere else.
91  *
92  * To skip this limit, boot/load with a large max_cstate limit.
93  */
94 static int set_max_cstate(struct dmi_system_id *id)
95 {
96 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
97 		return 0;
98 
99 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
100 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
101 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
102 
103 	max_cstate = (long)id->driver_data;
104 
105 	return 0;
106 }
107 
108 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
109    callers to only run once -AK */
110 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
111 	{ set_max_cstate, "IBM ThinkPad R40e", {
112 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
113 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
114 	{ set_max_cstate, "IBM ThinkPad R40e", {
115 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
116 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
117 	{ set_max_cstate, "IBM ThinkPad R40e", {
118 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
119 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
120 	{ set_max_cstate, "IBM ThinkPad R40e", {
121 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
122 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
123 	{ set_max_cstate, "IBM ThinkPad R40e", {
124 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
125 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
126 	{ set_max_cstate, "IBM ThinkPad R40e", {
127 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
129 	{ set_max_cstate, "IBM ThinkPad R40e", {
130 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
132 	{ set_max_cstate, "IBM ThinkPad R40e", {
133 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
135 	{ set_max_cstate, "IBM ThinkPad R40e", {
136 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
138 	{ set_max_cstate, "IBM ThinkPad R40e", {
139 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
141 	{ set_max_cstate, "IBM ThinkPad R40e", {
142 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
144 	{ set_max_cstate, "IBM ThinkPad R40e", {
145 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
147 	{ set_max_cstate, "IBM ThinkPad R40e", {
148 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
150 	{ set_max_cstate, "IBM ThinkPad R40e", {
151 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
153 	{ set_max_cstate, "IBM ThinkPad R40e", {
154 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
156 	{ set_max_cstate, "IBM ThinkPad R40e", {
157 	  DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 	  DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
159 	{ set_max_cstate, "Medion 41700", {
160 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
161 	  DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
162 	{ set_max_cstate, "Clevo 5600D", {
163 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
164 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
165 	 (void *)2},
166 	{},
167 };
168 
169 static inline u32 ticks_elapsed(u32 t1, u32 t2)
170 {
171 	if (t2 >= t1)
172 		return (t2 - t1);
173 	else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
174 		return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
175 	else
176 		return ((0xFFFFFFFF - t1) + t2);
177 }
178 
179 static void
180 acpi_processor_power_activate(struct acpi_processor *pr,
181 			      struct acpi_processor_cx *new)
182 {
183 	struct acpi_processor_cx *old;
184 
185 	if (!pr || !new)
186 		return;
187 
188 	old = pr->power.state;
189 
190 	if (old)
191 		old->promotion.count = 0;
192 	new->demotion.count = 0;
193 
194 	/* Cleanup from old state. */
195 	if (old) {
196 		switch (old->type) {
197 		case ACPI_STATE_C3:
198 			/* Disable bus master reload */
199 			if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
200 				acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
201 			break;
202 		}
203 	}
204 
205 	/* Prepare to use new state. */
206 	switch (new->type) {
207 	case ACPI_STATE_C3:
208 		/* Enable bus master reload */
209 		if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
210 			acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
211 		break;
212 	}
213 
214 	pr->power.state = new;
215 
216 	return;
217 }
218 
219 static void acpi_safe_halt(void)
220 {
221 	current_thread_info()->status &= ~TS_POLLING;
222 	/*
223 	 * TS_POLLING-cleared state must be visible before we
224 	 * test NEED_RESCHED:
225 	 */
226 	smp_mb();
227 	if (!need_resched())
228 		safe_halt();
229 	current_thread_info()->status |= TS_POLLING;
230 }
231 
232 static atomic_t c3_cpu_count;
233 
234 /* Common C-state entry for C2, C3, .. */
235 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
236 {
237 	if (cstate->space_id == ACPI_CSTATE_FFH) {
238 		/* Call into architectural FFH based C-state */
239 		acpi_processor_ffh_cstate_enter(cstate);
240 	} else {
241 		int unused;
242 		/* IO port based C-state */
243 		inb(cstate->address);
244 		/* Dummy wait op - must do something useless after P_LVL2 read
245 		   because chipsets cannot guarantee that STPCLK# signal
246 		   gets asserted in time to freeze execution properly. */
247 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
248 	}
249 }
250 
251 #ifdef ARCH_APICTIMER_STOPS_ON_C3
252 
253 /*
254  * Some BIOS implementations switch to C3 in the published C2 state.
255  * This seems to be a common problem on AMD boxen, but other vendors
256  * are affected too. We pick the most conservative approach: we assume
257  * that the local APIC stops in both C2 and C3.
258  */
259 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
260 				   struct acpi_processor_cx *cx)
261 {
262 	struct acpi_processor_power *pwr = &pr->power;
263 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
264 
265 	/*
266 	 * Check, if one of the previous states already marked the lapic
267 	 * unstable
268 	 */
269 	if (pwr->timer_broadcast_on_state < state)
270 		return;
271 
272 	if (cx->type >= type)
273 		pr->power.timer_broadcast_on_state = state;
274 }
275 
276 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
277 {
278 #ifdef CONFIG_GENERIC_CLOCKEVENTS
279 	unsigned long reason;
280 
281 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
282 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
283 
284 	clockevents_notify(reason, &pr->id);
285 #else
286 	cpumask_t mask = cpumask_of_cpu(pr->id);
287 
288 	if (pr->power.timer_broadcast_on_state < INT_MAX)
289 		on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
290 	else
291 		on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
292 #endif
293 }
294 
295 /* Power(C) State timer broadcast control */
296 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
297 				       struct acpi_processor_cx *cx,
298 				       int broadcast)
299 {
300 #ifdef CONFIG_GENERIC_CLOCKEVENTS
301 
302 	int state = cx - pr->power.states;
303 
304 	if (state >= pr->power.timer_broadcast_on_state) {
305 		unsigned long reason;
306 
307 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
308 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
309 		clockevents_notify(reason, &pr->id);
310 	}
311 #endif
312 }
313 
314 #else
315 
316 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
317 				   struct acpi_processor_cx *cstate) { }
318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
319 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
320 				       struct acpi_processor_cx *cx,
321 				       int broadcast)
322 {
323 }
324 
325 #endif
326 
327 static void acpi_processor_idle(void)
328 {
329 	struct acpi_processor *pr = NULL;
330 	struct acpi_processor_cx *cx = NULL;
331 	struct acpi_processor_cx *next_state = NULL;
332 	int sleep_ticks = 0;
333 	u32 t1, t2 = 0;
334 
335 	/*
336 	 * Interrupts must be disabled during bus mastering calculations and
337 	 * for C2/C3 transitions.
338 	 */
339 	local_irq_disable();
340 
341 	pr = processors[smp_processor_id()];
342 	if (!pr) {
343 		local_irq_enable();
344 		return;
345 	}
346 
347 	/*
348 	 * Check whether we truly need to go idle, or should
349 	 * reschedule:
350 	 */
351 	if (unlikely(need_resched())) {
352 		local_irq_enable();
353 		return;
354 	}
355 
356 	cx = pr->power.state;
357 	if (!cx) {
358 		if (pm_idle_save)
359 			pm_idle_save();
360 		else
361 			acpi_safe_halt();
362 		return;
363 	}
364 
365 	/*
366 	 * Check BM Activity
367 	 * -----------------
368 	 * Check for bus mastering activity (if required), record, and check
369 	 * for demotion.
370 	 */
371 	if (pr->flags.bm_check) {
372 		u32 bm_status = 0;
373 		unsigned long diff = jiffies - pr->power.bm_check_timestamp;
374 
375 		if (diff > 31)
376 			diff = 31;
377 
378 		pr->power.bm_activity <<= diff;
379 
380 		acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
381 		if (bm_status) {
382 			pr->power.bm_activity |= 0x1;
383 			acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
384 		}
385 		/*
386 		 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
387 		 * the true state of bus mastering activity; forcing us to
388 		 * manually check the BMIDEA bit of each IDE channel.
389 		 */
390 		else if (errata.piix4.bmisx) {
391 			if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
392 			    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
393 				pr->power.bm_activity |= 0x1;
394 		}
395 
396 		pr->power.bm_check_timestamp = jiffies;
397 
398 		/*
399 		 * If bus mastering is or was active this jiffy, demote
400 		 * to avoid a faulty transition.  Note that the processor
401 		 * won't enter a low-power state during this call (to this
402 		 * function) but should upon the next.
403 		 *
404 		 * TBD: A better policy might be to fallback to the demotion
405 		 *      state (use it for this quantum only) istead of
406 		 *      demoting -- and rely on duration as our sole demotion
407 		 *      qualification.  This may, however, introduce DMA
408 		 *      issues (e.g. floppy DMA transfer overrun/underrun).
409 		 */
410 		if ((pr->power.bm_activity & 0x1) &&
411 		    cx->demotion.threshold.bm) {
412 			local_irq_enable();
413 			next_state = cx->demotion.state;
414 			goto end;
415 		}
416 	}
417 
418 #ifdef CONFIG_HOTPLUG_CPU
419 	/*
420 	 * Check for P_LVL2_UP flag before entering C2 and above on
421 	 * an SMP system. We do it here instead of doing it at _CST/P_LVL
422 	 * detection phase, to work cleanly with logical CPU hotplug.
423 	 */
424 	if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
425 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
426 		cx = &pr->power.states[ACPI_STATE_C1];
427 #endif
428 
429 	/*
430 	 * Sleep:
431 	 * ------
432 	 * Invoke the current Cx state to put the processor to sleep.
433 	 */
434 	if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
435 		current_thread_info()->status &= ~TS_POLLING;
436 		/*
437 		 * TS_POLLING-cleared state must be visible before we
438 		 * test NEED_RESCHED:
439 		 */
440 		smp_mb();
441 		if (need_resched()) {
442 			current_thread_info()->status |= TS_POLLING;
443 			local_irq_enable();
444 			return;
445 		}
446 	}
447 
448 	switch (cx->type) {
449 
450 	case ACPI_STATE_C1:
451 		/*
452 		 * Invoke C1.
453 		 * Use the appropriate idle routine, the one that would
454 		 * be used without acpi C-states.
455 		 */
456 		if (pm_idle_save)
457 			pm_idle_save();
458 		else
459 			acpi_safe_halt();
460 
461 		/*
462 		 * TBD: Can't get time duration while in C1, as resumes
463 		 *      go to an ISR rather than here.  Need to instrument
464 		 *      base interrupt handler.
465 		 */
466 		sleep_ticks = 0xFFFFFFFF;
467 		break;
468 
469 	case ACPI_STATE_C2:
470 		/* Get start time (ticks) */
471 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
472 		/* Invoke C2 */
473 		acpi_state_timer_broadcast(pr, cx, 1);
474 		acpi_cstate_enter(cx);
475 		/* Get end time (ticks) */
476 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
477 
478 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
479 		/* TSC halts in C2, so notify users */
480 		mark_tsc_unstable("possible TSC halt in C2");
481 #endif
482 		/* Re-enable interrupts */
483 		local_irq_enable();
484 		current_thread_info()->status |= TS_POLLING;
485 		/* Compute time (ticks) that we were actually asleep */
486 		sleep_ticks =
487 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
488 		acpi_state_timer_broadcast(pr, cx, 0);
489 		break;
490 
491 	case ACPI_STATE_C3:
492 
493 		/*
494 		 * disable bus master
495 		 * bm_check implies we need ARB_DIS
496 		 * !bm_check implies we need cache flush
497 		 * bm_control implies whether we can do ARB_DIS
498 		 *
499 		 * That leaves a case where bm_check is set and bm_control is
500 		 * not set. In that case we cannot do much, we enter C3
501 		 * without doing anything.
502 		 */
503 		if (pr->flags.bm_check && pr->flags.bm_control) {
504 			if (atomic_inc_return(&c3_cpu_count) ==
505 			    num_online_cpus()) {
506 				/*
507 				 * All CPUs are trying to go to C3
508 				 * Disable bus master arbitration
509 				 */
510 				acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
511 			}
512 		} else if (!pr->flags.bm_check) {
513 			/* SMP with no shared cache... Invalidate cache  */
514 			ACPI_FLUSH_CPU_CACHE();
515 		}
516 
517 		/* Get start time (ticks) */
518 		t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
519 		/* Invoke C3 */
520 		acpi_state_timer_broadcast(pr, cx, 1);
521 		acpi_cstate_enter(cx);
522 		/* Get end time (ticks) */
523 		t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
524 		if (pr->flags.bm_check && pr->flags.bm_control) {
525 			/* Enable bus master arbitration */
526 			atomic_dec(&c3_cpu_count);
527 			acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
528 		}
529 
530 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
531 		/* TSC halts in C3, so notify users */
532 		mark_tsc_unstable("TSC halts in C3");
533 #endif
534 		/* Re-enable interrupts */
535 		local_irq_enable();
536 		current_thread_info()->status |= TS_POLLING;
537 		/* Compute time (ticks) that we were actually asleep */
538 		sleep_ticks =
539 		    ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
540 		acpi_state_timer_broadcast(pr, cx, 0);
541 		break;
542 
543 	default:
544 		local_irq_enable();
545 		return;
546 	}
547 	cx->usage++;
548 	if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
549 		cx->time += sleep_ticks;
550 
551 	next_state = pr->power.state;
552 
553 #ifdef CONFIG_HOTPLUG_CPU
554 	/* Don't do promotion/demotion */
555 	if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
556 	    !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
557 		next_state = cx;
558 		goto end;
559 	}
560 #endif
561 
562 	/*
563 	 * Promotion?
564 	 * ----------
565 	 * Track the number of longs (time asleep is greater than threshold)
566 	 * and promote when the count threshold is reached.  Note that bus
567 	 * mastering activity may prevent promotions.
568 	 * Do not promote above max_cstate.
569 	 */
570 	if (cx->promotion.state &&
571 	    ((cx->promotion.state - pr->power.states) <= max_cstate)) {
572 		if (sleep_ticks > cx->promotion.threshold.ticks &&
573 		  cx->promotion.state->latency <= system_latency_constraint()) {
574 			cx->promotion.count++;
575 			cx->demotion.count = 0;
576 			if (cx->promotion.count >=
577 			    cx->promotion.threshold.count) {
578 				if (pr->flags.bm_check) {
579 					if (!
580 					    (pr->power.bm_activity & cx->
581 					     promotion.threshold.bm)) {
582 						next_state =
583 						    cx->promotion.state;
584 						goto end;
585 					}
586 				} else {
587 					next_state = cx->promotion.state;
588 					goto end;
589 				}
590 			}
591 		}
592 	}
593 
594 	/*
595 	 * Demotion?
596 	 * ---------
597 	 * Track the number of shorts (time asleep is less than time threshold)
598 	 * and demote when the usage threshold is reached.
599 	 */
600 	if (cx->demotion.state) {
601 		if (sleep_ticks < cx->demotion.threshold.ticks) {
602 			cx->demotion.count++;
603 			cx->promotion.count = 0;
604 			if (cx->demotion.count >= cx->demotion.threshold.count) {
605 				next_state = cx->demotion.state;
606 				goto end;
607 			}
608 		}
609 	}
610 
611       end:
612 	/*
613 	 * Demote if current state exceeds max_cstate
614 	 * or if the latency of the current state is unacceptable
615 	 */
616 	if ((pr->power.state - pr->power.states) > max_cstate ||
617 		pr->power.state->latency > system_latency_constraint()) {
618 		if (cx->demotion.state)
619 			next_state = cx->demotion.state;
620 	}
621 
622 	/*
623 	 * New Cx State?
624 	 * -------------
625 	 * If we're going to start using a new Cx state we must clean up
626 	 * from the previous and prepare to use the new.
627 	 */
628 	if (next_state != pr->power.state)
629 		acpi_processor_power_activate(pr, next_state);
630 }
631 
632 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
633 {
634 	unsigned int i;
635 	unsigned int state_is_set = 0;
636 	struct acpi_processor_cx *lower = NULL;
637 	struct acpi_processor_cx *higher = NULL;
638 	struct acpi_processor_cx *cx;
639 
640 
641 	if (!pr)
642 		return -EINVAL;
643 
644 	/*
645 	 * This function sets the default Cx state policy (OS idle handler).
646 	 * Our scheme is to promote quickly to C2 but more conservatively
647 	 * to C3.  We're favoring C2  for its characteristics of low latency
648 	 * (quick response), good power savings, and ability to allow bus
649 	 * mastering activity.  Note that the Cx state policy is completely
650 	 * customizable and can be altered dynamically.
651 	 */
652 
653 	/* startup state */
654 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
655 		cx = &pr->power.states[i];
656 		if (!cx->valid)
657 			continue;
658 
659 		if (!state_is_set)
660 			pr->power.state = cx;
661 		state_is_set++;
662 		break;
663 	}
664 
665 	if (!state_is_set)
666 		return -ENODEV;
667 
668 	/* demotion */
669 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
670 		cx = &pr->power.states[i];
671 		if (!cx->valid)
672 			continue;
673 
674 		if (lower) {
675 			cx->demotion.state = lower;
676 			cx->demotion.threshold.ticks = cx->latency_ticks;
677 			cx->demotion.threshold.count = 1;
678 			if (cx->type == ACPI_STATE_C3)
679 				cx->demotion.threshold.bm = bm_history;
680 		}
681 
682 		lower = cx;
683 	}
684 
685 	/* promotion */
686 	for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
687 		cx = &pr->power.states[i];
688 		if (!cx->valid)
689 			continue;
690 
691 		if (higher) {
692 			cx->promotion.state = higher;
693 			cx->promotion.threshold.ticks = cx->latency_ticks;
694 			if (cx->type >= ACPI_STATE_C2)
695 				cx->promotion.threshold.count = 4;
696 			else
697 				cx->promotion.threshold.count = 10;
698 			if (higher->type == ACPI_STATE_C3)
699 				cx->promotion.threshold.bm = bm_history;
700 		}
701 
702 		higher = cx;
703 	}
704 
705 	return 0;
706 }
707 
708 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
709 {
710 
711 	if (!pr)
712 		return -EINVAL;
713 
714 	if (!pr->pblk)
715 		return -ENODEV;
716 
717 	/* if info is obtained from pblk/fadt, type equals state */
718 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
719 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
720 
721 #ifndef CONFIG_HOTPLUG_CPU
722 	/*
723 	 * Check for P_LVL2_UP flag before entering C2 and above on
724 	 * an SMP system.
725 	 */
726 	if ((num_online_cpus() > 1) &&
727 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
728 		return -ENODEV;
729 #endif
730 
731 	/* determine C2 and C3 address from pblk */
732 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
733 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
734 
735 	/* determine latencies from FADT */
736 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
737 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
738 
739 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
740 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
741 			  pr->power.states[ACPI_STATE_C2].address,
742 			  pr->power.states[ACPI_STATE_C3].address));
743 
744 	return 0;
745 }
746 
747 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
748 {
749 	if (!pr->power.states[ACPI_STATE_C1].valid) {
750 		/* set the first C-State to C1 */
751 		/* all processors need to support C1 */
752 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
753 		pr->power.states[ACPI_STATE_C1].valid = 1;
754 	}
755 	/* the C0 state only exists as a filler in our array */
756 	pr->power.states[ACPI_STATE_C0].valid = 1;
757 	return 0;
758 }
759 
760 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
761 {
762 	acpi_status status = 0;
763 	acpi_integer count;
764 	int current_count;
765 	int i;
766 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
767 	union acpi_object *cst;
768 
769 
770 	if (nocst)
771 		return -ENODEV;
772 
773 	current_count = 0;
774 
775 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
776 	if (ACPI_FAILURE(status)) {
777 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
778 		return -ENODEV;
779 	}
780 
781 	cst = buffer.pointer;
782 
783 	/* There must be at least 2 elements */
784 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
785 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
786 		status = -EFAULT;
787 		goto end;
788 	}
789 
790 	count = cst->package.elements[0].integer.value;
791 
792 	/* Validate number of power states. */
793 	if (count < 1 || count != cst->package.count - 1) {
794 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
795 		status = -EFAULT;
796 		goto end;
797 	}
798 
799 	/* Tell driver that at least _CST is supported. */
800 	pr->flags.has_cst = 1;
801 
802 	for (i = 1; i <= count; i++) {
803 		union acpi_object *element;
804 		union acpi_object *obj;
805 		struct acpi_power_register *reg;
806 		struct acpi_processor_cx cx;
807 
808 		memset(&cx, 0, sizeof(cx));
809 
810 		element = &(cst->package.elements[i]);
811 		if (element->type != ACPI_TYPE_PACKAGE)
812 			continue;
813 
814 		if (element->package.count != 4)
815 			continue;
816 
817 		obj = &(element->package.elements[0]);
818 
819 		if (obj->type != ACPI_TYPE_BUFFER)
820 			continue;
821 
822 		reg = (struct acpi_power_register *)obj->buffer.pointer;
823 
824 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
825 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
826 			continue;
827 
828 		/* There should be an easy way to extract an integer... */
829 		obj = &(element->package.elements[1]);
830 		if (obj->type != ACPI_TYPE_INTEGER)
831 			continue;
832 
833 		cx.type = obj->integer.value;
834 		/*
835 		 * Some buggy BIOSes won't list C1 in _CST -
836 		 * Let acpi_processor_get_power_info_default() handle them later
837 		 */
838 		if (i == 1 && cx.type != ACPI_STATE_C1)
839 			current_count++;
840 
841 		cx.address = reg->address;
842 		cx.index = current_count + 1;
843 
844 		cx.space_id = ACPI_CSTATE_SYSTEMIO;
845 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
846 			if (acpi_processor_ffh_cstate_probe
847 					(pr->id, &cx, reg) == 0) {
848 				cx.space_id = ACPI_CSTATE_FFH;
849 			} else if (cx.type != ACPI_STATE_C1) {
850 				/*
851 				 * C1 is a special case where FIXED_HARDWARE
852 				 * can be handled in non-MWAIT way as well.
853 				 * In that case, save this _CST entry info.
854 				 * That is, we retain space_id of SYSTEM_IO for
855 				 * halt based C1.
856 				 * Otherwise, ignore this info and continue.
857 				 */
858 				continue;
859 			}
860 		}
861 
862 		obj = &(element->package.elements[2]);
863 		if (obj->type != ACPI_TYPE_INTEGER)
864 			continue;
865 
866 		cx.latency = obj->integer.value;
867 
868 		obj = &(element->package.elements[3]);
869 		if (obj->type != ACPI_TYPE_INTEGER)
870 			continue;
871 
872 		cx.power = obj->integer.value;
873 
874 		current_count++;
875 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
876 
877 		/*
878 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
879 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
880 		 */
881 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
882 			printk(KERN_WARNING
883 			       "Limiting number of power states to max (%d)\n",
884 			       ACPI_PROCESSOR_MAX_POWER);
885 			printk(KERN_WARNING
886 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
887 			break;
888 		}
889 	}
890 
891 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
892 			  current_count));
893 
894 	/* Validate number of power states discovered */
895 	if (current_count < 2)
896 		status = -EFAULT;
897 
898       end:
899 	kfree(buffer.pointer);
900 
901 	return status;
902 }
903 
904 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
905 {
906 
907 	if (!cx->address)
908 		return;
909 
910 	/*
911 	 * C2 latency must be less than or equal to 100
912 	 * microseconds.
913 	 */
914 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
915 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
916 				  "latency too large [%d]\n", cx->latency));
917 		return;
918 	}
919 
920 	/*
921 	 * Otherwise we've met all of our C2 requirements.
922 	 * Normalize the C2 latency to expidite policy
923 	 */
924 	cx->valid = 1;
925 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
926 
927 	return;
928 }
929 
930 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
931 					   struct acpi_processor_cx *cx)
932 {
933 	static int bm_check_flag;
934 
935 
936 	if (!cx->address)
937 		return;
938 
939 	/*
940 	 * C3 latency must be less than or equal to 1000
941 	 * microseconds.
942 	 */
943 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
944 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
945 				  "latency too large [%d]\n", cx->latency));
946 		return;
947 	}
948 
949 	/*
950 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
951 	 * DMA transfers are used by any ISA device to avoid livelock.
952 	 * Note that we could disable Type-F DMA (as recommended by
953 	 * the erratum), but this is known to disrupt certain ISA
954 	 * devices thus we take the conservative approach.
955 	 */
956 	else if (errata.piix4.fdma) {
957 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
958 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
959 		return;
960 	}
961 
962 	/* All the logic here assumes flags.bm_check is same across all CPUs */
963 	if (!bm_check_flag) {
964 		/* Determine whether bm_check is needed based on CPU  */
965 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
966 		bm_check_flag = pr->flags.bm_check;
967 	} else {
968 		pr->flags.bm_check = bm_check_flag;
969 	}
970 
971 	if (pr->flags.bm_check) {
972 		/* bus mastering control is necessary */
973 		if (!pr->flags.bm_control) {
974 			/* In this case we enter C3 without bus mastering */
975 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
976 				"C3 support without bus mastering control\n"));
977 		}
978 	} else {
979 		/*
980 		 * WBINVD should be set in fadt, for C3 state to be
981 		 * supported on when bm_check is not required.
982 		 */
983 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
984 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
985 					  "Cache invalidation should work properly"
986 					  " for C3 to be enabled on SMP systems\n"));
987 			return;
988 		}
989 		acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
990 	}
991 
992 	/*
993 	 * Otherwise we've met all of our C3 requirements.
994 	 * Normalize the C3 latency to expidite policy.  Enable
995 	 * checking of bus mastering status (bm_check) so we can
996 	 * use this in our C3 policy
997 	 */
998 	cx->valid = 1;
999 	cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1000 
1001 	return;
1002 }
1003 
1004 static int acpi_processor_power_verify(struct acpi_processor *pr)
1005 {
1006 	unsigned int i;
1007 	unsigned int working = 0;
1008 
1009 	pr->power.timer_broadcast_on_state = INT_MAX;
1010 
1011 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1012 		struct acpi_processor_cx *cx = &pr->power.states[i];
1013 
1014 		switch (cx->type) {
1015 		case ACPI_STATE_C1:
1016 			cx->valid = 1;
1017 			break;
1018 
1019 		case ACPI_STATE_C2:
1020 			acpi_processor_power_verify_c2(cx);
1021 			if (cx->valid)
1022 				acpi_timer_check_state(i, pr, cx);
1023 			break;
1024 
1025 		case ACPI_STATE_C3:
1026 			acpi_processor_power_verify_c3(pr, cx);
1027 			if (cx->valid)
1028 				acpi_timer_check_state(i, pr, cx);
1029 			break;
1030 		}
1031 
1032 		if (cx->valid)
1033 			working++;
1034 	}
1035 
1036 	acpi_propagate_timer_broadcast(pr);
1037 
1038 	return (working);
1039 }
1040 
1041 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1042 {
1043 	unsigned int i;
1044 	int result;
1045 
1046 
1047 	/* NOTE: the idle thread may not be running while calling
1048 	 * this function */
1049 
1050 	/* Zero initialize all the C-states info. */
1051 	memset(pr->power.states, 0, sizeof(pr->power.states));
1052 
1053 	result = acpi_processor_get_power_info_cst(pr);
1054 	if (result == -ENODEV)
1055 		result = acpi_processor_get_power_info_fadt(pr);
1056 
1057 	if (result)
1058 		return result;
1059 
1060 	acpi_processor_get_power_info_default(pr);
1061 
1062 	pr->power.count = acpi_processor_power_verify(pr);
1063 
1064 	/*
1065 	 * Set Default Policy
1066 	 * ------------------
1067 	 * Now that we know which states are supported, set the default
1068 	 * policy.  Note that this policy can be changed dynamically
1069 	 * (e.g. encourage deeper sleeps to conserve battery life when
1070 	 * not on AC).
1071 	 */
1072 	result = acpi_processor_set_power_policy(pr);
1073 	if (result)
1074 		return result;
1075 
1076 	/*
1077 	 * if one state of type C2 or C3 is available, mark this
1078 	 * CPU as being "idle manageable"
1079 	 */
1080 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1081 		if (pr->power.states[i].valid) {
1082 			pr->power.count = i;
1083 			if (pr->power.states[i].type >= ACPI_STATE_C2)
1084 				pr->flags.power = 1;
1085 		}
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1092 {
1093 	int result = 0;
1094 
1095 
1096 	if (!pr)
1097 		return -EINVAL;
1098 
1099 	if (nocst) {
1100 		return -ENODEV;
1101 	}
1102 
1103 	if (!pr->flags.power_setup_done)
1104 		return -ENODEV;
1105 
1106 	/* Fall back to the default idle loop */
1107 	pm_idle = pm_idle_save;
1108 	synchronize_sched();	/* Relies on interrupts forcing exit from idle. */
1109 
1110 	pr->flags.power = 0;
1111 	result = acpi_processor_get_power_info(pr);
1112 	if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1113 		pm_idle = acpi_processor_idle;
1114 
1115 	return result;
1116 }
1117 
1118 /* proc interface */
1119 
1120 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1121 {
1122 	struct acpi_processor *pr = seq->private;
1123 	unsigned int i;
1124 
1125 
1126 	if (!pr)
1127 		goto end;
1128 
1129 	seq_printf(seq, "active state:            C%zd\n"
1130 		   "max_cstate:              C%d\n"
1131 		   "bus master activity:     %08x\n"
1132 		   "maximum allowed latency: %d usec\n",
1133 		   pr->power.state ? pr->power.state - pr->power.states : 0,
1134 		   max_cstate, (unsigned)pr->power.bm_activity,
1135 		   system_latency_constraint());
1136 
1137 	seq_puts(seq, "states:\n");
1138 
1139 	for (i = 1; i <= pr->power.count; i++) {
1140 		seq_printf(seq, "   %cC%d:                  ",
1141 			   (&pr->power.states[i] ==
1142 			    pr->power.state ? '*' : ' '), i);
1143 
1144 		if (!pr->power.states[i].valid) {
1145 			seq_puts(seq, "<not supported>\n");
1146 			continue;
1147 		}
1148 
1149 		switch (pr->power.states[i].type) {
1150 		case ACPI_STATE_C1:
1151 			seq_printf(seq, "type[C1] ");
1152 			break;
1153 		case ACPI_STATE_C2:
1154 			seq_printf(seq, "type[C2] ");
1155 			break;
1156 		case ACPI_STATE_C3:
1157 			seq_printf(seq, "type[C3] ");
1158 			break;
1159 		default:
1160 			seq_printf(seq, "type[--] ");
1161 			break;
1162 		}
1163 
1164 		if (pr->power.states[i].promotion.state)
1165 			seq_printf(seq, "promotion[C%zd] ",
1166 				   (pr->power.states[i].promotion.state -
1167 				    pr->power.states));
1168 		else
1169 			seq_puts(seq, "promotion[--] ");
1170 
1171 		if (pr->power.states[i].demotion.state)
1172 			seq_printf(seq, "demotion[C%zd] ",
1173 				   (pr->power.states[i].demotion.state -
1174 				    pr->power.states));
1175 		else
1176 			seq_puts(seq, "demotion[--] ");
1177 
1178 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1179 			   pr->power.states[i].latency,
1180 			   pr->power.states[i].usage,
1181 			   (unsigned long long)pr->power.states[i].time);
1182 	}
1183 
1184       end:
1185 	return 0;
1186 }
1187 
1188 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1189 {
1190 	return single_open(file, acpi_processor_power_seq_show,
1191 			   PDE(inode)->data);
1192 }
1193 
1194 static const struct file_operations acpi_processor_power_fops = {
1195 	.open = acpi_processor_power_open_fs,
1196 	.read = seq_read,
1197 	.llseek = seq_lseek,
1198 	.release = single_release,
1199 };
1200 
1201 #ifdef CONFIG_SMP
1202 static void smp_callback(void *v)
1203 {
1204 	/* we already woke the CPU up, nothing more to do */
1205 }
1206 
1207 /*
1208  * This function gets called when a part of the kernel has a new latency
1209  * requirement.  This means we need to get all processors out of their C-state,
1210  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1211  * wakes them all right up.
1212  */
1213 static int acpi_processor_latency_notify(struct notifier_block *b,
1214 		unsigned long l, void *v)
1215 {
1216 	smp_call_function(smp_callback, NULL, 0, 1);
1217 	return NOTIFY_OK;
1218 }
1219 
1220 static struct notifier_block acpi_processor_latency_notifier = {
1221 	.notifier_call = acpi_processor_latency_notify,
1222 };
1223 #endif
1224 
1225 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1226 			      struct acpi_device *device)
1227 {
1228 	acpi_status status = 0;
1229 	static int first_run;
1230 	struct proc_dir_entry *entry = NULL;
1231 	unsigned int i;
1232 
1233 
1234 	if (!first_run) {
1235 		dmi_check_system(processor_power_dmi_table);
1236 		if (max_cstate < ACPI_C_STATES_MAX)
1237 			printk(KERN_NOTICE
1238 			       "ACPI: processor limited to max C-state %d\n",
1239 			       max_cstate);
1240 		first_run++;
1241 #ifdef CONFIG_SMP
1242 		register_latency_notifier(&acpi_processor_latency_notifier);
1243 #endif
1244 	}
1245 
1246 	if (!pr)
1247 		return -EINVAL;
1248 
1249 	if (acpi_gbl_FADT.cst_control && !nocst) {
1250 		status =
1251 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1252 		if (ACPI_FAILURE(status)) {
1253 			ACPI_EXCEPTION((AE_INFO, status,
1254 					"Notifying BIOS of _CST ability failed"));
1255 		}
1256 	}
1257 
1258 	acpi_processor_get_power_info(pr);
1259 
1260 	/*
1261 	 * Install the idle handler if processor power management is supported.
1262 	 * Note that we use previously set idle handler will be used on
1263 	 * platforms that only support C1.
1264 	 */
1265 	if ((pr->flags.power) && (!boot_option_idle_override)) {
1266 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1267 		for (i = 1; i <= pr->power.count; i++)
1268 			if (pr->power.states[i].valid)
1269 				printk(" C%d[C%d]", i,
1270 				       pr->power.states[i].type);
1271 		printk(")\n");
1272 
1273 		if (pr->id == 0) {
1274 			pm_idle_save = pm_idle;
1275 			pm_idle = acpi_processor_idle;
1276 		}
1277 	}
1278 
1279 	/* 'power' [R] */
1280 	entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1281 				  S_IRUGO, acpi_device_dir(device));
1282 	if (!entry)
1283 		return -EIO;
1284 	else {
1285 		entry->proc_fops = &acpi_processor_power_fops;
1286 		entry->data = acpi_driver_data(device);
1287 		entry->owner = THIS_MODULE;
1288 	}
1289 
1290 	pr->flags.power_setup_done = 1;
1291 
1292 	return 0;
1293 }
1294 
1295 int acpi_processor_power_exit(struct acpi_processor *pr,
1296 			      struct acpi_device *device)
1297 {
1298 
1299 	pr->flags.power_setup_done = 0;
1300 
1301 	if (acpi_device_dir(device))
1302 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1303 				  acpi_device_dir(device));
1304 
1305 	/* Unregister the idle handler when processor #0 is removed. */
1306 	if (pr->id == 0) {
1307 		pm_idle = pm_idle_save;
1308 
1309 		/*
1310 		 * We are about to unload the current idle thread pm callback
1311 		 * (pm_idle), Wait for all processors to update cached/local
1312 		 * copies of pm_idle before proceeding.
1313 		 */
1314 		cpu_idle_wait();
1315 #ifdef CONFIG_SMP
1316 		unregister_latency_notifier(&acpi_processor_latency_notifier);
1317 #endif
1318 	}
1319 
1320 	return 0;
1321 }
1322