xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 9fb29c73)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27 
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
36 
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46 
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50 
51 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
52 
53 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
54 module_param(max_cstate, uint, 0000);
55 static unsigned int nocst __read_mostly;
56 module_param(nocst, uint, 0000);
57 static int bm_check_disable __read_mostly;
58 module_param(bm_check_disable, uint, 0000);
59 
60 static unsigned int latency_factor __read_mostly = 2;
61 module_param(latency_factor, uint, 0644);
62 
63 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
64 
65 struct cpuidle_driver acpi_idle_driver = {
66 	.name =		"acpi_idle",
67 	.owner =	THIS_MODULE,
68 };
69 
70 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
71 static
72 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
73 
74 static int disabled_by_idle_boot_param(void)
75 {
76 	return boot_option_idle_override == IDLE_POLL ||
77 		boot_option_idle_override == IDLE_HALT;
78 }
79 
80 /*
81  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
82  * For now disable this. Probably a bug somewhere else.
83  *
84  * To skip this limit, boot/load with a large max_cstate limit.
85  */
86 static int set_max_cstate(const struct dmi_system_id *id)
87 {
88 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
89 		return 0;
90 
91 	pr_notice("%s detected - limiting to C%ld max_cstate."
92 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
93 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
94 
95 	max_cstate = (long)id->driver_data;
96 
97 	return 0;
98 }
99 
100 static const struct dmi_system_id processor_power_dmi_table[] = {
101 	{ set_max_cstate, "Clevo 5600D", {
102 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
103 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
104 	 (void *)2},
105 	{ set_max_cstate, "Pavilion zv5000", {
106 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
107 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
108 	 (void *)1},
109 	{ set_max_cstate, "Asus L8400B", {
110 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
111 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
112 	 (void *)1},
113 	{},
114 };
115 
116 
117 /*
118  * Callers should disable interrupts before the call and enable
119  * interrupts after return.
120  */
121 static void __cpuidle acpi_safe_halt(void)
122 {
123 	if (!tif_need_resched()) {
124 		safe_halt();
125 		local_irq_disable();
126 	}
127 }
128 
129 #ifdef ARCH_APICTIMER_STOPS_ON_C3
130 
131 /*
132  * Some BIOS implementations switch to C3 in the published C2 state.
133  * This seems to be a common problem on AMD boxen, but other vendors
134  * are affected too. We pick the most conservative approach: we assume
135  * that the local APIC stops in both C2 and C3.
136  */
137 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
138 				   struct acpi_processor_cx *cx)
139 {
140 	struct acpi_processor_power *pwr = &pr->power;
141 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
142 
143 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
144 		return;
145 
146 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
147 		type = ACPI_STATE_C1;
148 
149 	/*
150 	 * Check, if one of the previous states already marked the lapic
151 	 * unstable
152 	 */
153 	if (pwr->timer_broadcast_on_state < state)
154 		return;
155 
156 	if (cx->type >= type)
157 		pr->power.timer_broadcast_on_state = state;
158 }
159 
160 static void __lapic_timer_propagate_broadcast(void *arg)
161 {
162 	struct acpi_processor *pr = (struct acpi_processor *) arg;
163 
164 	if (pr->power.timer_broadcast_on_state < INT_MAX)
165 		tick_broadcast_enable();
166 	else
167 		tick_broadcast_disable();
168 }
169 
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
171 {
172 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173 				 (void *)pr, 1);
174 }
175 
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178 				       struct acpi_processor_cx *cx,
179 				       int broadcast)
180 {
181 	int state = cx - pr->power.states;
182 
183 	if (state >= pr->power.timer_broadcast_on_state) {
184 		if (broadcast)
185 			tick_broadcast_enter();
186 		else
187 			tick_broadcast_exit();
188 	}
189 }
190 
191 #else
192 
193 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
194 				   struct acpi_processor_cx *cstate) { }
195 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 }
201 
202 #endif
203 
204 #if defined(CONFIG_X86)
205 static void tsc_check_state(int state)
206 {
207 	switch (boot_cpu_data.x86_vendor) {
208 	case X86_VENDOR_HYGON:
209 	case X86_VENDOR_AMD:
210 	case X86_VENDOR_INTEL:
211 	case X86_VENDOR_CENTAUR:
212 		/*
213 		 * AMD Fam10h TSC will tick in all
214 		 * C/P/S0/S1 states when this bit is set.
215 		 */
216 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
217 			return;
218 
219 		/*FALL THROUGH*/
220 	default:
221 		/* TSC could halt in idle, so notify users */
222 		if (state > ACPI_STATE_C1)
223 			mark_tsc_unstable("TSC halts in idle");
224 	}
225 }
226 #else
227 static void tsc_check_state(int state) { return; }
228 #endif
229 
230 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
231 {
232 
233 	if (!pr->pblk)
234 		return -ENODEV;
235 
236 	/* if info is obtained from pblk/fadt, type equals state */
237 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
238 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
239 
240 #ifndef CONFIG_HOTPLUG_CPU
241 	/*
242 	 * Check for P_LVL2_UP flag before entering C2 and above on
243 	 * an SMP system.
244 	 */
245 	if ((num_online_cpus() > 1) &&
246 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
247 		return -ENODEV;
248 #endif
249 
250 	/* determine C2 and C3 address from pblk */
251 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
252 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
253 
254 	/* determine latencies from FADT */
255 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
256 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
257 
258 	/*
259 	 * FADT specified C2 latency must be less than or equal to
260 	 * 100 microseconds.
261 	 */
262 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
263 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
264 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
265 		/* invalidate C2 */
266 		pr->power.states[ACPI_STATE_C2].address = 0;
267 	}
268 
269 	/*
270 	 * FADT supplied C3 latency must be less than or equal to
271 	 * 1000 microseconds.
272 	 */
273 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
274 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
275 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
276 		/* invalidate C3 */
277 		pr->power.states[ACPI_STATE_C3].address = 0;
278 	}
279 
280 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
281 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
282 			  pr->power.states[ACPI_STATE_C2].address,
283 			  pr->power.states[ACPI_STATE_C3].address));
284 
285 	return 0;
286 }
287 
288 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
289 {
290 	if (!pr->power.states[ACPI_STATE_C1].valid) {
291 		/* set the first C-State to C1 */
292 		/* all processors need to support C1 */
293 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
294 		pr->power.states[ACPI_STATE_C1].valid = 1;
295 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
296 
297 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
298 			 ACPI_CX_DESC_LEN, "ACPI HLT");
299 	}
300 	/* the C0 state only exists as a filler in our array */
301 	pr->power.states[ACPI_STATE_C0].valid = 1;
302 	return 0;
303 }
304 
305 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
306 {
307 	acpi_status status;
308 	u64 count;
309 	int current_count;
310 	int i, ret = 0;
311 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
312 	union acpi_object *cst;
313 
314 	if (nocst)
315 		return -ENODEV;
316 
317 	current_count = 0;
318 
319 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
320 	if (ACPI_FAILURE(status)) {
321 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
322 		return -ENODEV;
323 	}
324 
325 	cst = buffer.pointer;
326 
327 	/* There must be at least 2 elements */
328 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
329 		pr_err("not enough elements in _CST\n");
330 		ret = -EFAULT;
331 		goto end;
332 	}
333 
334 	count = cst->package.elements[0].integer.value;
335 
336 	/* Validate number of power states. */
337 	if (count < 1 || count != cst->package.count - 1) {
338 		pr_err("count given by _CST is not valid\n");
339 		ret = -EFAULT;
340 		goto end;
341 	}
342 
343 	/* Tell driver that at least _CST is supported. */
344 	pr->flags.has_cst = 1;
345 
346 	for (i = 1; i <= count; i++) {
347 		union acpi_object *element;
348 		union acpi_object *obj;
349 		struct acpi_power_register *reg;
350 		struct acpi_processor_cx cx;
351 
352 		memset(&cx, 0, sizeof(cx));
353 
354 		element = &(cst->package.elements[i]);
355 		if (element->type != ACPI_TYPE_PACKAGE)
356 			continue;
357 
358 		if (element->package.count != 4)
359 			continue;
360 
361 		obj = &(element->package.elements[0]);
362 
363 		if (obj->type != ACPI_TYPE_BUFFER)
364 			continue;
365 
366 		reg = (struct acpi_power_register *)obj->buffer.pointer;
367 
368 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
369 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
370 			continue;
371 
372 		/* There should be an easy way to extract an integer... */
373 		obj = &(element->package.elements[1]);
374 		if (obj->type != ACPI_TYPE_INTEGER)
375 			continue;
376 
377 		cx.type = obj->integer.value;
378 		/*
379 		 * Some buggy BIOSes won't list C1 in _CST -
380 		 * Let acpi_processor_get_power_info_default() handle them later
381 		 */
382 		if (i == 1 && cx.type != ACPI_STATE_C1)
383 			current_count++;
384 
385 		cx.address = reg->address;
386 		cx.index = current_count + 1;
387 
388 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
389 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
390 			if (acpi_processor_ffh_cstate_probe
391 					(pr->id, &cx, reg) == 0) {
392 				cx.entry_method = ACPI_CSTATE_FFH;
393 			} else if (cx.type == ACPI_STATE_C1) {
394 				/*
395 				 * C1 is a special case where FIXED_HARDWARE
396 				 * can be handled in non-MWAIT way as well.
397 				 * In that case, save this _CST entry info.
398 				 * Otherwise, ignore this info and continue.
399 				 */
400 				cx.entry_method = ACPI_CSTATE_HALT;
401 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
402 			} else {
403 				continue;
404 			}
405 			if (cx.type == ACPI_STATE_C1 &&
406 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
407 				/*
408 				 * In most cases the C1 space_id obtained from
409 				 * _CST object is FIXED_HARDWARE access mode.
410 				 * But when the option of idle=halt is added,
411 				 * the entry_method type should be changed from
412 				 * CSTATE_FFH to CSTATE_HALT.
413 				 * When the option of idle=nomwait is added,
414 				 * the C1 entry_method type should be
415 				 * CSTATE_HALT.
416 				 */
417 				cx.entry_method = ACPI_CSTATE_HALT;
418 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
419 			}
420 		} else {
421 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
422 				 cx.address);
423 		}
424 
425 		if (cx.type == ACPI_STATE_C1) {
426 			cx.valid = 1;
427 		}
428 
429 		obj = &(element->package.elements[2]);
430 		if (obj->type != ACPI_TYPE_INTEGER)
431 			continue;
432 
433 		cx.latency = obj->integer.value;
434 
435 		obj = &(element->package.elements[3]);
436 		if (obj->type != ACPI_TYPE_INTEGER)
437 			continue;
438 
439 		current_count++;
440 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
441 
442 		/*
443 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
444 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
445 		 */
446 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
447 			pr_warn("Limiting number of power states to max (%d)\n",
448 				ACPI_PROCESSOR_MAX_POWER);
449 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
450 			break;
451 		}
452 	}
453 
454 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
455 			  current_count));
456 
457 	/* Validate number of power states discovered */
458 	if (current_count < 2)
459 		ret = -EFAULT;
460 
461       end:
462 	kfree(buffer.pointer);
463 
464 	return ret;
465 }
466 
467 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
468 					   struct acpi_processor_cx *cx)
469 {
470 	static int bm_check_flag = -1;
471 	static int bm_control_flag = -1;
472 
473 
474 	if (!cx->address)
475 		return;
476 
477 	/*
478 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
479 	 * DMA transfers are used by any ISA device to avoid livelock.
480 	 * Note that we could disable Type-F DMA (as recommended by
481 	 * the erratum), but this is known to disrupt certain ISA
482 	 * devices thus we take the conservative approach.
483 	 */
484 	else if (errata.piix4.fdma) {
485 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
486 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
487 		return;
488 	}
489 
490 	/* All the logic here assumes flags.bm_check is same across all CPUs */
491 	if (bm_check_flag == -1) {
492 		/* Determine whether bm_check is needed based on CPU  */
493 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
494 		bm_check_flag = pr->flags.bm_check;
495 		bm_control_flag = pr->flags.bm_control;
496 	} else {
497 		pr->flags.bm_check = bm_check_flag;
498 		pr->flags.bm_control = bm_control_flag;
499 	}
500 
501 	if (pr->flags.bm_check) {
502 		if (!pr->flags.bm_control) {
503 			if (pr->flags.has_cst != 1) {
504 				/* bus mastering control is necessary */
505 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
506 					"C3 support requires BM control\n"));
507 				return;
508 			} else {
509 				/* Here we enter C3 without bus mastering */
510 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
511 					"C3 support without BM control\n"));
512 			}
513 		}
514 	} else {
515 		/*
516 		 * WBINVD should be set in fadt, for C3 state to be
517 		 * supported on when bm_check is not required.
518 		 */
519 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
520 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
521 					  "Cache invalidation should work properly"
522 					  " for C3 to be enabled on SMP systems\n"));
523 			return;
524 		}
525 	}
526 
527 	/*
528 	 * Otherwise we've met all of our C3 requirements.
529 	 * Normalize the C3 latency to expidite policy.  Enable
530 	 * checking of bus mastering status (bm_check) so we can
531 	 * use this in our C3 policy
532 	 */
533 	cx->valid = 1;
534 
535 	/*
536 	 * On older chipsets, BM_RLD needs to be set
537 	 * in order for Bus Master activity to wake the
538 	 * system from C3.  Newer chipsets handle DMA
539 	 * during C3 automatically and BM_RLD is a NOP.
540 	 * In either case, the proper way to
541 	 * handle BM_RLD is to set it and leave it set.
542 	 */
543 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
544 
545 	return;
546 }
547 
548 static int acpi_processor_power_verify(struct acpi_processor *pr)
549 {
550 	unsigned int i;
551 	unsigned int working = 0;
552 
553 	pr->power.timer_broadcast_on_state = INT_MAX;
554 
555 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
556 		struct acpi_processor_cx *cx = &pr->power.states[i];
557 
558 		switch (cx->type) {
559 		case ACPI_STATE_C1:
560 			cx->valid = 1;
561 			break;
562 
563 		case ACPI_STATE_C2:
564 			if (!cx->address)
565 				break;
566 			cx->valid = 1;
567 			break;
568 
569 		case ACPI_STATE_C3:
570 			acpi_processor_power_verify_c3(pr, cx);
571 			break;
572 		}
573 		if (!cx->valid)
574 			continue;
575 
576 		lapic_timer_check_state(i, pr, cx);
577 		tsc_check_state(cx->type);
578 		working++;
579 	}
580 
581 	lapic_timer_propagate_broadcast(pr);
582 
583 	return (working);
584 }
585 
586 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
587 {
588 	unsigned int i;
589 	int result;
590 
591 
592 	/* NOTE: the idle thread may not be running while calling
593 	 * this function */
594 
595 	/* Zero initialize all the C-states info. */
596 	memset(pr->power.states, 0, sizeof(pr->power.states));
597 
598 	result = acpi_processor_get_power_info_cst(pr);
599 	if (result == -ENODEV)
600 		result = acpi_processor_get_power_info_fadt(pr);
601 
602 	if (result)
603 		return result;
604 
605 	acpi_processor_get_power_info_default(pr);
606 
607 	pr->power.count = acpi_processor_power_verify(pr);
608 
609 	/*
610 	 * if one state of type C2 or C3 is available, mark this
611 	 * CPU as being "idle manageable"
612 	 */
613 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
614 		if (pr->power.states[i].valid) {
615 			pr->power.count = i;
616 			if (pr->power.states[i].type >= ACPI_STATE_C2)
617 				pr->flags.power = 1;
618 		}
619 	}
620 
621 	return 0;
622 }
623 
624 /**
625  * acpi_idle_bm_check - checks if bus master activity was detected
626  */
627 static int acpi_idle_bm_check(void)
628 {
629 	u32 bm_status = 0;
630 
631 	if (bm_check_disable)
632 		return 0;
633 
634 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
635 	if (bm_status)
636 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
637 	/*
638 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
639 	 * the true state of bus mastering activity; forcing us to
640 	 * manually check the BMIDEA bit of each IDE channel.
641 	 */
642 	else if (errata.piix4.bmisx) {
643 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
644 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
645 			bm_status = 1;
646 	}
647 	return bm_status;
648 }
649 
650 /**
651  * acpi_idle_do_entry - enter idle state using the appropriate method
652  * @cx: cstate data
653  *
654  * Caller disables interrupt before call and enables interrupt after return.
655  */
656 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
657 {
658 	if (cx->entry_method == ACPI_CSTATE_FFH) {
659 		/* Call into architectural FFH based C-state */
660 		acpi_processor_ffh_cstate_enter(cx);
661 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
662 		acpi_safe_halt();
663 	} else {
664 		/* IO port based C-state */
665 		inb(cx->address);
666 		/* Dummy wait op - must do something useless after P_LVL2 read
667 		   because chipsets cannot guarantee that STPCLK# signal
668 		   gets asserted in time to freeze execution properly. */
669 		inl(acpi_gbl_FADT.xpm_timer_block.address);
670 	}
671 }
672 
673 /**
674  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
675  * @dev: the target CPU
676  * @index: the index of suggested state
677  */
678 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
679 {
680 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
681 
682 	ACPI_FLUSH_CPU_CACHE();
683 
684 	while (1) {
685 
686 		if (cx->entry_method == ACPI_CSTATE_HALT)
687 			safe_halt();
688 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
689 			inb(cx->address);
690 			/* See comment in acpi_idle_do_entry() */
691 			inl(acpi_gbl_FADT.xpm_timer_block.address);
692 		} else
693 			return -ENODEV;
694 	}
695 
696 	/* Never reached */
697 	return 0;
698 }
699 
700 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
701 {
702 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
703 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
704 }
705 
706 static int c3_cpu_count;
707 static DEFINE_RAW_SPINLOCK(c3_lock);
708 
709 /**
710  * acpi_idle_enter_bm - enters C3 with proper BM handling
711  * @pr: Target processor
712  * @cx: Target state context
713  * @timer_bc: Whether or not to change timer mode to broadcast
714  */
715 static void acpi_idle_enter_bm(struct acpi_processor *pr,
716 			       struct acpi_processor_cx *cx, bool timer_bc)
717 {
718 	acpi_unlazy_tlb(smp_processor_id());
719 
720 	/*
721 	 * Must be done before busmaster disable as we might need to
722 	 * access HPET !
723 	 */
724 	if (timer_bc)
725 		lapic_timer_state_broadcast(pr, cx, 1);
726 
727 	/*
728 	 * disable bus master
729 	 * bm_check implies we need ARB_DIS
730 	 * bm_control implies whether we can do ARB_DIS
731 	 *
732 	 * That leaves a case where bm_check is set and bm_control is
733 	 * not set. In that case we cannot do much, we enter C3
734 	 * without doing anything.
735 	 */
736 	if (pr->flags.bm_control) {
737 		raw_spin_lock(&c3_lock);
738 		c3_cpu_count++;
739 		/* Disable bus master arbitration when all CPUs are in C3 */
740 		if (c3_cpu_count == num_online_cpus())
741 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
742 		raw_spin_unlock(&c3_lock);
743 	}
744 
745 	acpi_idle_do_entry(cx);
746 
747 	/* Re-enable bus master arbitration */
748 	if (pr->flags.bm_control) {
749 		raw_spin_lock(&c3_lock);
750 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
751 		c3_cpu_count--;
752 		raw_spin_unlock(&c3_lock);
753 	}
754 
755 	if (timer_bc)
756 		lapic_timer_state_broadcast(pr, cx, 0);
757 }
758 
759 static int acpi_idle_enter(struct cpuidle_device *dev,
760 			   struct cpuidle_driver *drv, int index)
761 {
762 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
763 	struct acpi_processor *pr;
764 
765 	pr = __this_cpu_read(processors);
766 	if (unlikely(!pr))
767 		return -EINVAL;
768 
769 	if (cx->type != ACPI_STATE_C1) {
770 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
771 			index = ACPI_IDLE_STATE_START;
772 			cx = per_cpu(acpi_cstate[index], dev->cpu);
773 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
774 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
775 				acpi_idle_enter_bm(pr, cx, true);
776 				return index;
777 			} else if (drv->safe_state_index >= 0) {
778 				index = drv->safe_state_index;
779 				cx = per_cpu(acpi_cstate[index], dev->cpu);
780 			} else {
781 				acpi_safe_halt();
782 				return -EBUSY;
783 			}
784 		}
785 	}
786 
787 	lapic_timer_state_broadcast(pr, cx, 1);
788 
789 	if (cx->type == ACPI_STATE_C3)
790 		ACPI_FLUSH_CPU_CACHE();
791 
792 	acpi_idle_do_entry(cx);
793 
794 	lapic_timer_state_broadcast(pr, cx, 0);
795 
796 	return index;
797 }
798 
799 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
800 				   struct cpuidle_driver *drv, int index)
801 {
802 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
803 
804 	if (cx->type == ACPI_STATE_C3) {
805 		struct acpi_processor *pr = __this_cpu_read(processors);
806 
807 		if (unlikely(!pr))
808 			return;
809 
810 		if (pr->flags.bm_check) {
811 			acpi_idle_enter_bm(pr, cx, false);
812 			return;
813 		} else {
814 			ACPI_FLUSH_CPU_CACHE();
815 		}
816 	}
817 	acpi_idle_do_entry(cx);
818 }
819 
820 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
821 					   struct cpuidle_device *dev)
822 {
823 	int i, count = ACPI_IDLE_STATE_START;
824 	struct acpi_processor_cx *cx;
825 
826 	if (max_cstate == 0)
827 		max_cstate = 1;
828 
829 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
830 		cx = &pr->power.states[i];
831 
832 		if (!cx->valid)
833 			continue;
834 
835 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
836 
837 		count++;
838 		if (count == CPUIDLE_STATE_MAX)
839 			break;
840 	}
841 
842 	if (!count)
843 		return -EINVAL;
844 
845 	return 0;
846 }
847 
848 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
849 {
850 	int i, count;
851 	struct acpi_processor_cx *cx;
852 	struct cpuidle_state *state;
853 	struct cpuidle_driver *drv = &acpi_idle_driver;
854 
855 	if (max_cstate == 0)
856 		max_cstate = 1;
857 
858 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
859 		cpuidle_poll_state_init(drv);
860 		count = 1;
861 	} else {
862 		count = 0;
863 	}
864 
865 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
866 		cx = &pr->power.states[i];
867 
868 		if (!cx->valid)
869 			continue;
870 
871 		state = &drv->states[count];
872 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
873 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
874 		state->exit_latency = cx->latency;
875 		state->target_residency = cx->latency * latency_factor;
876 		state->enter = acpi_idle_enter;
877 
878 		state->flags = 0;
879 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
880 			state->enter_dead = acpi_idle_play_dead;
881 			drv->safe_state_index = count;
882 		}
883 		/*
884 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
885 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
886 		 * particularly interesting from the suspend-to-idle angle, so
887 		 * avoid C1 and the situations in which we may need to fall back
888 		 * to it altogether.
889 		 */
890 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
891 			state->enter_s2idle = acpi_idle_enter_s2idle;
892 
893 		count++;
894 		if (count == CPUIDLE_STATE_MAX)
895 			break;
896 	}
897 
898 	drv->state_count = count;
899 
900 	if (!count)
901 		return -EINVAL;
902 
903 	return 0;
904 }
905 
906 static inline void acpi_processor_cstate_first_run_checks(void)
907 {
908 	acpi_status status;
909 	static int first_run;
910 
911 	if (first_run)
912 		return;
913 	dmi_check_system(processor_power_dmi_table);
914 	max_cstate = acpi_processor_cstate_check(max_cstate);
915 	if (max_cstate < ACPI_C_STATES_MAX)
916 		pr_notice("ACPI: processor limited to max C-state %d\n",
917 			  max_cstate);
918 	first_run++;
919 
920 	if (acpi_gbl_FADT.cst_control && !nocst) {
921 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
922 					    acpi_gbl_FADT.cst_control, 8);
923 		if (ACPI_FAILURE(status))
924 			ACPI_EXCEPTION((AE_INFO, status,
925 					"Notifying BIOS of _CST ability failed"));
926 	}
927 }
928 #else
929 
930 static inline int disabled_by_idle_boot_param(void) { return 0; }
931 static inline void acpi_processor_cstate_first_run_checks(void) { }
932 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
933 {
934 	return -ENODEV;
935 }
936 
937 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
938 					   struct cpuidle_device *dev)
939 {
940 	return -EINVAL;
941 }
942 
943 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
944 {
945 	return -EINVAL;
946 }
947 
948 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
949 
950 struct acpi_lpi_states_array {
951 	unsigned int size;
952 	unsigned int composite_states_size;
953 	struct acpi_lpi_state *entries;
954 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
955 };
956 
957 static int obj_get_integer(union acpi_object *obj, u32 *value)
958 {
959 	if (obj->type != ACPI_TYPE_INTEGER)
960 		return -EINVAL;
961 
962 	*value = obj->integer.value;
963 	return 0;
964 }
965 
966 static int acpi_processor_evaluate_lpi(acpi_handle handle,
967 				       struct acpi_lpi_states_array *info)
968 {
969 	acpi_status status;
970 	int ret = 0;
971 	int pkg_count, state_idx = 1, loop;
972 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
973 	union acpi_object *lpi_data;
974 	struct acpi_lpi_state *lpi_state;
975 
976 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
977 	if (ACPI_FAILURE(status)) {
978 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
979 		return -ENODEV;
980 	}
981 
982 	lpi_data = buffer.pointer;
983 
984 	/* There must be at least 4 elements = 3 elements + 1 package */
985 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
986 	    lpi_data->package.count < 4) {
987 		pr_debug("not enough elements in _LPI\n");
988 		ret = -ENODATA;
989 		goto end;
990 	}
991 
992 	pkg_count = lpi_data->package.elements[2].integer.value;
993 
994 	/* Validate number of power states. */
995 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
996 		pr_debug("count given by _LPI is not valid\n");
997 		ret = -ENODATA;
998 		goto end;
999 	}
1000 
1001 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1002 	if (!lpi_state) {
1003 		ret = -ENOMEM;
1004 		goto end;
1005 	}
1006 
1007 	info->size = pkg_count;
1008 	info->entries = lpi_state;
1009 
1010 	/* LPI States start at index 3 */
1011 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1012 		union acpi_object *element, *pkg_elem, *obj;
1013 
1014 		element = &lpi_data->package.elements[loop];
1015 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1016 			continue;
1017 
1018 		pkg_elem = element->package.elements;
1019 
1020 		obj = pkg_elem + 6;
1021 		if (obj->type == ACPI_TYPE_BUFFER) {
1022 			struct acpi_power_register *reg;
1023 
1024 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1025 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1026 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1027 				continue;
1028 
1029 			lpi_state->address = reg->address;
1030 			lpi_state->entry_method =
1031 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1032 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1033 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1034 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1035 			lpi_state->address = obj->integer.value;
1036 		} else {
1037 			continue;
1038 		}
1039 
1040 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1041 
1042 		obj = pkg_elem + 9;
1043 		if (obj->type == ACPI_TYPE_STRING)
1044 			strlcpy(lpi_state->desc, obj->string.pointer,
1045 				ACPI_CX_DESC_LEN);
1046 
1047 		lpi_state->index = state_idx;
1048 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1049 			pr_debug("No min. residency found, assuming 10 us\n");
1050 			lpi_state->min_residency = 10;
1051 		}
1052 
1053 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1054 			pr_debug("No wakeup residency found, assuming 10 us\n");
1055 			lpi_state->wake_latency = 10;
1056 		}
1057 
1058 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1059 			lpi_state->flags = 0;
1060 
1061 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1062 			lpi_state->arch_flags = 0;
1063 
1064 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1065 			lpi_state->res_cnt_freq = 1;
1066 
1067 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1068 			lpi_state->enable_parent_state = 0;
1069 	}
1070 
1071 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1072 end:
1073 	kfree(buffer.pointer);
1074 	return ret;
1075 }
1076 
1077 /*
1078  * flat_state_cnt - the number of composite LPI states after the process of flattening
1079  */
1080 static int flat_state_cnt;
1081 
1082 /**
1083  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1084  *
1085  * @local: local LPI state
1086  * @parent: parent LPI state
1087  * @result: composite LPI state
1088  */
1089 static bool combine_lpi_states(struct acpi_lpi_state *local,
1090 			       struct acpi_lpi_state *parent,
1091 			       struct acpi_lpi_state *result)
1092 {
1093 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1094 		if (!parent->address) /* 0 means autopromotable */
1095 			return false;
1096 		result->address = local->address + parent->address;
1097 	} else {
1098 		result->address = parent->address;
1099 	}
1100 
1101 	result->min_residency = max(local->min_residency, parent->min_residency);
1102 	result->wake_latency = local->wake_latency + parent->wake_latency;
1103 	result->enable_parent_state = parent->enable_parent_state;
1104 	result->entry_method = local->entry_method;
1105 
1106 	result->flags = parent->flags;
1107 	result->arch_flags = parent->arch_flags;
1108 	result->index = parent->index;
1109 
1110 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1111 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1112 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1113 	return true;
1114 }
1115 
1116 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1117 
1118 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1119 				  struct acpi_lpi_state *t)
1120 {
1121 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1122 }
1123 
1124 static int flatten_lpi_states(struct acpi_processor *pr,
1125 			      struct acpi_lpi_states_array *curr_level,
1126 			      struct acpi_lpi_states_array *prev_level)
1127 {
1128 	int i, j, state_count = curr_level->size;
1129 	struct acpi_lpi_state *p, *t = curr_level->entries;
1130 
1131 	curr_level->composite_states_size = 0;
1132 	for (j = 0; j < state_count; j++, t++) {
1133 		struct acpi_lpi_state *flpi;
1134 
1135 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1136 			continue;
1137 
1138 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1139 			pr_warn("Limiting number of LPI states to max (%d)\n",
1140 				ACPI_PROCESSOR_MAX_POWER);
1141 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1142 			break;
1143 		}
1144 
1145 		flpi = &pr->power.lpi_states[flat_state_cnt];
1146 
1147 		if (!prev_level) { /* leaf/processor node */
1148 			memcpy(flpi, t, sizeof(*t));
1149 			stash_composite_state(curr_level, flpi);
1150 			flat_state_cnt++;
1151 			continue;
1152 		}
1153 
1154 		for (i = 0; i < prev_level->composite_states_size; i++) {
1155 			p = prev_level->composite_states[i];
1156 			if (t->index <= p->enable_parent_state &&
1157 			    combine_lpi_states(p, t, flpi)) {
1158 				stash_composite_state(curr_level, flpi);
1159 				flat_state_cnt++;
1160 				flpi++;
1161 			}
1162 		}
1163 	}
1164 
1165 	kfree(curr_level->entries);
1166 	return 0;
1167 }
1168 
1169 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1170 {
1171 	int ret, i;
1172 	acpi_status status;
1173 	acpi_handle handle = pr->handle, pr_ahandle;
1174 	struct acpi_device *d = NULL;
1175 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1176 
1177 	if (!osc_pc_lpi_support_confirmed)
1178 		return -EOPNOTSUPP;
1179 
1180 	if (!acpi_has_method(handle, "_LPI"))
1181 		return -EINVAL;
1182 
1183 	flat_state_cnt = 0;
1184 	prev = &info[0];
1185 	curr = &info[1];
1186 	handle = pr->handle;
1187 	ret = acpi_processor_evaluate_lpi(handle, prev);
1188 	if (ret)
1189 		return ret;
1190 	flatten_lpi_states(pr, prev, NULL);
1191 
1192 	status = acpi_get_parent(handle, &pr_ahandle);
1193 	while (ACPI_SUCCESS(status)) {
1194 		acpi_bus_get_device(pr_ahandle, &d);
1195 		handle = pr_ahandle;
1196 
1197 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1198 			break;
1199 
1200 		/* can be optional ? */
1201 		if (!acpi_has_method(handle, "_LPI"))
1202 			break;
1203 
1204 		ret = acpi_processor_evaluate_lpi(handle, curr);
1205 		if (ret)
1206 			break;
1207 
1208 		/* flatten all the LPI states in this level of hierarchy */
1209 		flatten_lpi_states(pr, curr, prev);
1210 
1211 		tmp = prev, prev = curr, curr = tmp;
1212 
1213 		status = acpi_get_parent(handle, &pr_ahandle);
1214 	}
1215 
1216 	pr->power.count = flat_state_cnt;
1217 	/* reset the index after flattening */
1218 	for (i = 0; i < pr->power.count; i++)
1219 		pr->power.lpi_states[i].index = i;
1220 
1221 	/* Tell driver that _LPI is supported. */
1222 	pr->flags.has_lpi = 1;
1223 	pr->flags.power = 1;
1224 
1225 	return 0;
1226 }
1227 
1228 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1229 {
1230 	return -ENODEV;
1231 }
1232 
1233 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1234 {
1235 	return -ENODEV;
1236 }
1237 
1238 /**
1239  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1240  * @dev: the target CPU
1241  * @drv: cpuidle driver containing cpuidle state info
1242  * @index: index of target state
1243  *
1244  * Return: 0 for success or negative value for error
1245  */
1246 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1247 			       struct cpuidle_driver *drv, int index)
1248 {
1249 	struct acpi_processor *pr;
1250 	struct acpi_lpi_state *lpi;
1251 
1252 	pr = __this_cpu_read(processors);
1253 
1254 	if (unlikely(!pr))
1255 		return -EINVAL;
1256 
1257 	lpi = &pr->power.lpi_states[index];
1258 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1259 		return acpi_processor_ffh_lpi_enter(lpi);
1260 
1261 	return -EINVAL;
1262 }
1263 
1264 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1265 {
1266 	int i;
1267 	struct acpi_lpi_state *lpi;
1268 	struct cpuidle_state *state;
1269 	struct cpuidle_driver *drv = &acpi_idle_driver;
1270 
1271 	if (!pr->flags.has_lpi)
1272 		return -EOPNOTSUPP;
1273 
1274 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1275 		lpi = &pr->power.lpi_states[i];
1276 
1277 		state = &drv->states[i];
1278 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1279 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1280 		state->exit_latency = lpi->wake_latency;
1281 		state->target_residency = lpi->min_residency;
1282 		if (lpi->arch_flags)
1283 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1284 		state->enter = acpi_idle_lpi_enter;
1285 		drv->safe_state_index = i;
1286 	}
1287 
1288 	drv->state_count = i;
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1295  * global state data i.e. idle routines
1296  *
1297  * @pr: the ACPI processor
1298  */
1299 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1300 {
1301 	int i;
1302 	struct cpuidle_driver *drv = &acpi_idle_driver;
1303 
1304 	if (!pr->flags.power_setup_done || !pr->flags.power)
1305 		return -EINVAL;
1306 
1307 	drv->safe_state_index = -1;
1308 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1309 		drv->states[i].name[0] = '\0';
1310 		drv->states[i].desc[0] = '\0';
1311 	}
1312 
1313 	if (pr->flags.has_lpi)
1314 		return acpi_processor_setup_lpi_states(pr);
1315 
1316 	return acpi_processor_setup_cstates(pr);
1317 }
1318 
1319 /**
1320  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1321  * device i.e. per-cpu data
1322  *
1323  * @pr: the ACPI processor
1324  * @dev : the cpuidle device
1325  */
1326 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1327 					    struct cpuidle_device *dev)
1328 {
1329 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1330 		return -EINVAL;
1331 
1332 	dev->cpu = pr->id;
1333 	if (pr->flags.has_lpi)
1334 		return acpi_processor_ffh_lpi_probe(pr->id);
1335 
1336 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1337 }
1338 
1339 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1340 {
1341 	int ret;
1342 
1343 	ret = acpi_processor_get_lpi_info(pr);
1344 	if (ret)
1345 		ret = acpi_processor_get_cstate_info(pr);
1346 
1347 	return ret;
1348 }
1349 
1350 int acpi_processor_hotplug(struct acpi_processor *pr)
1351 {
1352 	int ret = 0;
1353 	struct cpuidle_device *dev;
1354 
1355 	if (disabled_by_idle_boot_param())
1356 		return 0;
1357 
1358 	if (!pr->flags.power_setup_done)
1359 		return -ENODEV;
1360 
1361 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1362 	cpuidle_pause_and_lock();
1363 	cpuidle_disable_device(dev);
1364 	ret = acpi_processor_get_power_info(pr);
1365 	if (!ret && pr->flags.power) {
1366 		acpi_processor_setup_cpuidle_dev(pr, dev);
1367 		ret = cpuidle_enable_device(dev);
1368 	}
1369 	cpuidle_resume_and_unlock();
1370 
1371 	return ret;
1372 }
1373 
1374 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1375 {
1376 	int cpu;
1377 	struct acpi_processor *_pr;
1378 	struct cpuidle_device *dev;
1379 
1380 	if (disabled_by_idle_boot_param())
1381 		return 0;
1382 
1383 	if (!pr->flags.power_setup_done)
1384 		return -ENODEV;
1385 
1386 	/*
1387 	 * FIXME:  Design the ACPI notification to make it once per
1388 	 * system instead of once per-cpu.  This condition is a hack
1389 	 * to make the code that updates C-States be called once.
1390 	 */
1391 
1392 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1393 
1394 		/* Protect against cpu-hotplug */
1395 		get_online_cpus();
1396 		cpuidle_pause_and_lock();
1397 
1398 		/* Disable all cpuidle devices */
1399 		for_each_online_cpu(cpu) {
1400 			_pr = per_cpu(processors, cpu);
1401 			if (!_pr || !_pr->flags.power_setup_done)
1402 				continue;
1403 			dev = per_cpu(acpi_cpuidle_device, cpu);
1404 			cpuidle_disable_device(dev);
1405 		}
1406 
1407 		/* Populate Updated C-state information */
1408 		acpi_processor_get_power_info(pr);
1409 		acpi_processor_setup_cpuidle_states(pr);
1410 
1411 		/* Enable all cpuidle devices */
1412 		for_each_online_cpu(cpu) {
1413 			_pr = per_cpu(processors, cpu);
1414 			if (!_pr || !_pr->flags.power_setup_done)
1415 				continue;
1416 			acpi_processor_get_power_info(_pr);
1417 			if (_pr->flags.power) {
1418 				dev = per_cpu(acpi_cpuidle_device, cpu);
1419 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1420 				cpuidle_enable_device(dev);
1421 			}
1422 		}
1423 		cpuidle_resume_and_unlock();
1424 		put_online_cpus();
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static int acpi_processor_registered;
1431 
1432 int acpi_processor_power_init(struct acpi_processor *pr)
1433 {
1434 	int retval;
1435 	struct cpuidle_device *dev;
1436 
1437 	if (disabled_by_idle_boot_param())
1438 		return 0;
1439 
1440 	acpi_processor_cstate_first_run_checks();
1441 
1442 	if (!acpi_processor_get_power_info(pr))
1443 		pr->flags.power_setup_done = 1;
1444 
1445 	/*
1446 	 * Install the idle handler if processor power management is supported.
1447 	 * Note that we use previously set idle handler will be used on
1448 	 * platforms that only support C1.
1449 	 */
1450 	if (pr->flags.power) {
1451 		/* Register acpi_idle_driver if not already registered */
1452 		if (!acpi_processor_registered) {
1453 			acpi_processor_setup_cpuidle_states(pr);
1454 			retval = cpuidle_register_driver(&acpi_idle_driver);
1455 			if (retval)
1456 				return retval;
1457 			pr_debug("%s registered with cpuidle\n",
1458 				 acpi_idle_driver.name);
1459 		}
1460 
1461 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1462 		if (!dev)
1463 			return -ENOMEM;
1464 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1465 
1466 		acpi_processor_setup_cpuidle_dev(pr, dev);
1467 
1468 		/* Register per-cpu cpuidle_device. Cpuidle driver
1469 		 * must already be registered before registering device
1470 		 */
1471 		retval = cpuidle_register_device(dev);
1472 		if (retval) {
1473 			if (acpi_processor_registered == 0)
1474 				cpuidle_unregister_driver(&acpi_idle_driver);
1475 			return retval;
1476 		}
1477 		acpi_processor_registered++;
1478 	}
1479 	return 0;
1480 }
1481 
1482 int acpi_processor_power_exit(struct acpi_processor *pr)
1483 {
1484 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1485 
1486 	if (disabled_by_idle_boot_param())
1487 		return 0;
1488 
1489 	if (pr->flags.power) {
1490 		cpuidle_unregister_device(dev);
1491 		acpi_processor_registered--;
1492 		if (acpi_processor_registered == 0)
1493 			cpuidle_unregister_driver(&acpi_idle_driver);
1494 	}
1495 
1496 	pr->flags.power_setup_done = 0;
1497 	return 0;
1498 }
1499