xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 7dd65feb)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45 
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55 
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58 
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62 
63 #define PREFIX "ACPI: "
64 
65 #define ACPI_PROCESSOR_CLASS            "processor"
66 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
67 ACPI_MODULE_NAME("processor_idle");
68 #define ACPI_PROCESSOR_FILE_POWER	"power"
69 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
70 #define C2_OVERHEAD			1	/* 1us */
71 #define C3_OVERHEAD			1	/* 1us */
72 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
73 
74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
75 module_param(max_cstate, uint, 0000);
76 static unsigned int nocst __read_mostly;
77 module_param(nocst, uint, 0000);
78 
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81 
82 static s64 us_to_pm_timer_ticks(s64 t)
83 {
84 	return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
85 }
86 /*
87  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
88  * For now disable this. Probably a bug somewhere else.
89  *
90  * To skip this limit, boot/load with a large max_cstate limit.
91  */
92 static int set_max_cstate(const struct dmi_system_id *id)
93 {
94 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
95 		return 0;
96 
97 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
98 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
99 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
100 
101 	max_cstate = (long)id->driver_data;
102 
103 	return 0;
104 }
105 
106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
107    callers to only run once -AK */
108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
109 	{ set_max_cstate, "Clevo 5600D", {
110 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
111 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
112 	 (void *)2},
113 	{},
114 };
115 
116 
117 /*
118  * Callers should disable interrupts before the call and enable
119  * interrupts after return.
120  */
121 static void acpi_safe_halt(void)
122 {
123 	current_thread_info()->status &= ~TS_POLLING;
124 	/*
125 	 * TS_POLLING-cleared state must be visible before we
126 	 * test NEED_RESCHED:
127 	 */
128 	smp_mb();
129 	if (!need_resched()) {
130 		safe_halt();
131 		local_irq_disable();
132 	}
133 	current_thread_info()->status |= TS_POLLING;
134 }
135 
136 #ifdef ARCH_APICTIMER_STOPS_ON_C3
137 
138 /*
139  * Some BIOS implementations switch to C3 in the published C2 state.
140  * This seems to be a common problem on AMD boxen, but other vendors
141  * are affected too. We pick the most conservative approach: we assume
142  * that the local APIC stops in both C2 and C3.
143  */
144 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
145 				   struct acpi_processor_cx *cx)
146 {
147 	struct acpi_processor_power *pwr = &pr->power;
148 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
149 
150 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
151 		return;
152 
153 	if (boot_cpu_has(X86_FEATURE_AMDC1E))
154 		type = ACPI_STATE_C1;
155 
156 	/*
157 	 * Check, if one of the previous states already marked the lapic
158 	 * unstable
159 	 */
160 	if (pwr->timer_broadcast_on_state < state)
161 		return;
162 
163 	if (cx->type >= type)
164 		pr->power.timer_broadcast_on_state = state;
165 }
166 
167 static void __lapic_timer_propagate_broadcast(void *arg)
168 {
169 	struct acpi_processor *pr = (struct acpi_processor *) arg;
170 	unsigned long reason;
171 
172 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
173 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
174 
175 	clockevents_notify(reason, &pr->id);
176 }
177 
178 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
179 {
180 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
181 				 (void *)pr, 1);
182 }
183 
184 /* Power(C) State timer broadcast control */
185 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
186 				       struct acpi_processor_cx *cx,
187 				       int broadcast)
188 {
189 	int state = cx - pr->power.states;
190 
191 	if (state >= pr->power.timer_broadcast_on_state) {
192 		unsigned long reason;
193 
194 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
195 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
196 		clockevents_notify(reason, &pr->id);
197 	}
198 }
199 
200 #else
201 
202 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
203 				   struct acpi_processor_cx *cstate) { }
204 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
205 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
206 				       struct acpi_processor_cx *cx,
207 				       int broadcast)
208 {
209 }
210 
211 #endif
212 
213 /*
214  * Suspend / resume control
215  */
216 static int acpi_idle_suspend;
217 static u32 saved_bm_rld;
218 
219 static void acpi_idle_bm_rld_save(void)
220 {
221 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
222 }
223 static void acpi_idle_bm_rld_restore(void)
224 {
225 	u32 resumed_bm_rld;
226 
227 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
228 
229 	if (resumed_bm_rld != saved_bm_rld)
230 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
231 }
232 
233 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
234 {
235 	if (acpi_idle_suspend == 1)
236 		return 0;
237 
238 	acpi_idle_bm_rld_save();
239 	acpi_idle_suspend = 1;
240 	return 0;
241 }
242 
243 int acpi_processor_resume(struct acpi_device * device)
244 {
245 	if (acpi_idle_suspend == 0)
246 		return 0;
247 
248 	acpi_idle_bm_rld_restore();
249 	acpi_idle_suspend = 0;
250 	return 0;
251 }
252 
253 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
254 static void tsc_check_state(int state)
255 {
256 	switch (boot_cpu_data.x86_vendor) {
257 	case X86_VENDOR_AMD:
258 	case X86_VENDOR_INTEL:
259 		/*
260 		 * AMD Fam10h TSC will tick in all
261 		 * C/P/S0/S1 states when this bit is set.
262 		 */
263 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
264 			return;
265 
266 		/*FALL THROUGH*/
267 	default:
268 		/* TSC could halt in idle, so notify users */
269 		if (state > ACPI_STATE_C1)
270 			mark_tsc_unstable("TSC halts in idle");
271 	}
272 }
273 #else
274 static void tsc_check_state(int state) { return; }
275 #endif
276 
277 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
278 {
279 
280 	if (!pr)
281 		return -EINVAL;
282 
283 	if (!pr->pblk)
284 		return -ENODEV;
285 
286 	/* if info is obtained from pblk/fadt, type equals state */
287 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
288 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
289 
290 #ifndef CONFIG_HOTPLUG_CPU
291 	/*
292 	 * Check for P_LVL2_UP flag before entering C2 and above on
293 	 * an SMP system.
294 	 */
295 	if ((num_online_cpus() > 1) &&
296 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
297 		return -ENODEV;
298 #endif
299 
300 	/* determine C2 and C3 address from pblk */
301 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
302 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
303 
304 	/* determine latencies from FADT */
305 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
306 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
307 
308 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
309 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
310 			  pr->power.states[ACPI_STATE_C2].address,
311 			  pr->power.states[ACPI_STATE_C3].address));
312 
313 	return 0;
314 }
315 
316 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
317 {
318 	if (!pr->power.states[ACPI_STATE_C1].valid) {
319 		/* set the first C-State to C1 */
320 		/* all processors need to support C1 */
321 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
322 		pr->power.states[ACPI_STATE_C1].valid = 1;
323 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
324 	}
325 	/* the C0 state only exists as a filler in our array */
326 	pr->power.states[ACPI_STATE_C0].valid = 1;
327 	return 0;
328 }
329 
330 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
331 {
332 	acpi_status status = 0;
333 	acpi_integer count;
334 	int current_count;
335 	int i;
336 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
337 	union acpi_object *cst;
338 
339 
340 	if (nocst)
341 		return -ENODEV;
342 
343 	current_count = 0;
344 
345 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
346 	if (ACPI_FAILURE(status)) {
347 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
348 		return -ENODEV;
349 	}
350 
351 	cst = buffer.pointer;
352 
353 	/* There must be at least 2 elements */
354 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
355 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
356 		status = -EFAULT;
357 		goto end;
358 	}
359 
360 	count = cst->package.elements[0].integer.value;
361 
362 	/* Validate number of power states. */
363 	if (count < 1 || count != cst->package.count - 1) {
364 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
365 		status = -EFAULT;
366 		goto end;
367 	}
368 
369 	/* Tell driver that at least _CST is supported. */
370 	pr->flags.has_cst = 1;
371 
372 	for (i = 1; i <= count; i++) {
373 		union acpi_object *element;
374 		union acpi_object *obj;
375 		struct acpi_power_register *reg;
376 		struct acpi_processor_cx cx;
377 
378 		memset(&cx, 0, sizeof(cx));
379 
380 		element = &(cst->package.elements[i]);
381 		if (element->type != ACPI_TYPE_PACKAGE)
382 			continue;
383 
384 		if (element->package.count != 4)
385 			continue;
386 
387 		obj = &(element->package.elements[0]);
388 
389 		if (obj->type != ACPI_TYPE_BUFFER)
390 			continue;
391 
392 		reg = (struct acpi_power_register *)obj->buffer.pointer;
393 
394 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
395 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
396 			continue;
397 
398 		/* There should be an easy way to extract an integer... */
399 		obj = &(element->package.elements[1]);
400 		if (obj->type != ACPI_TYPE_INTEGER)
401 			continue;
402 
403 		cx.type = obj->integer.value;
404 		/*
405 		 * Some buggy BIOSes won't list C1 in _CST -
406 		 * Let acpi_processor_get_power_info_default() handle them later
407 		 */
408 		if (i == 1 && cx.type != ACPI_STATE_C1)
409 			current_count++;
410 
411 		cx.address = reg->address;
412 		cx.index = current_count + 1;
413 
414 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
415 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
416 			if (acpi_processor_ffh_cstate_probe
417 					(pr->id, &cx, reg) == 0) {
418 				cx.entry_method = ACPI_CSTATE_FFH;
419 			} else if (cx.type == ACPI_STATE_C1) {
420 				/*
421 				 * C1 is a special case where FIXED_HARDWARE
422 				 * can be handled in non-MWAIT way as well.
423 				 * In that case, save this _CST entry info.
424 				 * Otherwise, ignore this info and continue.
425 				 */
426 				cx.entry_method = ACPI_CSTATE_HALT;
427 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
428 			} else {
429 				continue;
430 			}
431 			if (cx.type == ACPI_STATE_C1 &&
432 					(idle_halt || idle_nomwait)) {
433 				/*
434 				 * In most cases the C1 space_id obtained from
435 				 * _CST object is FIXED_HARDWARE access mode.
436 				 * But when the option of idle=halt is added,
437 				 * the entry_method type should be changed from
438 				 * CSTATE_FFH to CSTATE_HALT.
439 				 * When the option of idle=nomwait is added,
440 				 * the C1 entry_method type should be
441 				 * CSTATE_HALT.
442 				 */
443 				cx.entry_method = ACPI_CSTATE_HALT;
444 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
445 			}
446 		} else {
447 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
448 				 cx.address);
449 		}
450 
451 		if (cx.type == ACPI_STATE_C1) {
452 			cx.valid = 1;
453 		}
454 
455 		obj = &(element->package.elements[2]);
456 		if (obj->type != ACPI_TYPE_INTEGER)
457 			continue;
458 
459 		cx.latency = obj->integer.value;
460 
461 		obj = &(element->package.elements[3]);
462 		if (obj->type != ACPI_TYPE_INTEGER)
463 			continue;
464 
465 		cx.power = obj->integer.value;
466 
467 		current_count++;
468 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
469 
470 		/*
471 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
472 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
473 		 */
474 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
475 			printk(KERN_WARNING
476 			       "Limiting number of power states to max (%d)\n",
477 			       ACPI_PROCESSOR_MAX_POWER);
478 			printk(KERN_WARNING
479 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
480 			break;
481 		}
482 	}
483 
484 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
485 			  current_count));
486 
487 	/* Validate number of power states discovered */
488 	if (current_count < 2)
489 		status = -EFAULT;
490 
491       end:
492 	kfree(buffer.pointer);
493 
494 	return status;
495 }
496 
497 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
498 {
499 
500 	if (!cx->address)
501 		return;
502 
503 	/*
504 	 * C2 latency must be less than or equal to 100
505 	 * microseconds.
506 	 */
507 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
508 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
509 				  "latency too large [%d]\n", cx->latency));
510 		return;
511 	}
512 
513 	/*
514 	 * Otherwise we've met all of our C2 requirements.
515 	 * Normalize the C2 latency to expidite policy
516 	 */
517 	cx->valid = 1;
518 
519 	cx->latency_ticks = cx->latency;
520 
521 	return;
522 }
523 
524 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
525 					   struct acpi_processor_cx *cx)
526 {
527 	static int bm_check_flag = -1;
528 	static int bm_control_flag = -1;
529 
530 
531 	if (!cx->address)
532 		return;
533 
534 	/*
535 	 * C3 latency must be less than or equal to 1000
536 	 * microseconds.
537 	 */
538 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
539 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
540 				  "latency too large [%d]\n", cx->latency));
541 		return;
542 	}
543 
544 	/*
545 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
546 	 * DMA transfers are used by any ISA device to avoid livelock.
547 	 * Note that we could disable Type-F DMA (as recommended by
548 	 * the erratum), but this is known to disrupt certain ISA
549 	 * devices thus we take the conservative approach.
550 	 */
551 	else if (errata.piix4.fdma) {
552 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
553 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
554 		return;
555 	}
556 
557 	/* All the logic here assumes flags.bm_check is same across all CPUs */
558 	if (bm_check_flag == -1) {
559 		/* Determine whether bm_check is needed based on CPU  */
560 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
561 		bm_check_flag = pr->flags.bm_check;
562 		bm_control_flag = pr->flags.bm_control;
563 	} else {
564 		pr->flags.bm_check = bm_check_flag;
565 		pr->flags.bm_control = bm_control_flag;
566 	}
567 
568 	if (pr->flags.bm_check) {
569 		if (!pr->flags.bm_control) {
570 			if (pr->flags.has_cst != 1) {
571 				/* bus mastering control is necessary */
572 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
573 					"C3 support requires BM control\n"));
574 				return;
575 			} else {
576 				/* Here we enter C3 without bus mastering */
577 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
578 					"C3 support without BM control\n"));
579 			}
580 		}
581 	} else {
582 		/*
583 		 * WBINVD should be set in fadt, for C3 state to be
584 		 * supported on when bm_check is not required.
585 		 */
586 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
587 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
588 					  "Cache invalidation should work properly"
589 					  " for C3 to be enabled on SMP systems\n"));
590 			return;
591 		}
592 	}
593 
594 	/*
595 	 * Otherwise we've met all of our C3 requirements.
596 	 * Normalize the C3 latency to expidite policy.  Enable
597 	 * checking of bus mastering status (bm_check) so we can
598 	 * use this in our C3 policy
599 	 */
600 	cx->valid = 1;
601 
602 	cx->latency_ticks = cx->latency;
603 	/*
604 	 * On older chipsets, BM_RLD needs to be set
605 	 * in order for Bus Master activity to wake the
606 	 * system from C3.  Newer chipsets handle DMA
607 	 * during C3 automatically and BM_RLD is a NOP.
608 	 * In either case, the proper way to
609 	 * handle BM_RLD is to set it and leave it set.
610 	 */
611 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
612 
613 	return;
614 }
615 
616 static int acpi_processor_power_verify(struct acpi_processor *pr)
617 {
618 	unsigned int i;
619 	unsigned int working = 0;
620 
621 	pr->power.timer_broadcast_on_state = INT_MAX;
622 
623 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
624 		struct acpi_processor_cx *cx = &pr->power.states[i];
625 
626 		switch (cx->type) {
627 		case ACPI_STATE_C1:
628 			cx->valid = 1;
629 			break;
630 
631 		case ACPI_STATE_C2:
632 			acpi_processor_power_verify_c2(cx);
633 			break;
634 
635 		case ACPI_STATE_C3:
636 			acpi_processor_power_verify_c3(pr, cx);
637 			break;
638 		}
639 		if (!cx->valid)
640 			continue;
641 
642 		lapic_timer_check_state(i, pr, cx);
643 		tsc_check_state(cx->type);
644 		working++;
645 	}
646 
647 	lapic_timer_propagate_broadcast(pr);
648 
649 	return (working);
650 }
651 
652 static int acpi_processor_get_power_info(struct acpi_processor *pr)
653 {
654 	unsigned int i;
655 	int result;
656 
657 
658 	/* NOTE: the idle thread may not be running while calling
659 	 * this function */
660 
661 	/* Zero initialize all the C-states info. */
662 	memset(pr->power.states, 0, sizeof(pr->power.states));
663 
664 	result = acpi_processor_get_power_info_cst(pr);
665 	if (result == -ENODEV)
666 		result = acpi_processor_get_power_info_fadt(pr);
667 
668 	if (result)
669 		return result;
670 
671 	acpi_processor_get_power_info_default(pr);
672 
673 	pr->power.count = acpi_processor_power_verify(pr);
674 
675 	/*
676 	 * if one state of type C2 or C3 is available, mark this
677 	 * CPU as being "idle manageable"
678 	 */
679 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
680 		if (pr->power.states[i].valid) {
681 			pr->power.count = i;
682 			if (pr->power.states[i].type >= ACPI_STATE_C2)
683 				pr->flags.power = 1;
684 		}
685 	}
686 
687 	return 0;
688 }
689 
690 #ifdef CONFIG_ACPI_PROCFS
691 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
692 {
693 	struct acpi_processor *pr = seq->private;
694 	unsigned int i;
695 
696 
697 	if (!pr)
698 		goto end;
699 
700 	seq_printf(seq, "active state:            C%zd\n"
701 		   "max_cstate:              C%d\n"
702 		   "maximum allowed latency: %d usec\n",
703 		   pr->power.state ? pr->power.state - pr->power.states : 0,
704 		   max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
705 
706 	seq_puts(seq, "states:\n");
707 
708 	for (i = 1; i <= pr->power.count; i++) {
709 		seq_printf(seq, "   %cC%d:                  ",
710 			   (&pr->power.states[i] ==
711 			    pr->power.state ? '*' : ' '), i);
712 
713 		if (!pr->power.states[i].valid) {
714 			seq_puts(seq, "<not supported>\n");
715 			continue;
716 		}
717 
718 		switch (pr->power.states[i].type) {
719 		case ACPI_STATE_C1:
720 			seq_printf(seq, "type[C1] ");
721 			break;
722 		case ACPI_STATE_C2:
723 			seq_printf(seq, "type[C2] ");
724 			break;
725 		case ACPI_STATE_C3:
726 			seq_printf(seq, "type[C3] ");
727 			break;
728 		default:
729 			seq_printf(seq, "type[--] ");
730 			break;
731 		}
732 
733 		if (pr->power.states[i].promotion.state)
734 			seq_printf(seq, "promotion[C%zd] ",
735 				   (pr->power.states[i].promotion.state -
736 				    pr->power.states));
737 		else
738 			seq_puts(seq, "promotion[--] ");
739 
740 		if (pr->power.states[i].demotion.state)
741 			seq_printf(seq, "demotion[C%zd] ",
742 				   (pr->power.states[i].demotion.state -
743 				    pr->power.states));
744 		else
745 			seq_puts(seq, "demotion[--] ");
746 
747 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
748 			   pr->power.states[i].latency,
749 			   pr->power.states[i].usage,
750 			   (unsigned long long)pr->power.states[i].time);
751 	}
752 
753       end:
754 	return 0;
755 }
756 
757 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
758 {
759 	return single_open(file, acpi_processor_power_seq_show,
760 			   PDE(inode)->data);
761 }
762 
763 static const struct file_operations acpi_processor_power_fops = {
764 	.owner = THIS_MODULE,
765 	.open = acpi_processor_power_open_fs,
766 	.read = seq_read,
767 	.llseek = seq_lseek,
768 	.release = single_release,
769 };
770 #endif
771 
772 /**
773  * acpi_idle_bm_check - checks if bus master activity was detected
774  */
775 static int acpi_idle_bm_check(void)
776 {
777 	u32 bm_status = 0;
778 
779 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
780 	if (bm_status)
781 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
782 	/*
783 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
784 	 * the true state of bus mastering activity; forcing us to
785 	 * manually check the BMIDEA bit of each IDE channel.
786 	 */
787 	else if (errata.piix4.bmisx) {
788 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
789 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
790 			bm_status = 1;
791 	}
792 	return bm_status;
793 }
794 
795 /**
796  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
797  * @cx: cstate data
798  *
799  * Caller disables interrupt before call and enables interrupt after return.
800  */
801 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
802 {
803 	/* Don't trace irqs off for idle */
804 	stop_critical_timings();
805 	if (cx->entry_method == ACPI_CSTATE_FFH) {
806 		/* Call into architectural FFH based C-state */
807 		acpi_processor_ffh_cstate_enter(cx);
808 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
809 		acpi_safe_halt();
810 	} else {
811 		int unused;
812 		/* IO port based C-state */
813 		inb(cx->address);
814 		/* Dummy wait op - must do something useless after P_LVL2 read
815 		   because chipsets cannot guarantee that STPCLK# signal
816 		   gets asserted in time to freeze execution properly. */
817 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
818 	}
819 	start_critical_timings();
820 }
821 
822 /**
823  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
824  * @dev: the target CPU
825  * @state: the state data
826  *
827  * This is equivalent to the HALT instruction.
828  */
829 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
830 			      struct cpuidle_state *state)
831 {
832 	ktime_t  kt1, kt2;
833 	s64 idle_time;
834 	struct acpi_processor *pr;
835 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
836 
837 	pr = __get_cpu_var(processors);
838 
839 	if (unlikely(!pr))
840 		return 0;
841 
842 	local_irq_disable();
843 
844 	/* Do not access any ACPI IO ports in suspend path */
845 	if (acpi_idle_suspend) {
846 		local_irq_enable();
847 		cpu_relax();
848 		return 0;
849 	}
850 
851 	lapic_timer_state_broadcast(pr, cx, 1);
852 	kt1 = ktime_get_real();
853 	acpi_idle_do_entry(cx);
854 	kt2 = ktime_get_real();
855 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
856 
857 	local_irq_enable();
858 	cx->usage++;
859 	lapic_timer_state_broadcast(pr, cx, 0);
860 
861 	return idle_time;
862 }
863 
864 /**
865  * acpi_idle_enter_simple - enters an ACPI state without BM handling
866  * @dev: the target CPU
867  * @state: the state data
868  */
869 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
870 				  struct cpuidle_state *state)
871 {
872 	struct acpi_processor *pr;
873 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
874 	ktime_t  kt1, kt2;
875 	s64 idle_time;
876 	s64 sleep_ticks = 0;
877 
878 	pr = __get_cpu_var(processors);
879 
880 	if (unlikely(!pr))
881 		return 0;
882 
883 	if (acpi_idle_suspend)
884 		return(acpi_idle_enter_c1(dev, state));
885 
886 	local_irq_disable();
887 	current_thread_info()->status &= ~TS_POLLING;
888 	/*
889 	 * TS_POLLING-cleared state must be visible before we test
890 	 * NEED_RESCHED:
891 	 */
892 	smp_mb();
893 
894 	if (unlikely(need_resched())) {
895 		current_thread_info()->status |= TS_POLLING;
896 		local_irq_enable();
897 		return 0;
898 	}
899 
900 	/*
901 	 * Must be done before busmaster disable as we might need to
902 	 * access HPET !
903 	 */
904 	lapic_timer_state_broadcast(pr, cx, 1);
905 
906 	if (cx->type == ACPI_STATE_C3)
907 		ACPI_FLUSH_CPU_CACHE();
908 
909 	kt1 = ktime_get_real();
910 	/* Tell the scheduler that we are going deep-idle: */
911 	sched_clock_idle_sleep_event();
912 	acpi_idle_do_entry(cx);
913 	kt2 = ktime_get_real();
914 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
915 
916 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
917 
918 	/* Tell the scheduler how much we idled: */
919 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
920 
921 	local_irq_enable();
922 	current_thread_info()->status |= TS_POLLING;
923 
924 	cx->usage++;
925 
926 	lapic_timer_state_broadcast(pr, cx, 0);
927 	cx->time += sleep_ticks;
928 	return idle_time;
929 }
930 
931 static int c3_cpu_count;
932 static DEFINE_SPINLOCK(c3_lock);
933 
934 /**
935  * acpi_idle_enter_bm - enters C3 with proper BM handling
936  * @dev: the target CPU
937  * @state: the state data
938  *
939  * If BM is detected, the deepest non-C3 idle state is entered instead.
940  */
941 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
942 			      struct cpuidle_state *state)
943 {
944 	struct acpi_processor *pr;
945 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
946 	ktime_t  kt1, kt2;
947 	s64 idle_time;
948 	s64 sleep_ticks = 0;
949 
950 
951 	pr = __get_cpu_var(processors);
952 
953 	if (unlikely(!pr))
954 		return 0;
955 
956 	if (acpi_idle_suspend)
957 		return(acpi_idle_enter_c1(dev, state));
958 
959 	if (acpi_idle_bm_check()) {
960 		if (dev->safe_state) {
961 			dev->last_state = dev->safe_state;
962 			return dev->safe_state->enter(dev, dev->safe_state);
963 		} else {
964 			local_irq_disable();
965 			acpi_safe_halt();
966 			local_irq_enable();
967 			return 0;
968 		}
969 	}
970 
971 	local_irq_disable();
972 	current_thread_info()->status &= ~TS_POLLING;
973 	/*
974 	 * TS_POLLING-cleared state must be visible before we test
975 	 * NEED_RESCHED:
976 	 */
977 	smp_mb();
978 
979 	if (unlikely(need_resched())) {
980 		current_thread_info()->status |= TS_POLLING;
981 		local_irq_enable();
982 		return 0;
983 	}
984 
985 	acpi_unlazy_tlb(smp_processor_id());
986 
987 	/* Tell the scheduler that we are going deep-idle: */
988 	sched_clock_idle_sleep_event();
989 	/*
990 	 * Must be done before busmaster disable as we might need to
991 	 * access HPET !
992 	 */
993 	lapic_timer_state_broadcast(pr, cx, 1);
994 
995 	kt1 = ktime_get_real();
996 	/*
997 	 * disable bus master
998 	 * bm_check implies we need ARB_DIS
999 	 * !bm_check implies we need cache flush
1000 	 * bm_control implies whether we can do ARB_DIS
1001 	 *
1002 	 * That leaves a case where bm_check is set and bm_control is
1003 	 * not set. In that case we cannot do much, we enter C3
1004 	 * without doing anything.
1005 	 */
1006 	if (pr->flags.bm_check && pr->flags.bm_control) {
1007 		spin_lock(&c3_lock);
1008 		c3_cpu_count++;
1009 		/* Disable bus master arbitration when all CPUs are in C3 */
1010 		if (c3_cpu_count == num_online_cpus())
1011 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1012 		spin_unlock(&c3_lock);
1013 	} else if (!pr->flags.bm_check) {
1014 		ACPI_FLUSH_CPU_CACHE();
1015 	}
1016 
1017 	acpi_idle_do_entry(cx);
1018 
1019 	/* Re-enable bus master arbitration */
1020 	if (pr->flags.bm_check && pr->flags.bm_control) {
1021 		spin_lock(&c3_lock);
1022 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1023 		c3_cpu_count--;
1024 		spin_unlock(&c3_lock);
1025 	}
1026 	kt2 = ktime_get_real();
1027 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
1028 
1029 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
1030 	/* Tell the scheduler how much we idled: */
1031 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1032 
1033 	local_irq_enable();
1034 	current_thread_info()->status |= TS_POLLING;
1035 
1036 	cx->usage++;
1037 
1038 	lapic_timer_state_broadcast(pr, cx, 0);
1039 	cx->time += sleep_ticks;
1040 	return idle_time;
1041 }
1042 
1043 struct cpuidle_driver acpi_idle_driver = {
1044 	.name =		"acpi_idle",
1045 	.owner =	THIS_MODULE,
1046 };
1047 
1048 /**
1049  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1050  * @pr: the ACPI processor
1051  */
1052 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1053 {
1054 	int i, count = CPUIDLE_DRIVER_STATE_START;
1055 	struct acpi_processor_cx *cx;
1056 	struct cpuidle_state *state;
1057 	struct cpuidle_device *dev = &pr->power.dev;
1058 
1059 	if (!pr->flags.power_setup_done)
1060 		return -EINVAL;
1061 
1062 	if (pr->flags.power == 0) {
1063 		return -EINVAL;
1064 	}
1065 
1066 	dev->cpu = pr->id;
1067 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1068 		dev->states[i].name[0] = '\0';
1069 		dev->states[i].desc[0] = '\0';
1070 	}
1071 
1072 	if (max_cstate == 0)
1073 		max_cstate = 1;
1074 
1075 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1076 		cx = &pr->power.states[i];
1077 		state = &dev->states[count];
1078 
1079 		if (!cx->valid)
1080 			continue;
1081 
1082 #ifdef CONFIG_HOTPLUG_CPU
1083 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1084 		    !pr->flags.has_cst &&
1085 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1086 			continue;
1087 #endif
1088 		cpuidle_set_statedata(state, cx);
1089 
1090 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1091 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1092 		state->exit_latency = cx->latency;
1093 		state->target_residency = cx->latency * latency_factor;
1094 		state->power_usage = cx->power;
1095 
1096 		state->flags = 0;
1097 		switch (cx->type) {
1098 			case ACPI_STATE_C1:
1099 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1100 			if (cx->entry_method == ACPI_CSTATE_FFH)
1101 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1102 
1103 			state->enter = acpi_idle_enter_c1;
1104 			dev->safe_state = state;
1105 			break;
1106 
1107 			case ACPI_STATE_C2:
1108 			state->flags |= CPUIDLE_FLAG_BALANCED;
1109 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1110 			state->enter = acpi_idle_enter_simple;
1111 			dev->safe_state = state;
1112 			break;
1113 
1114 			case ACPI_STATE_C3:
1115 			state->flags |= CPUIDLE_FLAG_DEEP;
1116 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1117 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1118 			state->enter = pr->flags.bm_check ?
1119 					acpi_idle_enter_bm :
1120 					acpi_idle_enter_simple;
1121 			break;
1122 		}
1123 
1124 		count++;
1125 		if (count == CPUIDLE_STATE_MAX)
1126 			break;
1127 	}
1128 
1129 	dev->state_count = count;
1130 
1131 	if (!count)
1132 		return -EINVAL;
1133 
1134 	return 0;
1135 }
1136 
1137 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1138 {
1139 	int ret = 0;
1140 
1141 	if (boot_option_idle_override)
1142 		return 0;
1143 
1144 	if (!pr)
1145 		return -EINVAL;
1146 
1147 	if (nocst) {
1148 		return -ENODEV;
1149 	}
1150 
1151 	if (!pr->flags.power_setup_done)
1152 		return -ENODEV;
1153 
1154 	cpuidle_pause_and_lock();
1155 	cpuidle_disable_device(&pr->power.dev);
1156 	acpi_processor_get_power_info(pr);
1157 	if (pr->flags.power) {
1158 		acpi_processor_setup_cpuidle(pr);
1159 		ret = cpuidle_enable_device(&pr->power.dev);
1160 	}
1161 	cpuidle_resume_and_unlock();
1162 
1163 	return ret;
1164 }
1165 
1166 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1167 			      struct acpi_device *device)
1168 {
1169 	acpi_status status = 0;
1170 	static int first_run;
1171 #ifdef CONFIG_ACPI_PROCFS
1172 	struct proc_dir_entry *entry = NULL;
1173 #endif
1174 
1175 	if (boot_option_idle_override)
1176 		return 0;
1177 
1178 	if (!first_run) {
1179 		if (idle_halt) {
1180 			/*
1181 			 * When the boot option of "idle=halt" is added, halt
1182 			 * is used for CPU IDLE.
1183 			 * In such case C2/C3 is meaningless. So the max_cstate
1184 			 * is set to one.
1185 			 */
1186 			max_cstate = 1;
1187 		}
1188 		dmi_check_system(processor_power_dmi_table);
1189 		max_cstate = acpi_processor_cstate_check(max_cstate);
1190 		if (max_cstate < ACPI_C_STATES_MAX)
1191 			printk(KERN_NOTICE
1192 			       "ACPI: processor limited to max C-state %d\n",
1193 			       max_cstate);
1194 		first_run++;
1195 	}
1196 
1197 	if (!pr)
1198 		return -EINVAL;
1199 
1200 	if (acpi_gbl_FADT.cst_control && !nocst) {
1201 		status =
1202 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1203 		if (ACPI_FAILURE(status)) {
1204 			ACPI_EXCEPTION((AE_INFO, status,
1205 					"Notifying BIOS of _CST ability failed"));
1206 		}
1207 	}
1208 
1209 	acpi_processor_get_power_info(pr);
1210 	pr->flags.power_setup_done = 1;
1211 
1212 	/*
1213 	 * Install the idle handler if processor power management is supported.
1214 	 * Note that we use previously set idle handler will be used on
1215 	 * platforms that only support C1.
1216 	 */
1217 	if (pr->flags.power) {
1218 		acpi_processor_setup_cpuidle(pr);
1219 		if (cpuidle_register_device(&pr->power.dev))
1220 			return -EIO;
1221 	}
1222 #ifdef CONFIG_ACPI_PROCFS
1223 	/* 'power' [R] */
1224 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1225 				 S_IRUGO, acpi_device_dir(device),
1226 				 &acpi_processor_power_fops,
1227 				 acpi_driver_data(device));
1228 	if (!entry)
1229 		return -EIO;
1230 #endif
1231 	return 0;
1232 }
1233 
1234 int acpi_processor_power_exit(struct acpi_processor *pr,
1235 			      struct acpi_device *device)
1236 {
1237 	if (boot_option_idle_override)
1238 		return 0;
1239 
1240 	cpuidle_unregister_device(&pr->power.dev);
1241 	pr->flags.power_setup_done = 0;
1242 
1243 #ifdef CONFIG_ACPI_PROCFS
1244 	if (acpi_device_dir(device))
1245 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1246 				  acpi_device_dir(device));
1247 #endif
1248 
1249 	return 0;
1250 }
1251