1 /* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/proc_fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/acpi.h> 38 #include <linux/dmi.h> 39 #include <linux/moduleparam.h> 40 #include <linux/sched.h> /* need_resched() */ 41 #include <linux/pm_qos_params.h> 42 #include <linux/clockchips.h> 43 #include <linux/cpuidle.h> 44 #include <linux/irqflags.h> 45 46 /* 47 * Include the apic definitions for x86 to have the APIC timer related defines 48 * available also for UP (on SMP it gets magically included via linux/smp.h). 49 * asm/acpi.h is not an option, as it would require more include magic. Also 50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 51 */ 52 #ifdef CONFIG_X86 53 #include <asm/apic.h> 54 #endif 55 56 #include <asm/io.h> 57 #include <asm/uaccess.h> 58 59 #include <acpi/acpi_bus.h> 60 #include <acpi/processor.h> 61 #include <asm/processor.h> 62 63 #define PREFIX "ACPI: " 64 65 #define ACPI_PROCESSOR_CLASS "processor" 66 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 67 ACPI_MODULE_NAME("processor_idle"); 68 #define ACPI_PROCESSOR_FILE_POWER "power" 69 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY) 70 #define C2_OVERHEAD 1 /* 1us */ 71 #define C3_OVERHEAD 1 /* 1us */ 72 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000)) 73 74 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER; 75 module_param(max_cstate, uint, 0000); 76 static unsigned int nocst __read_mostly; 77 module_param(nocst, uint, 0000); 78 79 static unsigned int latency_factor __read_mostly = 2; 80 module_param(latency_factor, uint, 0644); 81 82 static s64 us_to_pm_timer_ticks(s64 t) 83 { 84 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000); 85 } 86 /* 87 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 88 * For now disable this. Probably a bug somewhere else. 89 * 90 * To skip this limit, boot/load with a large max_cstate limit. 91 */ 92 static int set_max_cstate(const struct dmi_system_id *id) 93 { 94 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 95 return 0; 96 97 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 98 " Override with \"processor.max_cstate=%d\"\n", id->ident, 99 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 100 101 max_cstate = (long)id->driver_data; 102 103 return 0; 104 } 105 106 /* Actually this shouldn't be __cpuinitdata, would be better to fix the 107 callers to only run once -AK */ 108 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 109 { set_max_cstate, "Clevo 5600D", { 110 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 111 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 112 (void *)2}, 113 {}, 114 }; 115 116 117 /* 118 * Callers should disable interrupts before the call and enable 119 * interrupts after return. 120 */ 121 static void acpi_safe_halt(void) 122 { 123 current_thread_info()->status &= ~TS_POLLING; 124 /* 125 * TS_POLLING-cleared state must be visible before we 126 * test NEED_RESCHED: 127 */ 128 smp_mb(); 129 if (!need_resched()) { 130 safe_halt(); 131 local_irq_disable(); 132 } 133 current_thread_info()->status |= TS_POLLING; 134 } 135 136 #ifdef ARCH_APICTIMER_STOPS_ON_C3 137 138 /* 139 * Some BIOS implementations switch to C3 in the published C2 state. 140 * This seems to be a common problem on AMD boxen, but other vendors 141 * are affected too. We pick the most conservative approach: we assume 142 * that the local APIC stops in both C2 and C3. 143 */ 144 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 145 struct acpi_processor_cx *cx) 146 { 147 struct acpi_processor_power *pwr = &pr->power; 148 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 149 150 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT)) 151 return; 152 153 if (boot_cpu_has(X86_FEATURE_AMDC1E)) 154 type = ACPI_STATE_C1; 155 156 /* 157 * Check, if one of the previous states already marked the lapic 158 * unstable 159 */ 160 if (pwr->timer_broadcast_on_state < state) 161 return; 162 163 if (cx->type >= type) 164 pr->power.timer_broadcast_on_state = state; 165 } 166 167 static void __lapic_timer_propagate_broadcast(void *arg) 168 { 169 struct acpi_processor *pr = (struct acpi_processor *) arg; 170 unsigned long reason; 171 172 reason = pr->power.timer_broadcast_on_state < INT_MAX ? 173 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; 174 175 clockevents_notify(reason, &pr->id); 176 } 177 178 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) 179 { 180 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast, 181 (void *)pr, 1); 182 } 183 184 /* Power(C) State timer broadcast control */ 185 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 186 struct acpi_processor_cx *cx, 187 int broadcast) 188 { 189 int state = cx - pr->power.states; 190 191 if (state >= pr->power.timer_broadcast_on_state) { 192 unsigned long reason; 193 194 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : 195 CLOCK_EVT_NOTIFY_BROADCAST_EXIT; 196 clockevents_notify(reason, &pr->id); 197 } 198 } 199 200 #else 201 202 static void lapic_timer_check_state(int state, struct acpi_processor *pr, 203 struct acpi_processor_cx *cstate) { } 204 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { } 205 static void lapic_timer_state_broadcast(struct acpi_processor *pr, 206 struct acpi_processor_cx *cx, 207 int broadcast) 208 { 209 } 210 211 #endif 212 213 /* 214 * Suspend / resume control 215 */ 216 static int acpi_idle_suspend; 217 static u32 saved_bm_rld; 218 219 static void acpi_idle_bm_rld_save(void) 220 { 221 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld); 222 } 223 static void acpi_idle_bm_rld_restore(void) 224 { 225 u32 resumed_bm_rld; 226 227 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld); 228 229 if (resumed_bm_rld != saved_bm_rld) 230 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld); 231 } 232 233 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state) 234 { 235 if (acpi_idle_suspend == 1) 236 return 0; 237 238 acpi_idle_bm_rld_save(); 239 acpi_idle_suspend = 1; 240 return 0; 241 } 242 243 int acpi_processor_resume(struct acpi_device * device) 244 { 245 if (acpi_idle_suspend == 0) 246 return 0; 247 248 acpi_idle_bm_rld_restore(); 249 acpi_idle_suspend = 0; 250 return 0; 251 } 252 253 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86) 254 static void tsc_check_state(int state) 255 { 256 switch (boot_cpu_data.x86_vendor) { 257 case X86_VENDOR_AMD: 258 case X86_VENDOR_INTEL: 259 /* 260 * AMD Fam10h TSC will tick in all 261 * C/P/S0/S1 states when this bit is set. 262 */ 263 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) 264 return; 265 266 /*FALL THROUGH*/ 267 default: 268 /* TSC could halt in idle, so notify users */ 269 if (state > ACPI_STATE_C1) 270 mark_tsc_unstable("TSC halts in idle"); 271 } 272 } 273 #else 274 static void tsc_check_state(int state) { return; } 275 #endif 276 277 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 278 { 279 280 if (!pr) 281 return -EINVAL; 282 283 if (!pr->pblk) 284 return -ENODEV; 285 286 /* if info is obtained from pblk/fadt, type equals state */ 287 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 288 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 289 290 #ifndef CONFIG_HOTPLUG_CPU 291 /* 292 * Check for P_LVL2_UP flag before entering C2 and above on 293 * an SMP system. 294 */ 295 if ((num_online_cpus() > 1) && 296 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 297 return -ENODEV; 298 #endif 299 300 /* determine C2 and C3 address from pblk */ 301 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 302 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 303 304 /* determine latencies from FADT */ 305 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; 306 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; 307 308 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 309 "lvl2[0x%08x] lvl3[0x%08x]\n", 310 pr->power.states[ACPI_STATE_C2].address, 311 pr->power.states[ACPI_STATE_C3].address)); 312 313 return 0; 314 } 315 316 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 317 { 318 if (!pr->power.states[ACPI_STATE_C1].valid) { 319 /* set the first C-State to C1 */ 320 /* all processors need to support C1 */ 321 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 322 pr->power.states[ACPI_STATE_C1].valid = 1; 323 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT; 324 } 325 /* the C0 state only exists as a filler in our array */ 326 pr->power.states[ACPI_STATE_C0].valid = 1; 327 return 0; 328 } 329 330 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 331 { 332 acpi_status status = 0; 333 acpi_integer count; 334 int current_count; 335 int i; 336 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 337 union acpi_object *cst; 338 339 340 if (nocst) 341 return -ENODEV; 342 343 current_count = 0; 344 345 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 346 if (ACPI_FAILURE(status)) { 347 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 348 return -ENODEV; 349 } 350 351 cst = buffer.pointer; 352 353 /* There must be at least 2 elements */ 354 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 355 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 356 status = -EFAULT; 357 goto end; 358 } 359 360 count = cst->package.elements[0].integer.value; 361 362 /* Validate number of power states. */ 363 if (count < 1 || count != cst->package.count - 1) { 364 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 365 status = -EFAULT; 366 goto end; 367 } 368 369 /* Tell driver that at least _CST is supported. */ 370 pr->flags.has_cst = 1; 371 372 for (i = 1; i <= count; i++) { 373 union acpi_object *element; 374 union acpi_object *obj; 375 struct acpi_power_register *reg; 376 struct acpi_processor_cx cx; 377 378 memset(&cx, 0, sizeof(cx)); 379 380 element = &(cst->package.elements[i]); 381 if (element->type != ACPI_TYPE_PACKAGE) 382 continue; 383 384 if (element->package.count != 4) 385 continue; 386 387 obj = &(element->package.elements[0]); 388 389 if (obj->type != ACPI_TYPE_BUFFER) 390 continue; 391 392 reg = (struct acpi_power_register *)obj->buffer.pointer; 393 394 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 395 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 396 continue; 397 398 /* There should be an easy way to extract an integer... */ 399 obj = &(element->package.elements[1]); 400 if (obj->type != ACPI_TYPE_INTEGER) 401 continue; 402 403 cx.type = obj->integer.value; 404 /* 405 * Some buggy BIOSes won't list C1 in _CST - 406 * Let acpi_processor_get_power_info_default() handle them later 407 */ 408 if (i == 1 && cx.type != ACPI_STATE_C1) 409 current_count++; 410 411 cx.address = reg->address; 412 cx.index = current_count + 1; 413 414 cx.entry_method = ACPI_CSTATE_SYSTEMIO; 415 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 416 if (acpi_processor_ffh_cstate_probe 417 (pr->id, &cx, reg) == 0) { 418 cx.entry_method = ACPI_CSTATE_FFH; 419 } else if (cx.type == ACPI_STATE_C1) { 420 /* 421 * C1 is a special case where FIXED_HARDWARE 422 * can be handled in non-MWAIT way as well. 423 * In that case, save this _CST entry info. 424 * Otherwise, ignore this info and continue. 425 */ 426 cx.entry_method = ACPI_CSTATE_HALT; 427 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 428 } else { 429 continue; 430 } 431 if (cx.type == ACPI_STATE_C1 && 432 (idle_halt || idle_nomwait)) { 433 /* 434 * In most cases the C1 space_id obtained from 435 * _CST object is FIXED_HARDWARE access mode. 436 * But when the option of idle=halt is added, 437 * the entry_method type should be changed from 438 * CSTATE_FFH to CSTATE_HALT. 439 * When the option of idle=nomwait is added, 440 * the C1 entry_method type should be 441 * CSTATE_HALT. 442 */ 443 cx.entry_method = ACPI_CSTATE_HALT; 444 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT"); 445 } 446 } else { 447 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x", 448 cx.address); 449 } 450 451 if (cx.type == ACPI_STATE_C1) { 452 cx.valid = 1; 453 } 454 455 obj = &(element->package.elements[2]); 456 if (obj->type != ACPI_TYPE_INTEGER) 457 continue; 458 459 cx.latency = obj->integer.value; 460 461 obj = &(element->package.elements[3]); 462 if (obj->type != ACPI_TYPE_INTEGER) 463 continue; 464 465 cx.power = obj->integer.value; 466 467 current_count++; 468 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 469 470 /* 471 * We support total ACPI_PROCESSOR_MAX_POWER - 1 472 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 473 */ 474 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 475 printk(KERN_WARNING 476 "Limiting number of power states to max (%d)\n", 477 ACPI_PROCESSOR_MAX_POWER); 478 printk(KERN_WARNING 479 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 480 break; 481 } 482 } 483 484 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 485 current_count)); 486 487 /* Validate number of power states discovered */ 488 if (current_count < 2) 489 status = -EFAULT; 490 491 end: 492 kfree(buffer.pointer); 493 494 return status; 495 } 496 497 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx) 498 { 499 500 if (!cx->address) 501 return; 502 503 /* 504 * C2 latency must be less than or equal to 100 505 * microseconds. 506 */ 507 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 508 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 509 "latency too large [%d]\n", cx->latency)); 510 return; 511 } 512 513 /* 514 * Otherwise we've met all of our C2 requirements. 515 * Normalize the C2 latency to expidite policy 516 */ 517 cx->valid = 1; 518 519 cx->latency_ticks = cx->latency; 520 521 return; 522 } 523 524 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 525 struct acpi_processor_cx *cx) 526 { 527 static int bm_check_flag = -1; 528 static int bm_control_flag = -1; 529 530 531 if (!cx->address) 532 return; 533 534 /* 535 * C3 latency must be less than or equal to 1000 536 * microseconds. 537 */ 538 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 539 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 540 "latency too large [%d]\n", cx->latency)); 541 return; 542 } 543 544 /* 545 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 546 * DMA transfers are used by any ISA device to avoid livelock. 547 * Note that we could disable Type-F DMA (as recommended by 548 * the erratum), but this is known to disrupt certain ISA 549 * devices thus we take the conservative approach. 550 */ 551 else if (errata.piix4.fdma) { 552 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 553 "C3 not supported on PIIX4 with Type-F DMA\n")); 554 return; 555 } 556 557 /* All the logic here assumes flags.bm_check is same across all CPUs */ 558 if (bm_check_flag == -1) { 559 /* Determine whether bm_check is needed based on CPU */ 560 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 561 bm_check_flag = pr->flags.bm_check; 562 bm_control_flag = pr->flags.bm_control; 563 } else { 564 pr->flags.bm_check = bm_check_flag; 565 pr->flags.bm_control = bm_control_flag; 566 } 567 568 if (pr->flags.bm_check) { 569 if (!pr->flags.bm_control) { 570 if (pr->flags.has_cst != 1) { 571 /* bus mastering control is necessary */ 572 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 573 "C3 support requires BM control\n")); 574 return; 575 } else { 576 /* Here we enter C3 without bus mastering */ 577 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 578 "C3 support without BM control\n")); 579 } 580 } 581 } else { 582 /* 583 * WBINVD should be set in fadt, for C3 state to be 584 * supported on when bm_check is not required. 585 */ 586 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 587 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 588 "Cache invalidation should work properly" 589 " for C3 to be enabled on SMP systems\n")); 590 return; 591 } 592 } 593 594 /* 595 * Otherwise we've met all of our C3 requirements. 596 * Normalize the C3 latency to expidite policy. Enable 597 * checking of bus mastering status (bm_check) so we can 598 * use this in our C3 policy 599 */ 600 cx->valid = 1; 601 602 cx->latency_ticks = cx->latency; 603 /* 604 * On older chipsets, BM_RLD needs to be set 605 * in order for Bus Master activity to wake the 606 * system from C3. Newer chipsets handle DMA 607 * during C3 automatically and BM_RLD is a NOP. 608 * In either case, the proper way to 609 * handle BM_RLD is to set it and leave it set. 610 */ 611 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 612 613 return; 614 } 615 616 static int acpi_processor_power_verify(struct acpi_processor *pr) 617 { 618 unsigned int i; 619 unsigned int working = 0; 620 621 pr->power.timer_broadcast_on_state = INT_MAX; 622 623 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 624 struct acpi_processor_cx *cx = &pr->power.states[i]; 625 626 switch (cx->type) { 627 case ACPI_STATE_C1: 628 cx->valid = 1; 629 break; 630 631 case ACPI_STATE_C2: 632 acpi_processor_power_verify_c2(cx); 633 break; 634 635 case ACPI_STATE_C3: 636 acpi_processor_power_verify_c3(pr, cx); 637 break; 638 } 639 if (!cx->valid) 640 continue; 641 642 lapic_timer_check_state(i, pr, cx); 643 tsc_check_state(cx->type); 644 working++; 645 } 646 647 lapic_timer_propagate_broadcast(pr); 648 649 return (working); 650 } 651 652 static int acpi_processor_get_power_info(struct acpi_processor *pr) 653 { 654 unsigned int i; 655 int result; 656 657 658 /* NOTE: the idle thread may not be running while calling 659 * this function */ 660 661 /* Zero initialize all the C-states info. */ 662 memset(pr->power.states, 0, sizeof(pr->power.states)); 663 664 result = acpi_processor_get_power_info_cst(pr); 665 if (result == -ENODEV) 666 result = acpi_processor_get_power_info_fadt(pr); 667 668 if (result) 669 return result; 670 671 acpi_processor_get_power_info_default(pr); 672 673 pr->power.count = acpi_processor_power_verify(pr); 674 675 /* 676 * if one state of type C2 or C3 is available, mark this 677 * CPU as being "idle manageable" 678 */ 679 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 680 if (pr->power.states[i].valid) { 681 pr->power.count = i; 682 if (pr->power.states[i].type >= ACPI_STATE_C2) 683 pr->flags.power = 1; 684 } 685 } 686 687 return 0; 688 } 689 690 #ifdef CONFIG_ACPI_PROCFS 691 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 692 { 693 struct acpi_processor *pr = seq->private; 694 unsigned int i; 695 696 697 if (!pr) 698 goto end; 699 700 seq_printf(seq, "active state: C%zd\n" 701 "max_cstate: C%d\n" 702 "maximum allowed latency: %d usec\n", 703 pr->power.state ? pr->power.state - pr->power.states : 0, 704 max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)); 705 706 seq_puts(seq, "states:\n"); 707 708 for (i = 1; i <= pr->power.count; i++) { 709 seq_printf(seq, " %cC%d: ", 710 (&pr->power.states[i] == 711 pr->power.state ? '*' : ' '), i); 712 713 if (!pr->power.states[i].valid) { 714 seq_puts(seq, "<not supported>\n"); 715 continue; 716 } 717 718 switch (pr->power.states[i].type) { 719 case ACPI_STATE_C1: 720 seq_printf(seq, "type[C1] "); 721 break; 722 case ACPI_STATE_C2: 723 seq_printf(seq, "type[C2] "); 724 break; 725 case ACPI_STATE_C3: 726 seq_printf(seq, "type[C3] "); 727 break; 728 default: 729 seq_printf(seq, "type[--] "); 730 break; 731 } 732 733 if (pr->power.states[i].promotion.state) 734 seq_printf(seq, "promotion[C%zd] ", 735 (pr->power.states[i].promotion.state - 736 pr->power.states)); 737 else 738 seq_puts(seq, "promotion[--] "); 739 740 if (pr->power.states[i].demotion.state) 741 seq_printf(seq, "demotion[C%zd] ", 742 (pr->power.states[i].demotion.state - 743 pr->power.states)); 744 else 745 seq_puts(seq, "demotion[--] "); 746 747 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", 748 pr->power.states[i].latency, 749 pr->power.states[i].usage, 750 (unsigned long long)pr->power.states[i].time); 751 } 752 753 end: 754 return 0; 755 } 756 757 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 758 { 759 return single_open(file, acpi_processor_power_seq_show, 760 PDE(inode)->data); 761 } 762 763 static const struct file_operations acpi_processor_power_fops = { 764 .owner = THIS_MODULE, 765 .open = acpi_processor_power_open_fs, 766 .read = seq_read, 767 .llseek = seq_lseek, 768 .release = single_release, 769 }; 770 #endif 771 772 /** 773 * acpi_idle_bm_check - checks if bus master activity was detected 774 */ 775 static int acpi_idle_bm_check(void) 776 { 777 u32 bm_status = 0; 778 779 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 780 if (bm_status) 781 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 782 /* 783 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 784 * the true state of bus mastering activity; forcing us to 785 * manually check the BMIDEA bit of each IDE channel. 786 */ 787 else if (errata.piix4.bmisx) { 788 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 789 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 790 bm_status = 1; 791 } 792 return bm_status; 793 } 794 795 /** 796 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry 797 * @cx: cstate data 798 * 799 * Caller disables interrupt before call and enables interrupt after return. 800 */ 801 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx) 802 { 803 /* Don't trace irqs off for idle */ 804 stop_critical_timings(); 805 if (cx->entry_method == ACPI_CSTATE_FFH) { 806 /* Call into architectural FFH based C-state */ 807 acpi_processor_ffh_cstate_enter(cx); 808 } else if (cx->entry_method == ACPI_CSTATE_HALT) { 809 acpi_safe_halt(); 810 } else { 811 int unused; 812 /* IO port based C-state */ 813 inb(cx->address); 814 /* Dummy wait op - must do something useless after P_LVL2 read 815 because chipsets cannot guarantee that STPCLK# signal 816 gets asserted in time to freeze execution properly. */ 817 unused = inl(acpi_gbl_FADT.xpm_timer_block.address); 818 } 819 start_critical_timings(); 820 } 821 822 /** 823 * acpi_idle_enter_c1 - enters an ACPI C1 state-type 824 * @dev: the target CPU 825 * @state: the state data 826 * 827 * This is equivalent to the HALT instruction. 828 */ 829 static int acpi_idle_enter_c1(struct cpuidle_device *dev, 830 struct cpuidle_state *state) 831 { 832 ktime_t kt1, kt2; 833 s64 idle_time; 834 struct acpi_processor *pr; 835 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 836 837 pr = __get_cpu_var(processors); 838 839 if (unlikely(!pr)) 840 return 0; 841 842 local_irq_disable(); 843 844 /* Do not access any ACPI IO ports in suspend path */ 845 if (acpi_idle_suspend) { 846 local_irq_enable(); 847 cpu_relax(); 848 return 0; 849 } 850 851 lapic_timer_state_broadcast(pr, cx, 1); 852 kt1 = ktime_get_real(); 853 acpi_idle_do_entry(cx); 854 kt2 = ktime_get_real(); 855 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 856 857 local_irq_enable(); 858 cx->usage++; 859 lapic_timer_state_broadcast(pr, cx, 0); 860 861 return idle_time; 862 } 863 864 /** 865 * acpi_idle_enter_simple - enters an ACPI state without BM handling 866 * @dev: the target CPU 867 * @state: the state data 868 */ 869 static int acpi_idle_enter_simple(struct cpuidle_device *dev, 870 struct cpuidle_state *state) 871 { 872 struct acpi_processor *pr; 873 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 874 ktime_t kt1, kt2; 875 s64 idle_time; 876 s64 sleep_ticks = 0; 877 878 pr = __get_cpu_var(processors); 879 880 if (unlikely(!pr)) 881 return 0; 882 883 if (acpi_idle_suspend) 884 return(acpi_idle_enter_c1(dev, state)); 885 886 local_irq_disable(); 887 current_thread_info()->status &= ~TS_POLLING; 888 /* 889 * TS_POLLING-cleared state must be visible before we test 890 * NEED_RESCHED: 891 */ 892 smp_mb(); 893 894 if (unlikely(need_resched())) { 895 current_thread_info()->status |= TS_POLLING; 896 local_irq_enable(); 897 return 0; 898 } 899 900 /* 901 * Must be done before busmaster disable as we might need to 902 * access HPET ! 903 */ 904 lapic_timer_state_broadcast(pr, cx, 1); 905 906 if (cx->type == ACPI_STATE_C3) 907 ACPI_FLUSH_CPU_CACHE(); 908 909 kt1 = ktime_get_real(); 910 /* Tell the scheduler that we are going deep-idle: */ 911 sched_clock_idle_sleep_event(); 912 acpi_idle_do_entry(cx); 913 kt2 = ktime_get_real(); 914 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 915 916 sleep_ticks = us_to_pm_timer_ticks(idle_time); 917 918 /* Tell the scheduler how much we idled: */ 919 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); 920 921 local_irq_enable(); 922 current_thread_info()->status |= TS_POLLING; 923 924 cx->usage++; 925 926 lapic_timer_state_broadcast(pr, cx, 0); 927 cx->time += sleep_ticks; 928 return idle_time; 929 } 930 931 static int c3_cpu_count; 932 static DEFINE_SPINLOCK(c3_lock); 933 934 /** 935 * acpi_idle_enter_bm - enters C3 with proper BM handling 936 * @dev: the target CPU 937 * @state: the state data 938 * 939 * If BM is detected, the deepest non-C3 idle state is entered instead. 940 */ 941 static int acpi_idle_enter_bm(struct cpuidle_device *dev, 942 struct cpuidle_state *state) 943 { 944 struct acpi_processor *pr; 945 struct acpi_processor_cx *cx = cpuidle_get_statedata(state); 946 ktime_t kt1, kt2; 947 s64 idle_time; 948 s64 sleep_ticks = 0; 949 950 951 pr = __get_cpu_var(processors); 952 953 if (unlikely(!pr)) 954 return 0; 955 956 if (acpi_idle_suspend) 957 return(acpi_idle_enter_c1(dev, state)); 958 959 if (acpi_idle_bm_check()) { 960 if (dev->safe_state) { 961 dev->last_state = dev->safe_state; 962 return dev->safe_state->enter(dev, dev->safe_state); 963 } else { 964 local_irq_disable(); 965 acpi_safe_halt(); 966 local_irq_enable(); 967 return 0; 968 } 969 } 970 971 local_irq_disable(); 972 current_thread_info()->status &= ~TS_POLLING; 973 /* 974 * TS_POLLING-cleared state must be visible before we test 975 * NEED_RESCHED: 976 */ 977 smp_mb(); 978 979 if (unlikely(need_resched())) { 980 current_thread_info()->status |= TS_POLLING; 981 local_irq_enable(); 982 return 0; 983 } 984 985 acpi_unlazy_tlb(smp_processor_id()); 986 987 /* Tell the scheduler that we are going deep-idle: */ 988 sched_clock_idle_sleep_event(); 989 /* 990 * Must be done before busmaster disable as we might need to 991 * access HPET ! 992 */ 993 lapic_timer_state_broadcast(pr, cx, 1); 994 995 kt1 = ktime_get_real(); 996 /* 997 * disable bus master 998 * bm_check implies we need ARB_DIS 999 * !bm_check implies we need cache flush 1000 * bm_control implies whether we can do ARB_DIS 1001 * 1002 * That leaves a case where bm_check is set and bm_control is 1003 * not set. In that case we cannot do much, we enter C3 1004 * without doing anything. 1005 */ 1006 if (pr->flags.bm_check && pr->flags.bm_control) { 1007 spin_lock(&c3_lock); 1008 c3_cpu_count++; 1009 /* Disable bus master arbitration when all CPUs are in C3 */ 1010 if (c3_cpu_count == num_online_cpus()) 1011 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1); 1012 spin_unlock(&c3_lock); 1013 } else if (!pr->flags.bm_check) { 1014 ACPI_FLUSH_CPU_CACHE(); 1015 } 1016 1017 acpi_idle_do_entry(cx); 1018 1019 /* Re-enable bus master arbitration */ 1020 if (pr->flags.bm_check && pr->flags.bm_control) { 1021 spin_lock(&c3_lock); 1022 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0); 1023 c3_cpu_count--; 1024 spin_unlock(&c3_lock); 1025 } 1026 kt2 = ktime_get_real(); 1027 idle_time = ktime_to_us(ktime_sub(kt2, kt1)); 1028 1029 sleep_ticks = us_to_pm_timer_ticks(idle_time); 1030 /* Tell the scheduler how much we idled: */ 1031 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS); 1032 1033 local_irq_enable(); 1034 current_thread_info()->status |= TS_POLLING; 1035 1036 cx->usage++; 1037 1038 lapic_timer_state_broadcast(pr, cx, 0); 1039 cx->time += sleep_ticks; 1040 return idle_time; 1041 } 1042 1043 struct cpuidle_driver acpi_idle_driver = { 1044 .name = "acpi_idle", 1045 .owner = THIS_MODULE, 1046 }; 1047 1048 /** 1049 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE 1050 * @pr: the ACPI processor 1051 */ 1052 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr) 1053 { 1054 int i, count = CPUIDLE_DRIVER_STATE_START; 1055 struct acpi_processor_cx *cx; 1056 struct cpuidle_state *state; 1057 struct cpuidle_device *dev = &pr->power.dev; 1058 1059 if (!pr->flags.power_setup_done) 1060 return -EINVAL; 1061 1062 if (pr->flags.power == 0) { 1063 return -EINVAL; 1064 } 1065 1066 dev->cpu = pr->id; 1067 for (i = 0; i < CPUIDLE_STATE_MAX; i++) { 1068 dev->states[i].name[0] = '\0'; 1069 dev->states[i].desc[0] = '\0'; 1070 } 1071 1072 if (max_cstate == 0) 1073 max_cstate = 1; 1074 1075 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) { 1076 cx = &pr->power.states[i]; 1077 state = &dev->states[count]; 1078 1079 if (!cx->valid) 1080 continue; 1081 1082 #ifdef CONFIG_HOTPLUG_CPU 1083 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 1084 !pr->flags.has_cst && 1085 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 1086 continue; 1087 #endif 1088 cpuidle_set_statedata(state, cx); 1089 1090 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i); 1091 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN); 1092 state->exit_latency = cx->latency; 1093 state->target_residency = cx->latency * latency_factor; 1094 state->power_usage = cx->power; 1095 1096 state->flags = 0; 1097 switch (cx->type) { 1098 case ACPI_STATE_C1: 1099 state->flags |= CPUIDLE_FLAG_SHALLOW; 1100 if (cx->entry_method == ACPI_CSTATE_FFH) 1101 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1102 1103 state->enter = acpi_idle_enter_c1; 1104 dev->safe_state = state; 1105 break; 1106 1107 case ACPI_STATE_C2: 1108 state->flags |= CPUIDLE_FLAG_BALANCED; 1109 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1110 state->enter = acpi_idle_enter_simple; 1111 dev->safe_state = state; 1112 break; 1113 1114 case ACPI_STATE_C3: 1115 state->flags |= CPUIDLE_FLAG_DEEP; 1116 state->flags |= CPUIDLE_FLAG_TIME_VALID; 1117 state->flags |= CPUIDLE_FLAG_CHECK_BM; 1118 state->enter = pr->flags.bm_check ? 1119 acpi_idle_enter_bm : 1120 acpi_idle_enter_simple; 1121 break; 1122 } 1123 1124 count++; 1125 if (count == CPUIDLE_STATE_MAX) 1126 break; 1127 } 1128 1129 dev->state_count = count; 1130 1131 if (!count) 1132 return -EINVAL; 1133 1134 return 0; 1135 } 1136 1137 int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1138 { 1139 int ret = 0; 1140 1141 if (boot_option_idle_override) 1142 return 0; 1143 1144 if (!pr) 1145 return -EINVAL; 1146 1147 if (nocst) { 1148 return -ENODEV; 1149 } 1150 1151 if (!pr->flags.power_setup_done) 1152 return -ENODEV; 1153 1154 cpuidle_pause_and_lock(); 1155 cpuidle_disable_device(&pr->power.dev); 1156 acpi_processor_get_power_info(pr); 1157 if (pr->flags.power) { 1158 acpi_processor_setup_cpuidle(pr); 1159 ret = cpuidle_enable_device(&pr->power.dev); 1160 } 1161 cpuidle_resume_and_unlock(); 1162 1163 return ret; 1164 } 1165 1166 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1167 struct acpi_device *device) 1168 { 1169 acpi_status status = 0; 1170 static int first_run; 1171 #ifdef CONFIG_ACPI_PROCFS 1172 struct proc_dir_entry *entry = NULL; 1173 #endif 1174 1175 if (boot_option_idle_override) 1176 return 0; 1177 1178 if (!first_run) { 1179 if (idle_halt) { 1180 /* 1181 * When the boot option of "idle=halt" is added, halt 1182 * is used for CPU IDLE. 1183 * In such case C2/C3 is meaningless. So the max_cstate 1184 * is set to one. 1185 */ 1186 max_cstate = 1; 1187 } 1188 dmi_check_system(processor_power_dmi_table); 1189 max_cstate = acpi_processor_cstate_check(max_cstate); 1190 if (max_cstate < ACPI_C_STATES_MAX) 1191 printk(KERN_NOTICE 1192 "ACPI: processor limited to max C-state %d\n", 1193 max_cstate); 1194 first_run++; 1195 } 1196 1197 if (!pr) 1198 return -EINVAL; 1199 1200 if (acpi_gbl_FADT.cst_control && !nocst) { 1201 status = 1202 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); 1203 if (ACPI_FAILURE(status)) { 1204 ACPI_EXCEPTION((AE_INFO, status, 1205 "Notifying BIOS of _CST ability failed")); 1206 } 1207 } 1208 1209 acpi_processor_get_power_info(pr); 1210 pr->flags.power_setup_done = 1; 1211 1212 /* 1213 * Install the idle handler if processor power management is supported. 1214 * Note that we use previously set idle handler will be used on 1215 * platforms that only support C1. 1216 */ 1217 if (pr->flags.power) { 1218 acpi_processor_setup_cpuidle(pr); 1219 if (cpuidle_register_device(&pr->power.dev)) 1220 return -EIO; 1221 } 1222 #ifdef CONFIG_ACPI_PROCFS 1223 /* 'power' [R] */ 1224 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER, 1225 S_IRUGO, acpi_device_dir(device), 1226 &acpi_processor_power_fops, 1227 acpi_driver_data(device)); 1228 if (!entry) 1229 return -EIO; 1230 #endif 1231 return 0; 1232 } 1233 1234 int acpi_processor_power_exit(struct acpi_processor *pr, 1235 struct acpi_device *device) 1236 { 1237 if (boot_option_idle_override) 1238 return 0; 1239 1240 cpuidle_unregister_device(&pr->power.dev); 1241 pr->flags.power_setup_done = 0; 1242 1243 #ifdef CONFIG_ACPI_PROCFS 1244 if (acpi_device_dir(device)) 1245 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1246 acpi_device_dir(device)); 1247 #endif 1248 1249 return 0; 1250 } 1251