xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 78c99ba1)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>	/* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45 
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55 
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58 
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62 
63 #define ACPI_PROCESSOR_CLASS            "processor"
64 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER	"power"
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD			1	/* 1us */
69 #define C3_OVERHEAD			1	/* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71 
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76 
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79 
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82 	return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86  * For now disable this. Probably a bug somewhere else.
87  *
88  * To skip this limit, boot/load with a large max_cstate limit.
89  */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93 		return 0;
94 
95 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
97 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98 
99 	max_cstate = (long)id->driver_data;
100 
101 	return 0;
102 }
103 
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105    callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107 	{ set_max_cstate, "Clevo 5600D", {
108 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110 	 (void *)2},
111 	{},
112 };
113 
114 
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void acpi_safe_halt(void)
120 {
121 	current_thread_info()->status &= ~TS_POLLING;
122 	/*
123 	 * TS_POLLING-cleared state must be visible before we
124 	 * test NEED_RESCHED:
125 	 */
126 	smp_mb();
127 	if (!need_resched()) {
128 		safe_halt();
129 		local_irq_disable();
130 	}
131 	current_thread_info()->status |= TS_POLLING;
132 }
133 
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135 
136 /*
137  * Some BIOS implementations switch to C3 in the published C2 state.
138  * This seems to be a common problem on AMD boxen, but other vendors
139  * are affected too. We pick the most conservative approach: we assume
140  * that the local APIC stops in both C2 and C3.
141  */
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143 				   struct acpi_processor_cx *cx)
144 {
145 	struct acpi_processor_power *pwr = &pr->power;
146 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147 
148 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149 		return;
150 
151 	if (boot_cpu_has(X86_FEATURE_AMDC1E))
152 		type = ACPI_STATE_C1;
153 
154 	/*
155 	 * Check, if one of the previous states already marked the lapic
156 	 * unstable
157 	 */
158 	if (pwr->timer_broadcast_on_state < state)
159 		return;
160 
161 	if (cx->type >= type)
162 		pr->power.timer_broadcast_on_state = state;
163 }
164 
165 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
166 {
167 	unsigned long reason;
168 
169 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
170 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
171 
172 	clockevents_notify(reason, &pr->id);
173 }
174 
175 /* Power(C) State timer broadcast control */
176 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
177 				       struct acpi_processor_cx *cx,
178 				       int broadcast)
179 {
180 	int state = cx - pr->power.states;
181 
182 	if (state >= pr->power.timer_broadcast_on_state) {
183 		unsigned long reason;
184 
185 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
186 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
187 		clockevents_notify(reason, &pr->id);
188 	}
189 }
190 
191 #else
192 
193 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
194 				   struct acpi_processor_cx *cstate) { }
195 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
196 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 }
201 
202 #endif
203 
204 /*
205  * Suspend / resume control
206  */
207 static int acpi_idle_suspend;
208 static u32 saved_bm_rld;
209 
210 static void acpi_idle_bm_rld_save(void)
211 {
212 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
213 }
214 static void acpi_idle_bm_rld_restore(void)
215 {
216 	u32 resumed_bm_rld;
217 
218 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
219 
220 	if (resumed_bm_rld != saved_bm_rld)
221 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
222 }
223 
224 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
225 {
226 	if (acpi_idle_suspend == 1)
227 		return 0;
228 
229 	acpi_idle_bm_rld_save();
230 	acpi_idle_suspend = 1;
231 	return 0;
232 }
233 
234 int acpi_processor_resume(struct acpi_device * device)
235 {
236 	if (acpi_idle_suspend == 0)
237 		return 0;
238 
239 	acpi_idle_bm_rld_restore();
240 	acpi_idle_suspend = 0;
241 	return 0;
242 }
243 
244 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
245 static void tsc_check_state(int state)
246 {
247 	switch (boot_cpu_data.x86_vendor) {
248 	case X86_VENDOR_AMD:
249 	case X86_VENDOR_INTEL:
250 		/*
251 		 * AMD Fam10h TSC will tick in all
252 		 * C/P/S0/S1 states when this bit is set.
253 		 */
254 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
255 			return;
256 
257 		/*FALL THROUGH*/
258 	default:
259 		/* TSC could halt in idle, so notify users */
260 		if (state > ACPI_STATE_C1)
261 			mark_tsc_unstable("TSC halts in idle");
262 	}
263 }
264 #else
265 static void tsc_check_state(int state) { return; }
266 #endif
267 
268 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
269 {
270 
271 	if (!pr)
272 		return -EINVAL;
273 
274 	if (!pr->pblk)
275 		return -ENODEV;
276 
277 	/* if info is obtained from pblk/fadt, type equals state */
278 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
279 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
280 
281 #ifndef CONFIG_HOTPLUG_CPU
282 	/*
283 	 * Check for P_LVL2_UP flag before entering C2 and above on
284 	 * an SMP system.
285 	 */
286 	if ((num_online_cpus() > 1) &&
287 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
288 		return -ENODEV;
289 #endif
290 
291 	/* determine C2 and C3 address from pblk */
292 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
293 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
294 
295 	/* determine latencies from FADT */
296 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
297 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
298 
299 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
300 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
301 			  pr->power.states[ACPI_STATE_C2].address,
302 			  pr->power.states[ACPI_STATE_C3].address));
303 
304 	return 0;
305 }
306 
307 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
308 {
309 	if (!pr->power.states[ACPI_STATE_C1].valid) {
310 		/* set the first C-State to C1 */
311 		/* all processors need to support C1 */
312 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
313 		pr->power.states[ACPI_STATE_C1].valid = 1;
314 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
315 	}
316 	/* the C0 state only exists as a filler in our array */
317 	pr->power.states[ACPI_STATE_C0].valid = 1;
318 	return 0;
319 }
320 
321 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
322 {
323 	acpi_status status = 0;
324 	acpi_integer count;
325 	int current_count;
326 	int i;
327 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
328 	union acpi_object *cst;
329 
330 
331 	if (nocst)
332 		return -ENODEV;
333 
334 	current_count = 0;
335 
336 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
337 	if (ACPI_FAILURE(status)) {
338 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
339 		return -ENODEV;
340 	}
341 
342 	cst = buffer.pointer;
343 
344 	/* There must be at least 2 elements */
345 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
346 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
347 		status = -EFAULT;
348 		goto end;
349 	}
350 
351 	count = cst->package.elements[0].integer.value;
352 
353 	/* Validate number of power states. */
354 	if (count < 1 || count != cst->package.count - 1) {
355 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
356 		status = -EFAULT;
357 		goto end;
358 	}
359 
360 	/* Tell driver that at least _CST is supported. */
361 	pr->flags.has_cst = 1;
362 
363 	for (i = 1; i <= count; i++) {
364 		union acpi_object *element;
365 		union acpi_object *obj;
366 		struct acpi_power_register *reg;
367 		struct acpi_processor_cx cx;
368 
369 		memset(&cx, 0, sizeof(cx));
370 
371 		element = &(cst->package.elements[i]);
372 		if (element->type != ACPI_TYPE_PACKAGE)
373 			continue;
374 
375 		if (element->package.count != 4)
376 			continue;
377 
378 		obj = &(element->package.elements[0]);
379 
380 		if (obj->type != ACPI_TYPE_BUFFER)
381 			continue;
382 
383 		reg = (struct acpi_power_register *)obj->buffer.pointer;
384 
385 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
386 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
387 			continue;
388 
389 		/* There should be an easy way to extract an integer... */
390 		obj = &(element->package.elements[1]);
391 		if (obj->type != ACPI_TYPE_INTEGER)
392 			continue;
393 
394 		cx.type = obj->integer.value;
395 		/*
396 		 * Some buggy BIOSes won't list C1 in _CST -
397 		 * Let acpi_processor_get_power_info_default() handle them later
398 		 */
399 		if (i == 1 && cx.type != ACPI_STATE_C1)
400 			current_count++;
401 
402 		cx.address = reg->address;
403 		cx.index = current_count + 1;
404 
405 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
406 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
407 			if (acpi_processor_ffh_cstate_probe
408 					(pr->id, &cx, reg) == 0) {
409 				cx.entry_method = ACPI_CSTATE_FFH;
410 			} else if (cx.type == ACPI_STATE_C1) {
411 				/*
412 				 * C1 is a special case where FIXED_HARDWARE
413 				 * can be handled in non-MWAIT way as well.
414 				 * In that case, save this _CST entry info.
415 				 * Otherwise, ignore this info and continue.
416 				 */
417 				cx.entry_method = ACPI_CSTATE_HALT;
418 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
419 			} else {
420 				continue;
421 			}
422 			if (cx.type == ACPI_STATE_C1 &&
423 					(idle_halt || idle_nomwait)) {
424 				/*
425 				 * In most cases the C1 space_id obtained from
426 				 * _CST object is FIXED_HARDWARE access mode.
427 				 * But when the option of idle=halt is added,
428 				 * the entry_method type should be changed from
429 				 * CSTATE_FFH to CSTATE_HALT.
430 				 * When the option of idle=nomwait is added,
431 				 * the C1 entry_method type should be
432 				 * CSTATE_HALT.
433 				 */
434 				cx.entry_method = ACPI_CSTATE_HALT;
435 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
436 			}
437 		} else {
438 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
439 				 cx.address);
440 		}
441 
442 		if (cx.type == ACPI_STATE_C1) {
443 			cx.valid = 1;
444 		}
445 
446 		obj = &(element->package.elements[2]);
447 		if (obj->type != ACPI_TYPE_INTEGER)
448 			continue;
449 
450 		cx.latency = obj->integer.value;
451 
452 		obj = &(element->package.elements[3]);
453 		if (obj->type != ACPI_TYPE_INTEGER)
454 			continue;
455 
456 		cx.power = obj->integer.value;
457 
458 		current_count++;
459 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
460 
461 		/*
462 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
463 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
464 		 */
465 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
466 			printk(KERN_WARNING
467 			       "Limiting number of power states to max (%d)\n",
468 			       ACPI_PROCESSOR_MAX_POWER);
469 			printk(KERN_WARNING
470 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
471 			break;
472 		}
473 	}
474 
475 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
476 			  current_count));
477 
478 	/* Validate number of power states discovered */
479 	if (current_count < 2)
480 		status = -EFAULT;
481 
482       end:
483 	kfree(buffer.pointer);
484 
485 	return status;
486 }
487 
488 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
489 {
490 
491 	if (!cx->address)
492 		return;
493 
494 	/*
495 	 * C2 latency must be less than or equal to 100
496 	 * microseconds.
497 	 */
498 	else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
499 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
500 				  "latency too large [%d]\n", cx->latency));
501 		return;
502 	}
503 
504 	/*
505 	 * Otherwise we've met all of our C2 requirements.
506 	 * Normalize the C2 latency to expidite policy
507 	 */
508 	cx->valid = 1;
509 
510 	cx->latency_ticks = cx->latency;
511 
512 	return;
513 }
514 
515 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
516 					   struct acpi_processor_cx *cx)
517 {
518 	static int bm_check_flag;
519 
520 
521 	if (!cx->address)
522 		return;
523 
524 	/*
525 	 * C3 latency must be less than or equal to 1000
526 	 * microseconds.
527 	 */
528 	else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
529 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
530 				  "latency too large [%d]\n", cx->latency));
531 		return;
532 	}
533 
534 	/*
535 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
536 	 * DMA transfers are used by any ISA device to avoid livelock.
537 	 * Note that we could disable Type-F DMA (as recommended by
538 	 * the erratum), but this is known to disrupt certain ISA
539 	 * devices thus we take the conservative approach.
540 	 */
541 	else if (errata.piix4.fdma) {
542 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
543 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
544 		return;
545 	}
546 
547 	/* All the logic here assumes flags.bm_check is same across all CPUs */
548 	if (!bm_check_flag) {
549 		/* Determine whether bm_check is needed based on CPU  */
550 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
551 		bm_check_flag = pr->flags.bm_check;
552 	} else {
553 		pr->flags.bm_check = bm_check_flag;
554 	}
555 
556 	if (pr->flags.bm_check) {
557 		if (!pr->flags.bm_control) {
558 			if (pr->flags.has_cst != 1) {
559 				/* bus mastering control is necessary */
560 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
561 					"C3 support requires BM control\n"));
562 				return;
563 			} else {
564 				/* Here we enter C3 without bus mastering */
565 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
566 					"C3 support without BM control\n"));
567 			}
568 		}
569 	} else {
570 		/*
571 		 * WBINVD should be set in fadt, for C3 state to be
572 		 * supported on when bm_check is not required.
573 		 */
574 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
575 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
576 					  "Cache invalidation should work properly"
577 					  " for C3 to be enabled on SMP systems\n"));
578 			return;
579 		}
580 	}
581 
582 	/*
583 	 * Otherwise we've met all of our C3 requirements.
584 	 * Normalize the C3 latency to expidite policy.  Enable
585 	 * checking of bus mastering status (bm_check) so we can
586 	 * use this in our C3 policy
587 	 */
588 	cx->valid = 1;
589 
590 	cx->latency_ticks = cx->latency;
591 	/*
592 	 * On older chipsets, BM_RLD needs to be set
593 	 * in order for Bus Master activity to wake the
594 	 * system from C3.  Newer chipsets handle DMA
595 	 * during C3 automatically and BM_RLD is a NOP.
596 	 * In either case, the proper way to
597 	 * handle BM_RLD is to set it and leave it set.
598 	 */
599 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
600 
601 	return;
602 }
603 
604 static int acpi_processor_power_verify(struct acpi_processor *pr)
605 {
606 	unsigned int i;
607 	unsigned int working = 0;
608 
609 	pr->power.timer_broadcast_on_state = INT_MAX;
610 
611 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
612 		struct acpi_processor_cx *cx = &pr->power.states[i];
613 
614 		switch (cx->type) {
615 		case ACPI_STATE_C1:
616 			cx->valid = 1;
617 			acpi_timer_check_state(i, pr, cx);
618 			break;
619 
620 		case ACPI_STATE_C2:
621 			acpi_processor_power_verify_c2(cx);
622 			if (cx->valid)
623 				acpi_timer_check_state(i, pr, cx);
624 			break;
625 
626 		case ACPI_STATE_C3:
627 			acpi_processor_power_verify_c3(pr, cx);
628 			if (cx->valid)
629 				acpi_timer_check_state(i, pr, cx);
630 			break;
631 		}
632 		if (cx->valid)
633 			tsc_check_state(cx->type);
634 
635 		if (cx->valid)
636 			working++;
637 	}
638 
639 	acpi_propagate_timer_broadcast(pr);
640 
641 	return (working);
642 }
643 
644 static int acpi_processor_get_power_info(struct acpi_processor *pr)
645 {
646 	unsigned int i;
647 	int result;
648 
649 
650 	/* NOTE: the idle thread may not be running while calling
651 	 * this function */
652 
653 	/* Zero initialize all the C-states info. */
654 	memset(pr->power.states, 0, sizeof(pr->power.states));
655 
656 	result = acpi_processor_get_power_info_cst(pr);
657 	if (result == -ENODEV)
658 		result = acpi_processor_get_power_info_fadt(pr);
659 
660 	if (result)
661 		return result;
662 
663 	acpi_processor_get_power_info_default(pr);
664 
665 	pr->power.count = acpi_processor_power_verify(pr);
666 
667 	/*
668 	 * if one state of type C2 or C3 is available, mark this
669 	 * CPU as being "idle manageable"
670 	 */
671 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
672 		if (pr->power.states[i].valid) {
673 			pr->power.count = i;
674 			if (pr->power.states[i].type >= ACPI_STATE_C2)
675 				pr->flags.power = 1;
676 		}
677 	}
678 
679 	return 0;
680 }
681 
682 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
683 {
684 	struct acpi_processor *pr = seq->private;
685 	unsigned int i;
686 
687 
688 	if (!pr)
689 		goto end;
690 
691 	seq_printf(seq, "active state:            C%zd\n"
692 		   "max_cstate:              C%d\n"
693 		   "maximum allowed latency: %d usec\n",
694 		   pr->power.state ? pr->power.state - pr->power.states : 0,
695 		   max_cstate, pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
696 
697 	seq_puts(seq, "states:\n");
698 
699 	for (i = 1; i <= pr->power.count; i++) {
700 		seq_printf(seq, "   %cC%d:                  ",
701 			   (&pr->power.states[i] ==
702 			    pr->power.state ? '*' : ' '), i);
703 
704 		if (!pr->power.states[i].valid) {
705 			seq_puts(seq, "<not supported>\n");
706 			continue;
707 		}
708 
709 		switch (pr->power.states[i].type) {
710 		case ACPI_STATE_C1:
711 			seq_printf(seq, "type[C1] ");
712 			break;
713 		case ACPI_STATE_C2:
714 			seq_printf(seq, "type[C2] ");
715 			break;
716 		case ACPI_STATE_C3:
717 			seq_printf(seq, "type[C3] ");
718 			break;
719 		default:
720 			seq_printf(seq, "type[--] ");
721 			break;
722 		}
723 
724 		if (pr->power.states[i].promotion.state)
725 			seq_printf(seq, "promotion[C%zd] ",
726 				   (pr->power.states[i].promotion.state -
727 				    pr->power.states));
728 		else
729 			seq_puts(seq, "promotion[--] ");
730 
731 		if (pr->power.states[i].demotion.state)
732 			seq_printf(seq, "demotion[C%zd] ",
733 				   (pr->power.states[i].demotion.state -
734 				    pr->power.states));
735 		else
736 			seq_puts(seq, "demotion[--] ");
737 
738 		seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
739 			   pr->power.states[i].latency,
740 			   pr->power.states[i].usage,
741 			   (unsigned long long)pr->power.states[i].time);
742 	}
743 
744       end:
745 	return 0;
746 }
747 
748 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
749 {
750 	return single_open(file, acpi_processor_power_seq_show,
751 			   PDE(inode)->data);
752 }
753 
754 static const struct file_operations acpi_processor_power_fops = {
755 	.owner = THIS_MODULE,
756 	.open = acpi_processor_power_open_fs,
757 	.read = seq_read,
758 	.llseek = seq_lseek,
759 	.release = single_release,
760 };
761 
762 
763 /**
764  * acpi_idle_bm_check - checks if bus master activity was detected
765  */
766 static int acpi_idle_bm_check(void)
767 {
768 	u32 bm_status = 0;
769 
770 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
771 	if (bm_status)
772 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
773 	/*
774 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
775 	 * the true state of bus mastering activity; forcing us to
776 	 * manually check the BMIDEA bit of each IDE channel.
777 	 */
778 	else if (errata.piix4.bmisx) {
779 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
780 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
781 			bm_status = 1;
782 	}
783 	return bm_status;
784 }
785 
786 /**
787  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
788  * @cx: cstate data
789  *
790  * Caller disables interrupt before call and enables interrupt after return.
791  */
792 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
793 {
794 	/* Don't trace irqs off for idle */
795 	stop_critical_timings();
796 	if (cx->entry_method == ACPI_CSTATE_FFH) {
797 		/* Call into architectural FFH based C-state */
798 		acpi_processor_ffh_cstate_enter(cx);
799 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
800 		acpi_safe_halt();
801 	} else {
802 		int unused;
803 		/* IO port based C-state */
804 		inb(cx->address);
805 		/* Dummy wait op - must do something useless after P_LVL2 read
806 		   because chipsets cannot guarantee that STPCLK# signal
807 		   gets asserted in time to freeze execution properly. */
808 		unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
809 	}
810 	start_critical_timings();
811 }
812 
813 /**
814  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
815  * @dev: the target CPU
816  * @state: the state data
817  *
818  * This is equivalent to the HALT instruction.
819  */
820 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
821 			      struct cpuidle_state *state)
822 {
823 	ktime_t  kt1, kt2;
824 	s64 idle_time;
825 	struct acpi_processor *pr;
826 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
827 
828 	pr = __get_cpu_var(processors);
829 
830 	if (unlikely(!pr))
831 		return 0;
832 
833 	local_irq_disable();
834 
835 	/* Do not access any ACPI IO ports in suspend path */
836 	if (acpi_idle_suspend) {
837 		local_irq_enable();
838 		cpu_relax();
839 		return 0;
840 	}
841 
842 	acpi_state_timer_broadcast(pr, cx, 1);
843 	kt1 = ktime_get_real();
844 	acpi_idle_do_entry(cx);
845 	kt2 = ktime_get_real();
846 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
847 
848 	local_irq_enable();
849 	cx->usage++;
850 	acpi_state_timer_broadcast(pr, cx, 0);
851 
852 	return idle_time;
853 }
854 
855 /**
856  * acpi_idle_enter_simple - enters an ACPI state without BM handling
857  * @dev: the target CPU
858  * @state: the state data
859  */
860 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
861 				  struct cpuidle_state *state)
862 {
863 	struct acpi_processor *pr;
864 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
865 	ktime_t  kt1, kt2;
866 	s64 idle_time;
867 	s64 sleep_ticks = 0;
868 
869 	pr = __get_cpu_var(processors);
870 
871 	if (unlikely(!pr))
872 		return 0;
873 
874 	if (acpi_idle_suspend)
875 		return(acpi_idle_enter_c1(dev, state));
876 
877 	local_irq_disable();
878 	current_thread_info()->status &= ~TS_POLLING;
879 	/*
880 	 * TS_POLLING-cleared state must be visible before we test
881 	 * NEED_RESCHED:
882 	 */
883 	smp_mb();
884 
885 	if (unlikely(need_resched())) {
886 		current_thread_info()->status |= TS_POLLING;
887 		local_irq_enable();
888 		return 0;
889 	}
890 
891 	/*
892 	 * Must be done before busmaster disable as we might need to
893 	 * access HPET !
894 	 */
895 	acpi_state_timer_broadcast(pr, cx, 1);
896 
897 	if (cx->type == ACPI_STATE_C3)
898 		ACPI_FLUSH_CPU_CACHE();
899 
900 	kt1 = ktime_get_real();
901 	/* Tell the scheduler that we are going deep-idle: */
902 	sched_clock_idle_sleep_event();
903 	acpi_idle_do_entry(cx);
904 	kt2 = ktime_get_real();
905 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
906 
907 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
908 
909 	/* Tell the scheduler how much we idled: */
910 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
911 
912 	local_irq_enable();
913 	current_thread_info()->status |= TS_POLLING;
914 
915 	cx->usage++;
916 
917 	acpi_state_timer_broadcast(pr, cx, 0);
918 	cx->time += sleep_ticks;
919 	return idle_time;
920 }
921 
922 static int c3_cpu_count;
923 static DEFINE_SPINLOCK(c3_lock);
924 
925 /**
926  * acpi_idle_enter_bm - enters C3 with proper BM handling
927  * @dev: the target CPU
928  * @state: the state data
929  *
930  * If BM is detected, the deepest non-C3 idle state is entered instead.
931  */
932 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
933 			      struct cpuidle_state *state)
934 {
935 	struct acpi_processor *pr;
936 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
937 	ktime_t  kt1, kt2;
938 	s64 idle_time;
939 	s64 sleep_ticks = 0;
940 
941 
942 	pr = __get_cpu_var(processors);
943 
944 	if (unlikely(!pr))
945 		return 0;
946 
947 	if (acpi_idle_suspend)
948 		return(acpi_idle_enter_c1(dev, state));
949 
950 	if (acpi_idle_bm_check()) {
951 		if (dev->safe_state) {
952 			dev->last_state = dev->safe_state;
953 			return dev->safe_state->enter(dev, dev->safe_state);
954 		} else {
955 			local_irq_disable();
956 			acpi_safe_halt();
957 			local_irq_enable();
958 			return 0;
959 		}
960 	}
961 
962 	local_irq_disable();
963 	current_thread_info()->status &= ~TS_POLLING;
964 	/*
965 	 * TS_POLLING-cleared state must be visible before we test
966 	 * NEED_RESCHED:
967 	 */
968 	smp_mb();
969 
970 	if (unlikely(need_resched())) {
971 		current_thread_info()->status |= TS_POLLING;
972 		local_irq_enable();
973 		return 0;
974 	}
975 
976 	acpi_unlazy_tlb(smp_processor_id());
977 
978 	/* Tell the scheduler that we are going deep-idle: */
979 	sched_clock_idle_sleep_event();
980 	/*
981 	 * Must be done before busmaster disable as we might need to
982 	 * access HPET !
983 	 */
984 	acpi_state_timer_broadcast(pr, cx, 1);
985 
986 	kt1 = ktime_get_real();
987 	/*
988 	 * disable bus master
989 	 * bm_check implies we need ARB_DIS
990 	 * !bm_check implies we need cache flush
991 	 * bm_control implies whether we can do ARB_DIS
992 	 *
993 	 * That leaves a case where bm_check is set and bm_control is
994 	 * not set. In that case we cannot do much, we enter C3
995 	 * without doing anything.
996 	 */
997 	if (pr->flags.bm_check && pr->flags.bm_control) {
998 		spin_lock(&c3_lock);
999 		c3_cpu_count++;
1000 		/* Disable bus master arbitration when all CPUs are in C3 */
1001 		if (c3_cpu_count == num_online_cpus())
1002 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
1003 		spin_unlock(&c3_lock);
1004 	} else if (!pr->flags.bm_check) {
1005 		ACPI_FLUSH_CPU_CACHE();
1006 	}
1007 
1008 	acpi_idle_do_entry(cx);
1009 
1010 	/* Re-enable bus master arbitration */
1011 	if (pr->flags.bm_check && pr->flags.bm_control) {
1012 		spin_lock(&c3_lock);
1013 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
1014 		c3_cpu_count--;
1015 		spin_unlock(&c3_lock);
1016 	}
1017 	kt2 = ktime_get_real();
1018 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
1019 
1020 	sleep_ticks = us_to_pm_timer_ticks(idle_time);
1021 	/* Tell the scheduler how much we idled: */
1022 	sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1023 
1024 	local_irq_enable();
1025 	current_thread_info()->status |= TS_POLLING;
1026 
1027 	cx->usage++;
1028 
1029 	acpi_state_timer_broadcast(pr, cx, 0);
1030 	cx->time += sleep_ticks;
1031 	return idle_time;
1032 }
1033 
1034 struct cpuidle_driver acpi_idle_driver = {
1035 	.name =		"acpi_idle",
1036 	.owner =	THIS_MODULE,
1037 };
1038 
1039 /**
1040  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1041  * @pr: the ACPI processor
1042  */
1043 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1044 {
1045 	int i, count = CPUIDLE_DRIVER_STATE_START;
1046 	struct acpi_processor_cx *cx;
1047 	struct cpuidle_state *state;
1048 	struct cpuidle_device *dev = &pr->power.dev;
1049 
1050 	if (!pr->flags.power_setup_done)
1051 		return -EINVAL;
1052 
1053 	if (pr->flags.power == 0) {
1054 		return -EINVAL;
1055 	}
1056 
1057 	dev->cpu = pr->id;
1058 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1059 		dev->states[i].name[0] = '\0';
1060 		dev->states[i].desc[0] = '\0';
1061 	}
1062 
1063 	if (max_cstate == 0)
1064 		max_cstate = 1;
1065 
1066 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1067 		cx = &pr->power.states[i];
1068 		state = &dev->states[count];
1069 
1070 		if (!cx->valid)
1071 			continue;
1072 
1073 #ifdef CONFIG_HOTPLUG_CPU
1074 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1075 		    !pr->flags.has_cst &&
1076 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1077 			continue;
1078 #endif
1079 		cpuidle_set_statedata(state, cx);
1080 
1081 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1082 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1083 		state->exit_latency = cx->latency;
1084 		state->target_residency = cx->latency * latency_factor;
1085 		state->power_usage = cx->power;
1086 
1087 		state->flags = 0;
1088 		switch (cx->type) {
1089 			case ACPI_STATE_C1:
1090 			state->flags |= CPUIDLE_FLAG_SHALLOW;
1091 			if (cx->entry_method == ACPI_CSTATE_FFH)
1092 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1093 
1094 			state->enter = acpi_idle_enter_c1;
1095 			dev->safe_state = state;
1096 			break;
1097 
1098 			case ACPI_STATE_C2:
1099 			state->flags |= CPUIDLE_FLAG_BALANCED;
1100 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1101 			state->enter = acpi_idle_enter_simple;
1102 			dev->safe_state = state;
1103 			break;
1104 
1105 			case ACPI_STATE_C3:
1106 			state->flags |= CPUIDLE_FLAG_DEEP;
1107 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1108 			state->flags |= CPUIDLE_FLAG_CHECK_BM;
1109 			state->enter = pr->flags.bm_check ?
1110 					acpi_idle_enter_bm :
1111 					acpi_idle_enter_simple;
1112 			break;
1113 		}
1114 
1115 		count++;
1116 		if (count == CPUIDLE_STATE_MAX)
1117 			break;
1118 	}
1119 
1120 	dev->state_count = count;
1121 
1122 	if (!count)
1123 		return -EINVAL;
1124 
1125 	return 0;
1126 }
1127 
1128 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1129 {
1130 	int ret = 0;
1131 
1132 	if (boot_option_idle_override)
1133 		return 0;
1134 
1135 	if (!pr)
1136 		return -EINVAL;
1137 
1138 	if (nocst) {
1139 		return -ENODEV;
1140 	}
1141 
1142 	if (!pr->flags.power_setup_done)
1143 		return -ENODEV;
1144 
1145 	cpuidle_pause_and_lock();
1146 	cpuidle_disable_device(&pr->power.dev);
1147 	acpi_processor_get_power_info(pr);
1148 	if (pr->flags.power) {
1149 		acpi_processor_setup_cpuidle(pr);
1150 		ret = cpuidle_enable_device(&pr->power.dev);
1151 	}
1152 	cpuidle_resume_and_unlock();
1153 
1154 	return ret;
1155 }
1156 
1157 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1158 			      struct acpi_device *device)
1159 {
1160 	acpi_status status = 0;
1161 	static int first_run;
1162 	struct proc_dir_entry *entry = NULL;
1163 	unsigned int i;
1164 
1165 	if (boot_option_idle_override)
1166 		return 0;
1167 
1168 	if (!first_run) {
1169 		if (idle_halt) {
1170 			/*
1171 			 * When the boot option of "idle=halt" is added, halt
1172 			 * is used for CPU IDLE.
1173 			 * In such case C2/C3 is meaningless. So the max_cstate
1174 			 * is set to one.
1175 			 */
1176 			max_cstate = 1;
1177 		}
1178 		dmi_check_system(processor_power_dmi_table);
1179 		max_cstate = acpi_processor_cstate_check(max_cstate);
1180 		if (max_cstate < ACPI_C_STATES_MAX)
1181 			printk(KERN_NOTICE
1182 			       "ACPI: processor limited to max C-state %d\n",
1183 			       max_cstate);
1184 		first_run++;
1185 	}
1186 
1187 	if (!pr)
1188 		return -EINVAL;
1189 
1190 	if (acpi_gbl_FADT.cst_control && !nocst) {
1191 		status =
1192 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1193 		if (ACPI_FAILURE(status)) {
1194 			ACPI_EXCEPTION((AE_INFO, status,
1195 					"Notifying BIOS of _CST ability failed"));
1196 		}
1197 	}
1198 
1199 	acpi_processor_get_power_info(pr);
1200 	pr->flags.power_setup_done = 1;
1201 
1202 	/*
1203 	 * Install the idle handler if processor power management is supported.
1204 	 * Note that we use previously set idle handler will be used on
1205 	 * platforms that only support C1.
1206 	 */
1207 	if (pr->flags.power) {
1208 		acpi_processor_setup_cpuidle(pr);
1209 		if (cpuidle_register_device(&pr->power.dev))
1210 			return -EIO;
1211 
1212 		printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1213 		for (i = 1; i <= pr->power.count; i++)
1214 			if (pr->power.states[i].valid)
1215 				printk(" C%d[C%d]", i,
1216 				       pr->power.states[i].type);
1217 		printk(")\n");
1218 	}
1219 
1220 	/* 'power' [R] */
1221 	entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1222 				 S_IRUGO, acpi_device_dir(device),
1223 				 &acpi_processor_power_fops,
1224 				 acpi_driver_data(device));
1225 	if (!entry)
1226 		return -EIO;
1227 	return 0;
1228 }
1229 
1230 int acpi_processor_power_exit(struct acpi_processor *pr,
1231 			      struct acpi_device *device)
1232 {
1233 	if (boot_option_idle_override)
1234 		return 0;
1235 
1236 	cpuidle_unregister_device(&pr->power.dev);
1237 	pr->flags.power_setup_done = 0;
1238 
1239 	if (acpi_device_dir(device))
1240 		remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1241 				  acpi_device_dir(device));
1242 
1243 	return 0;
1244 }
1245