xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 77a87824)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27 
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <acpi/processor.h>
35 
36 /*
37  * Include the apic definitions for x86 to have the APIC timer related defines
38  * available also for UP (on SMP it gets magically included via linux/smp.h).
39  * asm/acpi.h is not an option, as it would require more include magic. Also
40  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
41  */
42 #ifdef CONFIG_X86
43 #include <asm/apic.h>
44 #endif
45 
46 #define ACPI_PROCESSOR_CLASS            "processor"
47 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
48 ACPI_MODULE_NAME("processor_idle");
49 
50 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
51 module_param(max_cstate, uint, 0000);
52 static unsigned int nocst __read_mostly;
53 module_param(nocst, uint, 0000);
54 static int bm_check_disable __read_mostly;
55 module_param(bm_check_disable, uint, 0000);
56 
57 static unsigned int latency_factor __read_mostly = 2;
58 module_param(latency_factor, uint, 0644);
59 
60 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
61 
62 struct cpuidle_driver acpi_idle_driver = {
63 	.name =		"acpi_idle",
64 	.owner =	THIS_MODULE,
65 };
66 
67 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
68 static
69 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
70 
71 static int disabled_by_idle_boot_param(void)
72 {
73 	return boot_option_idle_override == IDLE_POLL ||
74 		boot_option_idle_override == IDLE_HALT;
75 }
76 
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(const struct dmi_system_id *id)
84 {
85 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 		return 0;
87 
88 	pr_notice("%s detected - limiting to C%ld max_cstate."
89 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91 
92 	max_cstate = (long)id->driver_data;
93 
94 	return 0;
95 }
96 
97 static const struct dmi_system_id processor_power_dmi_table[] = {
98 	{ set_max_cstate, "Clevo 5600D", {
99 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
100 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
101 	 (void *)2},
102 	{ set_max_cstate, "Pavilion zv5000", {
103 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
104 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
105 	 (void *)1},
106 	{ set_max_cstate, "Asus L8400B", {
107 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
108 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
109 	 (void *)1},
110 	{},
111 };
112 
113 
114 /*
115  * Callers should disable interrupts before the call and enable
116  * interrupts after return.
117  */
118 static void acpi_safe_halt(void)
119 {
120 	if (!tif_need_resched()) {
121 		safe_halt();
122 		local_irq_disable();
123 	}
124 }
125 
126 #ifdef ARCH_APICTIMER_STOPS_ON_C3
127 
128 /*
129  * Some BIOS implementations switch to C3 in the published C2 state.
130  * This seems to be a common problem on AMD boxen, but other vendors
131  * are affected too. We pick the most conservative approach: we assume
132  * that the local APIC stops in both C2 and C3.
133  */
134 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
135 				   struct acpi_processor_cx *cx)
136 {
137 	struct acpi_processor_power *pwr = &pr->power;
138 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
139 
140 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
141 		return;
142 
143 	if (amd_e400_c1e_detected)
144 		type = ACPI_STATE_C1;
145 
146 	/*
147 	 * Check, if one of the previous states already marked the lapic
148 	 * unstable
149 	 */
150 	if (pwr->timer_broadcast_on_state < state)
151 		return;
152 
153 	if (cx->type >= type)
154 		pr->power.timer_broadcast_on_state = state;
155 }
156 
157 static void __lapic_timer_propagate_broadcast(void *arg)
158 {
159 	struct acpi_processor *pr = (struct acpi_processor *) arg;
160 
161 	if (pr->power.timer_broadcast_on_state < INT_MAX)
162 		tick_broadcast_enable();
163 	else
164 		tick_broadcast_disable();
165 }
166 
167 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
168 {
169 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
170 				 (void *)pr, 1);
171 }
172 
173 /* Power(C) State timer broadcast control */
174 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
175 				       struct acpi_processor_cx *cx,
176 				       int broadcast)
177 {
178 	int state = cx - pr->power.states;
179 
180 	if (state >= pr->power.timer_broadcast_on_state) {
181 		if (broadcast)
182 			tick_broadcast_enter();
183 		else
184 			tick_broadcast_exit();
185 	}
186 }
187 
188 #else
189 
190 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
191 				   struct acpi_processor_cx *cstate) { }
192 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
193 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
194 				       struct acpi_processor_cx *cx,
195 				       int broadcast)
196 {
197 }
198 
199 #endif
200 
201 #if defined(CONFIG_X86)
202 static void tsc_check_state(int state)
203 {
204 	switch (boot_cpu_data.x86_vendor) {
205 	case X86_VENDOR_AMD:
206 	case X86_VENDOR_INTEL:
207 		/*
208 		 * AMD Fam10h TSC will tick in all
209 		 * C/P/S0/S1 states when this bit is set.
210 		 */
211 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
212 			return;
213 
214 		/*FALL THROUGH*/
215 	default:
216 		/* TSC could halt in idle, so notify users */
217 		if (state > ACPI_STATE_C1)
218 			mark_tsc_unstable("TSC halts in idle");
219 	}
220 }
221 #else
222 static void tsc_check_state(int state) { return; }
223 #endif
224 
225 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
226 {
227 
228 	if (!pr->pblk)
229 		return -ENODEV;
230 
231 	/* if info is obtained from pblk/fadt, type equals state */
232 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
233 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
234 
235 #ifndef CONFIG_HOTPLUG_CPU
236 	/*
237 	 * Check for P_LVL2_UP flag before entering C2 and above on
238 	 * an SMP system.
239 	 */
240 	if ((num_online_cpus() > 1) &&
241 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
242 		return -ENODEV;
243 #endif
244 
245 	/* determine C2 and C3 address from pblk */
246 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
247 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
248 
249 	/* determine latencies from FADT */
250 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
251 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
252 
253 	/*
254 	 * FADT specified C2 latency must be less than or equal to
255 	 * 100 microseconds.
256 	 */
257 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
258 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
259 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
260 		/* invalidate C2 */
261 		pr->power.states[ACPI_STATE_C2].address = 0;
262 	}
263 
264 	/*
265 	 * FADT supplied C3 latency must be less than or equal to
266 	 * 1000 microseconds.
267 	 */
268 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
269 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
271 		/* invalidate C3 */
272 		pr->power.states[ACPI_STATE_C3].address = 0;
273 	}
274 
275 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
276 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
277 			  pr->power.states[ACPI_STATE_C2].address,
278 			  pr->power.states[ACPI_STATE_C3].address));
279 
280 	return 0;
281 }
282 
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
284 {
285 	if (!pr->power.states[ACPI_STATE_C1].valid) {
286 		/* set the first C-State to C1 */
287 		/* all processors need to support C1 */
288 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289 		pr->power.states[ACPI_STATE_C1].valid = 1;
290 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
291 	}
292 	/* the C0 state only exists as a filler in our array */
293 	pr->power.states[ACPI_STATE_C0].valid = 1;
294 	return 0;
295 }
296 
297 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
298 {
299 	acpi_status status;
300 	u64 count;
301 	int current_count;
302 	int i, ret = 0;
303 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
304 	union acpi_object *cst;
305 
306 	if (nocst)
307 		return -ENODEV;
308 
309 	current_count = 0;
310 
311 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
312 	if (ACPI_FAILURE(status)) {
313 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
314 		return -ENODEV;
315 	}
316 
317 	cst = buffer.pointer;
318 
319 	/* There must be at least 2 elements */
320 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
321 		pr_err("not enough elements in _CST\n");
322 		ret = -EFAULT;
323 		goto end;
324 	}
325 
326 	count = cst->package.elements[0].integer.value;
327 
328 	/* Validate number of power states. */
329 	if (count < 1 || count != cst->package.count - 1) {
330 		pr_err("count given by _CST is not valid\n");
331 		ret = -EFAULT;
332 		goto end;
333 	}
334 
335 	/* Tell driver that at least _CST is supported. */
336 	pr->flags.has_cst = 1;
337 
338 	for (i = 1; i <= count; i++) {
339 		union acpi_object *element;
340 		union acpi_object *obj;
341 		struct acpi_power_register *reg;
342 		struct acpi_processor_cx cx;
343 
344 		memset(&cx, 0, sizeof(cx));
345 
346 		element = &(cst->package.elements[i]);
347 		if (element->type != ACPI_TYPE_PACKAGE)
348 			continue;
349 
350 		if (element->package.count != 4)
351 			continue;
352 
353 		obj = &(element->package.elements[0]);
354 
355 		if (obj->type != ACPI_TYPE_BUFFER)
356 			continue;
357 
358 		reg = (struct acpi_power_register *)obj->buffer.pointer;
359 
360 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
361 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
362 			continue;
363 
364 		/* There should be an easy way to extract an integer... */
365 		obj = &(element->package.elements[1]);
366 		if (obj->type != ACPI_TYPE_INTEGER)
367 			continue;
368 
369 		cx.type = obj->integer.value;
370 		/*
371 		 * Some buggy BIOSes won't list C1 in _CST -
372 		 * Let acpi_processor_get_power_info_default() handle them later
373 		 */
374 		if (i == 1 && cx.type != ACPI_STATE_C1)
375 			current_count++;
376 
377 		cx.address = reg->address;
378 		cx.index = current_count + 1;
379 
380 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
381 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
382 			if (acpi_processor_ffh_cstate_probe
383 					(pr->id, &cx, reg) == 0) {
384 				cx.entry_method = ACPI_CSTATE_FFH;
385 			} else if (cx.type == ACPI_STATE_C1) {
386 				/*
387 				 * C1 is a special case where FIXED_HARDWARE
388 				 * can be handled in non-MWAIT way as well.
389 				 * In that case, save this _CST entry info.
390 				 * Otherwise, ignore this info and continue.
391 				 */
392 				cx.entry_method = ACPI_CSTATE_HALT;
393 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
394 			} else {
395 				continue;
396 			}
397 			if (cx.type == ACPI_STATE_C1 &&
398 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
399 				/*
400 				 * In most cases the C1 space_id obtained from
401 				 * _CST object is FIXED_HARDWARE access mode.
402 				 * But when the option of idle=halt is added,
403 				 * the entry_method type should be changed from
404 				 * CSTATE_FFH to CSTATE_HALT.
405 				 * When the option of idle=nomwait is added,
406 				 * the C1 entry_method type should be
407 				 * CSTATE_HALT.
408 				 */
409 				cx.entry_method = ACPI_CSTATE_HALT;
410 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
411 			}
412 		} else {
413 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
414 				 cx.address);
415 		}
416 
417 		if (cx.type == ACPI_STATE_C1) {
418 			cx.valid = 1;
419 		}
420 
421 		obj = &(element->package.elements[2]);
422 		if (obj->type != ACPI_TYPE_INTEGER)
423 			continue;
424 
425 		cx.latency = obj->integer.value;
426 
427 		obj = &(element->package.elements[3]);
428 		if (obj->type != ACPI_TYPE_INTEGER)
429 			continue;
430 
431 		current_count++;
432 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
433 
434 		/*
435 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
436 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
437 		 */
438 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
439 			pr_warn("Limiting number of power states to max (%d)\n",
440 				ACPI_PROCESSOR_MAX_POWER);
441 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
442 			break;
443 		}
444 	}
445 
446 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
447 			  current_count));
448 
449 	/* Validate number of power states discovered */
450 	if (current_count < 2)
451 		ret = -EFAULT;
452 
453       end:
454 	kfree(buffer.pointer);
455 
456 	return ret;
457 }
458 
459 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
460 					   struct acpi_processor_cx *cx)
461 {
462 	static int bm_check_flag = -1;
463 	static int bm_control_flag = -1;
464 
465 
466 	if (!cx->address)
467 		return;
468 
469 	/*
470 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
471 	 * DMA transfers are used by any ISA device to avoid livelock.
472 	 * Note that we could disable Type-F DMA (as recommended by
473 	 * the erratum), but this is known to disrupt certain ISA
474 	 * devices thus we take the conservative approach.
475 	 */
476 	else if (errata.piix4.fdma) {
477 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
478 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
479 		return;
480 	}
481 
482 	/* All the logic here assumes flags.bm_check is same across all CPUs */
483 	if (bm_check_flag == -1) {
484 		/* Determine whether bm_check is needed based on CPU  */
485 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
486 		bm_check_flag = pr->flags.bm_check;
487 		bm_control_flag = pr->flags.bm_control;
488 	} else {
489 		pr->flags.bm_check = bm_check_flag;
490 		pr->flags.bm_control = bm_control_flag;
491 	}
492 
493 	if (pr->flags.bm_check) {
494 		if (!pr->flags.bm_control) {
495 			if (pr->flags.has_cst != 1) {
496 				/* bus mastering control is necessary */
497 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
498 					"C3 support requires BM control\n"));
499 				return;
500 			} else {
501 				/* Here we enter C3 without bus mastering */
502 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
503 					"C3 support without BM control\n"));
504 			}
505 		}
506 	} else {
507 		/*
508 		 * WBINVD should be set in fadt, for C3 state to be
509 		 * supported on when bm_check is not required.
510 		 */
511 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
512 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
513 					  "Cache invalidation should work properly"
514 					  " for C3 to be enabled on SMP systems\n"));
515 			return;
516 		}
517 	}
518 
519 	/*
520 	 * Otherwise we've met all of our C3 requirements.
521 	 * Normalize the C3 latency to expidite policy.  Enable
522 	 * checking of bus mastering status (bm_check) so we can
523 	 * use this in our C3 policy
524 	 */
525 	cx->valid = 1;
526 
527 	/*
528 	 * On older chipsets, BM_RLD needs to be set
529 	 * in order for Bus Master activity to wake the
530 	 * system from C3.  Newer chipsets handle DMA
531 	 * during C3 automatically and BM_RLD is a NOP.
532 	 * In either case, the proper way to
533 	 * handle BM_RLD is to set it and leave it set.
534 	 */
535 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
536 
537 	return;
538 }
539 
540 static int acpi_processor_power_verify(struct acpi_processor *pr)
541 {
542 	unsigned int i;
543 	unsigned int working = 0;
544 
545 	pr->power.timer_broadcast_on_state = INT_MAX;
546 
547 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
548 		struct acpi_processor_cx *cx = &pr->power.states[i];
549 
550 		switch (cx->type) {
551 		case ACPI_STATE_C1:
552 			cx->valid = 1;
553 			break;
554 
555 		case ACPI_STATE_C2:
556 			if (!cx->address)
557 				break;
558 			cx->valid = 1;
559 			break;
560 
561 		case ACPI_STATE_C3:
562 			acpi_processor_power_verify_c3(pr, cx);
563 			break;
564 		}
565 		if (!cx->valid)
566 			continue;
567 
568 		lapic_timer_check_state(i, pr, cx);
569 		tsc_check_state(cx->type);
570 		working++;
571 	}
572 
573 	lapic_timer_propagate_broadcast(pr);
574 
575 	return (working);
576 }
577 
578 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
579 {
580 	unsigned int i;
581 	int result;
582 
583 
584 	/* NOTE: the idle thread may not be running while calling
585 	 * this function */
586 
587 	/* Zero initialize all the C-states info. */
588 	memset(pr->power.states, 0, sizeof(pr->power.states));
589 
590 	result = acpi_processor_get_power_info_cst(pr);
591 	if (result == -ENODEV)
592 		result = acpi_processor_get_power_info_fadt(pr);
593 
594 	if (result)
595 		return result;
596 
597 	acpi_processor_get_power_info_default(pr);
598 
599 	pr->power.count = acpi_processor_power_verify(pr);
600 
601 	/*
602 	 * if one state of type C2 or C3 is available, mark this
603 	 * CPU as being "idle manageable"
604 	 */
605 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
606 		if (pr->power.states[i].valid) {
607 			pr->power.count = i;
608 			if (pr->power.states[i].type >= ACPI_STATE_C2)
609 				pr->flags.power = 1;
610 		}
611 	}
612 
613 	return 0;
614 }
615 
616 /**
617  * acpi_idle_bm_check - checks if bus master activity was detected
618  */
619 static int acpi_idle_bm_check(void)
620 {
621 	u32 bm_status = 0;
622 
623 	if (bm_check_disable)
624 		return 0;
625 
626 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
627 	if (bm_status)
628 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
629 	/*
630 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
631 	 * the true state of bus mastering activity; forcing us to
632 	 * manually check the BMIDEA bit of each IDE channel.
633 	 */
634 	else if (errata.piix4.bmisx) {
635 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
636 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
637 			bm_status = 1;
638 	}
639 	return bm_status;
640 }
641 
642 /**
643  * acpi_idle_do_entry - enter idle state using the appropriate method
644  * @cx: cstate data
645  *
646  * Caller disables interrupt before call and enables interrupt after return.
647  */
648 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
649 {
650 	if (cx->entry_method == ACPI_CSTATE_FFH) {
651 		/* Call into architectural FFH based C-state */
652 		acpi_processor_ffh_cstate_enter(cx);
653 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
654 		acpi_safe_halt();
655 	} else {
656 		/* IO port based C-state */
657 		inb(cx->address);
658 		/* Dummy wait op - must do something useless after P_LVL2 read
659 		   because chipsets cannot guarantee that STPCLK# signal
660 		   gets asserted in time to freeze execution properly. */
661 		inl(acpi_gbl_FADT.xpm_timer_block.address);
662 	}
663 }
664 
665 /**
666  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
667  * @dev: the target CPU
668  * @index: the index of suggested state
669  */
670 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
671 {
672 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
673 
674 	ACPI_FLUSH_CPU_CACHE();
675 
676 	while (1) {
677 
678 		if (cx->entry_method == ACPI_CSTATE_HALT)
679 			safe_halt();
680 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
681 			inb(cx->address);
682 			/* See comment in acpi_idle_do_entry() */
683 			inl(acpi_gbl_FADT.xpm_timer_block.address);
684 		} else
685 			return -ENODEV;
686 	}
687 
688 	/* Never reached */
689 	return 0;
690 }
691 
692 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
693 {
694 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
695 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
696 }
697 
698 static int c3_cpu_count;
699 static DEFINE_RAW_SPINLOCK(c3_lock);
700 
701 /**
702  * acpi_idle_enter_bm - enters C3 with proper BM handling
703  * @pr: Target processor
704  * @cx: Target state context
705  * @timer_bc: Whether or not to change timer mode to broadcast
706  */
707 static void acpi_idle_enter_bm(struct acpi_processor *pr,
708 			       struct acpi_processor_cx *cx, bool timer_bc)
709 {
710 	acpi_unlazy_tlb(smp_processor_id());
711 
712 	/*
713 	 * Must be done before busmaster disable as we might need to
714 	 * access HPET !
715 	 */
716 	if (timer_bc)
717 		lapic_timer_state_broadcast(pr, cx, 1);
718 
719 	/*
720 	 * disable bus master
721 	 * bm_check implies we need ARB_DIS
722 	 * bm_control implies whether we can do ARB_DIS
723 	 *
724 	 * That leaves a case where bm_check is set and bm_control is
725 	 * not set. In that case we cannot do much, we enter C3
726 	 * without doing anything.
727 	 */
728 	if (pr->flags.bm_control) {
729 		raw_spin_lock(&c3_lock);
730 		c3_cpu_count++;
731 		/* Disable bus master arbitration when all CPUs are in C3 */
732 		if (c3_cpu_count == num_online_cpus())
733 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
734 		raw_spin_unlock(&c3_lock);
735 	}
736 
737 	acpi_idle_do_entry(cx);
738 
739 	/* Re-enable bus master arbitration */
740 	if (pr->flags.bm_control) {
741 		raw_spin_lock(&c3_lock);
742 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
743 		c3_cpu_count--;
744 		raw_spin_unlock(&c3_lock);
745 	}
746 
747 	if (timer_bc)
748 		lapic_timer_state_broadcast(pr, cx, 0);
749 }
750 
751 static int acpi_idle_enter(struct cpuidle_device *dev,
752 			   struct cpuidle_driver *drv, int index)
753 {
754 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
755 	struct acpi_processor *pr;
756 
757 	pr = __this_cpu_read(processors);
758 	if (unlikely(!pr))
759 		return -EINVAL;
760 
761 	if (cx->type != ACPI_STATE_C1) {
762 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
763 			index = CPUIDLE_DRIVER_STATE_START;
764 			cx = per_cpu(acpi_cstate[index], dev->cpu);
765 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
766 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
767 				acpi_idle_enter_bm(pr, cx, true);
768 				return index;
769 			} else if (drv->safe_state_index >= 0) {
770 				index = drv->safe_state_index;
771 				cx = per_cpu(acpi_cstate[index], dev->cpu);
772 			} else {
773 				acpi_safe_halt();
774 				return -EBUSY;
775 			}
776 		}
777 	}
778 
779 	lapic_timer_state_broadcast(pr, cx, 1);
780 
781 	if (cx->type == ACPI_STATE_C3)
782 		ACPI_FLUSH_CPU_CACHE();
783 
784 	acpi_idle_do_entry(cx);
785 
786 	lapic_timer_state_broadcast(pr, cx, 0);
787 
788 	return index;
789 }
790 
791 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
792 				   struct cpuidle_driver *drv, int index)
793 {
794 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
795 
796 	if (cx->type == ACPI_STATE_C3) {
797 		struct acpi_processor *pr = __this_cpu_read(processors);
798 
799 		if (unlikely(!pr))
800 			return;
801 
802 		if (pr->flags.bm_check) {
803 			acpi_idle_enter_bm(pr, cx, false);
804 			return;
805 		} else {
806 			ACPI_FLUSH_CPU_CACHE();
807 		}
808 	}
809 	acpi_idle_do_entry(cx);
810 }
811 
812 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
813 					   struct cpuidle_device *dev)
814 {
815 	int i, count = CPUIDLE_DRIVER_STATE_START;
816 	struct acpi_processor_cx *cx;
817 
818 	if (max_cstate == 0)
819 		max_cstate = 1;
820 
821 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
822 		cx = &pr->power.states[i];
823 
824 		if (!cx->valid)
825 			continue;
826 
827 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
828 
829 		count++;
830 		if (count == CPUIDLE_STATE_MAX)
831 			break;
832 	}
833 
834 	if (!count)
835 		return -EINVAL;
836 
837 	return 0;
838 }
839 
840 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
841 {
842 	int i, count = CPUIDLE_DRIVER_STATE_START;
843 	struct acpi_processor_cx *cx;
844 	struct cpuidle_state *state;
845 	struct cpuidle_driver *drv = &acpi_idle_driver;
846 
847 	if (max_cstate == 0)
848 		max_cstate = 1;
849 
850 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
851 		cx = &pr->power.states[i];
852 
853 		if (!cx->valid)
854 			continue;
855 
856 		state = &drv->states[count];
857 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
858 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
859 		state->exit_latency = cx->latency;
860 		state->target_residency = cx->latency * latency_factor;
861 		state->enter = acpi_idle_enter;
862 
863 		state->flags = 0;
864 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
865 			state->enter_dead = acpi_idle_play_dead;
866 			drv->safe_state_index = count;
867 		}
868 		/*
869 		 * Halt-induced C1 is not good for ->enter_freeze, because it
870 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
871 		 * particularly interesting from the suspend-to-idle angle, so
872 		 * avoid C1 and the situations in which we may need to fall back
873 		 * to it altogether.
874 		 */
875 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
876 			state->enter_freeze = acpi_idle_enter_freeze;
877 
878 		count++;
879 		if (count == CPUIDLE_STATE_MAX)
880 			break;
881 	}
882 
883 	drv->state_count = count;
884 
885 	if (!count)
886 		return -EINVAL;
887 
888 	return 0;
889 }
890 
891 static inline void acpi_processor_cstate_first_run_checks(void)
892 {
893 	acpi_status status;
894 	static int first_run;
895 
896 	if (first_run)
897 		return;
898 	dmi_check_system(processor_power_dmi_table);
899 	max_cstate = acpi_processor_cstate_check(max_cstate);
900 	if (max_cstate < ACPI_C_STATES_MAX)
901 		pr_notice("ACPI: processor limited to max C-state %d\n",
902 			  max_cstate);
903 	first_run++;
904 
905 	if (acpi_gbl_FADT.cst_control && !nocst) {
906 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
907 					    acpi_gbl_FADT.cst_control, 8);
908 		if (ACPI_FAILURE(status))
909 			ACPI_EXCEPTION((AE_INFO, status,
910 					"Notifying BIOS of _CST ability failed"));
911 	}
912 }
913 #else
914 
915 static inline int disabled_by_idle_boot_param(void) { return 0; }
916 static inline void acpi_processor_cstate_first_run_checks(void) { }
917 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
918 {
919 	return -ENODEV;
920 }
921 
922 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
923 					   struct cpuidle_device *dev)
924 {
925 	return -EINVAL;
926 }
927 
928 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
929 {
930 	return -EINVAL;
931 }
932 
933 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
934 
935 struct acpi_lpi_states_array {
936 	unsigned int size;
937 	unsigned int composite_states_size;
938 	struct acpi_lpi_state *entries;
939 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
940 };
941 
942 static int obj_get_integer(union acpi_object *obj, u32 *value)
943 {
944 	if (obj->type != ACPI_TYPE_INTEGER)
945 		return -EINVAL;
946 
947 	*value = obj->integer.value;
948 	return 0;
949 }
950 
951 static int acpi_processor_evaluate_lpi(acpi_handle handle,
952 				       struct acpi_lpi_states_array *info)
953 {
954 	acpi_status status;
955 	int ret = 0;
956 	int pkg_count, state_idx = 1, loop;
957 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
958 	union acpi_object *lpi_data;
959 	struct acpi_lpi_state *lpi_state;
960 
961 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
962 	if (ACPI_FAILURE(status)) {
963 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
964 		return -ENODEV;
965 	}
966 
967 	lpi_data = buffer.pointer;
968 
969 	/* There must be at least 4 elements = 3 elements + 1 package */
970 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
971 	    lpi_data->package.count < 4) {
972 		pr_debug("not enough elements in _LPI\n");
973 		ret = -ENODATA;
974 		goto end;
975 	}
976 
977 	pkg_count = lpi_data->package.elements[2].integer.value;
978 
979 	/* Validate number of power states. */
980 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
981 		pr_debug("count given by _LPI is not valid\n");
982 		ret = -ENODATA;
983 		goto end;
984 	}
985 
986 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
987 	if (!lpi_state) {
988 		ret = -ENOMEM;
989 		goto end;
990 	}
991 
992 	info->size = pkg_count;
993 	info->entries = lpi_state;
994 
995 	/* LPI States start at index 3 */
996 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
997 		union acpi_object *element, *pkg_elem, *obj;
998 
999 		element = &lpi_data->package.elements[loop];
1000 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1001 			continue;
1002 
1003 		pkg_elem = element->package.elements;
1004 
1005 		obj = pkg_elem + 6;
1006 		if (obj->type == ACPI_TYPE_BUFFER) {
1007 			struct acpi_power_register *reg;
1008 
1009 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1010 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1011 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1012 				continue;
1013 
1014 			lpi_state->address = reg->address;
1015 			lpi_state->entry_method =
1016 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1017 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1018 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1019 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1020 			lpi_state->address = obj->integer.value;
1021 		} else {
1022 			continue;
1023 		}
1024 
1025 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1026 
1027 		obj = pkg_elem + 9;
1028 		if (obj->type == ACPI_TYPE_STRING)
1029 			strlcpy(lpi_state->desc, obj->string.pointer,
1030 				ACPI_CX_DESC_LEN);
1031 
1032 		lpi_state->index = state_idx;
1033 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1034 			pr_debug("No min. residency found, assuming 10 us\n");
1035 			lpi_state->min_residency = 10;
1036 		}
1037 
1038 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1039 			pr_debug("No wakeup residency found, assuming 10 us\n");
1040 			lpi_state->wake_latency = 10;
1041 		}
1042 
1043 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1044 			lpi_state->flags = 0;
1045 
1046 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1047 			lpi_state->arch_flags = 0;
1048 
1049 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1050 			lpi_state->res_cnt_freq = 1;
1051 
1052 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1053 			lpi_state->enable_parent_state = 0;
1054 	}
1055 
1056 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1057 end:
1058 	kfree(buffer.pointer);
1059 	return ret;
1060 }
1061 
1062 /*
1063  * flat_state_cnt - the number of composite LPI states after the process of flattening
1064  */
1065 static int flat_state_cnt;
1066 
1067 /**
1068  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1069  *
1070  * @local: local LPI state
1071  * @parent: parent LPI state
1072  * @result: composite LPI state
1073  */
1074 static bool combine_lpi_states(struct acpi_lpi_state *local,
1075 			       struct acpi_lpi_state *parent,
1076 			       struct acpi_lpi_state *result)
1077 {
1078 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1079 		if (!parent->address) /* 0 means autopromotable */
1080 			return false;
1081 		result->address = local->address + parent->address;
1082 	} else {
1083 		result->address = parent->address;
1084 	}
1085 
1086 	result->min_residency = max(local->min_residency, parent->min_residency);
1087 	result->wake_latency = local->wake_latency + parent->wake_latency;
1088 	result->enable_parent_state = parent->enable_parent_state;
1089 	result->entry_method = local->entry_method;
1090 
1091 	result->flags = parent->flags;
1092 	result->arch_flags = parent->arch_flags;
1093 	result->index = parent->index;
1094 
1095 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1096 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1097 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1098 	return true;
1099 }
1100 
1101 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1102 
1103 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1104 				  struct acpi_lpi_state *t)
1105 {
1106 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1107 }
1108 
1109 static int flatten_lpi_states(struct acpi_processor *pr,
1110 			      struct acpi_lpi_states_array *curr_level,
1111 			      struct acpi_lpi_states_array *prev_level)
1112 {
1113 	int i, j, state_count = curr_level->size;
1114 	struct acpi_lpi_state *p, *t = curr_level->entries;
1115 
1116 	curr_level->composite_states_size = 0;
1117 	for (j = 0; j < state_count; j++, t++) {
1118 		struct acpi_lpi_state *flpi;
1119 
1120 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1121 			continue;
1122 
1123 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1124 			pr_warn("Limiting number of LPI states to max (%d)\n",
1125 				ACPI_PROCESSOR_MAX_POWER);
1126 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1127 			break;
1128 		}
1129 
1130 		flpi = &pr->power.lpi_states[flat_state_cnt];
1131 
1132 		if (!prev_level) { /* leaf/processor node */
1133 			memcpy(flpi, t, sizeof(*t));
1134 			stash_composite_state(curr_level, flpi);
1135 			flat_state_cnt++;
1136 			continue;
1137 		}
1138 
1139 		for (i = 0; i < prev_level->composite_states_size; i++) {
1140 			p = prev_level->composite_states[i];
1141 			if (t->index <= p->enable_parent_state &&
1142 			    combine_lpi_states(p, t, flpi)) {
1143 				stash_composite_state(curr_level, flpi);
1144 				flat_state_cnt++;
1145 				flpi++;
1146 			}
1147 		}
1148 	}
1149 
1150 	kfree(curr_level->entries);
1151 	return 0;
1152 }
1153 
1154 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1155 {
1156 	int ret, i;
1157 	acpi_status status;
1158 	acpi_handle handle = pr->handle, pr_ahandle;
1159 	struct acpi_device *d = NULL;
1160 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1161 
1162 	if (!osc_pc_lpi_support_confirmed)
1163 		return -EOPNOTSUPP;
1164 
1165 	if (!acpi_has_method(handle, "_LPI"))
1166 		return -EINVAL;
1167 
1168 	flat_state_cnt = 0;
1169 	prev = &info[0];
1170 	curr = &info[1];
1171 	handle = pr->handle;
1172 	ret = acpi_processor_evaluate_lpi(handle, prev);
1173 	if (ret)
1174 		return ret;
1175 	flatten_lpi_states(pr, prev, NULL);
1176 
1177 	status = acpi_get_parent(handle, &pr_ahandle);
1178 	while (ACPI_SUCCESS(status)) {
1179 		acpi_bus_get_device(pr_ahandle, &d);
1180 		handle = pr_ahandle;
1181 
1182 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1183 			break;
1184 
1185 		/* can be optional ? */
1186 		if (!acpi_has_method(handle, "_LPI"))
1187 			break;
1188 
1189 		ret = acpi_processor_evaluate_lpi(handle, curr);
1190 		if (ret)
1191 			break;
1192 
1193 		/* flatten all the LPI states in this level of hierarchy */
1194 		flatten_lpi_states(pr, curr, prev);
1195 
1196 		tmp = prev, prev = curr, curr = tmp;
1197 
1198 		status = acpi_get_parent(handle, &pr_ahandle);
1199 	}
1200 
1201 	pr->power.count = flat_state_cnt;
1202 	/* reset the index after flattening */
1203 	for (i = 0; i < pr->power.count; i++)
1204 		pr->power.lpi_states[i].index = i;
1205 
1206 	/* Tell driver that _LPI is supported. */
1207 	pr->flags.has_lpi = 1;
1208 	pr->flags.power = 1;
1209 
1210 	return 0;
1211 }
1212 
1213 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1214 {
1215 	return -ENODEV;
1216 }
1217 
1218 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1219 {
1220 	return -ENODEV;
1221 }
1222 
1223 /**
1224  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1225  * @dev: the target CPU
1226  * @drv: cpuidle driver containing cpuidle state info
1227  * @index: index of target state
1228  *
1229  * Return: 0 for success or negative value for error
1230  */
1231 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1232 			       struct cpuidle_driver *drv, int index)
1233 {
1234 	struct acpi_processor *pr;
1235 	struct acpi_lpi_state *lpi;
1236 
1237 	pr = __this_cpu_read(processors);
1238 
1239 	if (unlikely(!pr))
1240 		return -EINVAL;
1241 
1242 	lpi = &pr->power.lpi_states[index];
1243 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1244 		return acpi_processor_ffh_lpi_enter(lpi);
1245 
1246 	return -EINVAL;
1247 }
1248 
1249 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1250 {
1251 	int i;
1252 	struct acpi_lpi_state *lpi;
1253 	struct cpuidle_state *state;
1254 	struct cpuidle_driver *drv = &acpi_idle_driver;
1255 
1256 	if (!pr->flags.has_lpi)
1257 		return -EOPNOTSUPP;
1258 
1259 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1260 		lpi = &pr->power.lpi_states[i];
1261 
1262 		state = &drv->states[i];
1263 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1264 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1265 		state->exit_latency = lpi->wake_latency;
1266 		state->target_residency = lpi->min_residency;
1267 		if (lpi->arch_flags)
1268 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1269 		state->enter = acpi_idle_lpi_enter;
1270 		drv->safe_state_index = i;
1271 	}
1272 
1273 	drv->state_count = i;
1274 
1275 	return 0;
1276 }
1277 
1278 /**
1279  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1280  * global state data i.e. idle routines
1281  *
1282  * @pr: the ACPI processor
1283  */
1284 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1285 {
1286 	int i;
1287 	struct cpuidle_driver *drv = &acpi_idle_driver;
1288 
1289 	if (!pr->flags.power_setup_done || !pr->flags.power)
1290 		return -EINVAL;
1291 
1292 	drv->safe_state_index = -1;
1293 	for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1294 		drv->states[i].name[0] = '\0';
1295 		drv->states[i].desc[0] = '\0';
1296 	}
1297 
1298 	if (pr->flags.has_lpi)
1299 		return acpi_processor_setup_lpi_states(pr);
1300 
1301 	return acpi_processor_setup_cstates(pr);
1302 }
1303 
1304 /**
1305  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1306  * device i.e. per-cpu data
1307  *
1308  * @pr: the ACPI processor
1309  * @dev : the cpuidle device
1310  */
1311 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1312 					    struct cpuidle_device *dev)
1313 {
1314 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1315 		return -EINVAL;
1316 
1317 	dev->cpu = pr->id;
1318 	if (pr->flags.has_lpi)
1319 		return acpi_processor_ffh_lpi_probe(pr->id);
1320 
1321 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1322 }
1323 
1324 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1325 {
1326 	int ret;
1327 
1328 	ret = acpi_processor_get_lpi_info(pr);
1329 	if (ret)
1330 		ret = acpi_processor_get_cstate_info(pr);
1331 
1332 	return ret;
1333 }
1334 
1335 int acpi_processor_hotplug(struct acpi_processor *pr)
1336 {
1337 	int ret = 0;
1338 	struct cpuidle_device *dev;
1339 
1340 	if (disabled_by_idle_boot_param())
1341 		return 0;
1342 
1343 	if (!pr->flags.power_setup_done)
1344 		return -ENODEV;
1345 
1346 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1347 	cpuidle_pause_and_lock();
1348 	cpuidle_disable_device(dev);
1349 	ret = acpi_processor_get_power_info(pr);
1350 	if (!ret && pr->flags.power) {
1351 		acpi_processor_setup_cpuidle_dev(pr, dev);
1352 		ret = cpuidle_enable_device(dev);
1353 	}
1354 	cpuidle_resume_and_unlock();
1355 
1356 	return ret;
1357 }
1358 
1359 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1360 {
1361 	int cpu;
1362 	struct acpi_processor *_pr;
1363 	struct cpuidle_device *dev;
1364 
1365 	if (disabled_by_idle_boot_param())
1366 		return 0;
1367 
1368 	if (!pr->flags.power_setup_done)
1369 		return -ENODEV;
1370 
1371 	/*
1372 	 * FIXME:  Design the ACPI notification to make it once per
1373 	 * system instead of once per-cpu.  This condition is a hack
1374 	 * to make the code that updates C-States be called once.
1375 	 */
1376 
1377 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1378 
1379 		/* Protect against cpu-hotplug */
1380 		get_online_cpus();
1381 		cpuidle_pause_and_lock();
1382 
1383 		/* Disable all cpuidle devices */
1384 		for_each_online_cpu(cpu) {
1385 			_pr = per_cpu(processors, cpu);
1386 			if (!_pr || !_pr->flags.power_setup_done)
1387 				continue;
1388 			dev = per_cpu(acpi_cpuidle_device, cpu);
1389 			cpuidle_disable_device(dev);
1390 		}
1391 
1392 		/* Populate Updated C-state information */
1393 		acpi_processor_get_power_info(pr);
1394 		acpi_processor_setup_cpuidle_states(pr);
1395 
1396 		/* Enable all cpuidle devices */
1397 		for_each_online_cpu(cpu) {
1398 			_pr = per_cpu(processors, cpu);
1399 			if (!_pr || !_pr->flags.power_setup_done)
1400 				continue;
1401 			acpi_processor_get_power_info(_pr);
1402 			if (_pr->flags.power) {
1403 				dev = per_cpu(acpi_cpuidle_device, cpu);
1404 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1405 				cpuidle_enable_device(dev);
1406 			}
1407 		}
1408 		cpuidle_resume_and_unlock();
1409 		put_online_cpus();
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 static int acpi_processor_registered;
1416 
1417 int acpi_processor_power_init(struct acpi_processor *pr)
1418 {
1419 	int retval;
1420 	struct cpuidle_device *dev;
1421 
1422 	if (disabled_by_idle_boot_param())
1423 		return 0;
1424 
1425 	acpi_processor_cstate_first_run_checks();
1426 
1427 	if (!acpi_processor_get_power_info(pr))
1428 		pr->flags.power_setup_done = 1;
1429 
1430 	/*
1431 	 * Install the idle handler if processor power management is supported.
1432 	 * Note that we use previously set idle handler will be used on
1433 	 * platforms that only support C1.
1434 	 */
1435 	if (pr->flags.power) {
1436 		/* Register acpi_idle_driver if not already registered */
1437 		if (!acpi_processor_registered) {
1438 			acpi_processor_setup_cpuidle_states(pr);
1439 			retval = cpuidle_register_driver(&acpi_idle_driver);
1440 			if (retval)
1441 				return retval;
1442 			pr_debug("%s registered with cpuidle\n",
1443 				 acpi_idle_driver.name);
1444 		}
1445 
1446 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1447 		if (!dev)
1448 			return -ENOMEM;
1449 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1450 
1451 		acpi_processor_setup_cpuidle_dev(pr, dev);
1452 
1453 		/* Register per-cpu cpuidle_device. Cpuidle driver
1454 		 * must already be registered before registering device
1455 		 */
1456 		retval = cpuidle_register_device(dev);
1457 		if (retval) {
1458 			if (acpi_processor_registered == 0)
1459 				cpuidle_unregister_driver(&acpi_idle_driver);
1460 			return retval;
1461 		}
1462 		acpi_processor_registered++;
1463 	}
1464 	return 0;
1465 }
1466 
1467 int acpi_processor_power_exit(struct acpi_processor *pr)
1468 {
1469 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1470 
1471 	if (disabled_by_idle_boot_param())
1472 		return 0;
1473 
1474 	if (pr->flags.power) {
1475 		cpuidle_unregister_device(dev);
1476 		acpi_processor_registered--;
1477 		if (acpi_processor_registered == 0)
1478 			cpuidle_unregister_driver(&acpi_idle_driver);
1479 	}
1480 
1481 	pr->flags.power_setup_done = 0;
1482 	return 0;
1483 }
1484