xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 7490ca1e)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/acpi.h>
37 #include <linux/dmi.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>	/* need_resched() */
40 #include <linux/pm_qos.h>
41 #include <linux/clockchips.h>
42 #include <linux/cpuidle.h>
43 #include <linux/irqflags.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
61 
62 #define PREFIX "ACPI: "
63 
64 #define ACPI_PROCESSOR_CLASS            "processor"
65 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD			1	/* 1us */
69 #define C3_OVERHEAD			1	/* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71 
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76 static int bm_check_disable __read_mostly;
77 module_param(bm_check_disable, uint, 0000);
78 
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81 
82 static int disabled_by_idle_boot_param(void)
83 {
84 	return boot_option_idle_override == IDLE_POLL ||
85 		boot_option_idle_override == IDLE_FORCE_MWAIT ||
86 		boot_option_idle_override == IDLE_HALT;
87 }
88 
89 /*
90  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
91  * For now disable this. Probably a bug somewhere else.
92  *
93  * To skip this limit, boot/load with a large max_cstate limit.
94  */
95 static int set_max_cstate(const struct dmi_system_id *id)
96 {
97 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
98 		return 0;
99 
100 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
101 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
102 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103 
104 	max_cstate = (long)id->driver_data;
105 
106 	return 0;
107 }
108 
109 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
110    callers to only run once -AK */
111 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
112 	{ set_max_cstate, "Clevo 5600D", {
113 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
114 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
115 	 (void *)2},
116 	{ set_max_cstate, "Pavilion zv5000", {
117 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
118 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
119 	 (void *)1},
120 	{ set_max_cstate, "Asus L8400B", {
121 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
122 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
123 	 (void *)1},
124 	{},
125 };
126 
127 
128 /*
129  * Callers should disable interrupts before the call and enable
130  * interrupts after return.
131  */
132 static void acpi_safe_halt(void)
133 {
134 	current_thread_info()->status &= ~TS_POLLING;
135 	/*
136 	 * TS_POLLING-cleared state must be visible before we
137 	 * test NEED_RESCHED:
138 	 */
139 	smp_mb();
140 	if (!need_resched()) {
141 		safe_halt();
142 		local_irq_disable();
143 	}
144 	current_thread_info()->status |= TS_POLLING;
145 }
146 
147 #ifdef ARCH_APICTIMER_STOPS_ON_C3
148 
149 /*
150  * Some BIOS implementations switch to C3 in the published C2 state.
151  * This seems to be a common problem on AMD boxen, but other vendors
152  * are affected too. We pick the most conservative approach: we assume
153  * that the local APIC stops in both C2 and C3.
154  */
155 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
156 				   struct acpi_processor_cx *cx)
157 {
158 	struct acpi_processor_power *pwr = &pr->power;
159 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
160 
161 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
162 		return;
163 
164 	if (amd_e400_c1e_detected)
165 		type = ACPI_STATE_C1;
166 
167 	/*
168 	 * Check, if one of the previous states already marked the lapic
169 	 * unstable
170 	 */
171 	if (pwr->timer_broadcast_on_state < state)
172 		return;
173 
174 	if (cx->type >= type)
175 		pr->power.timer_broadcast_on_state = state;
176 }
177 
178 static void __lapic_timer_propagate_broadcast(void *arg)
179 {
180 	struct acpi_processor *pr = (struct acpi_processor *) arg;
181 	unsigned long reason;
182 
183 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
184 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
185 
186 	clockevents_notify(reason, &pr->id);
187 }
188 
189 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
190 {
191 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
192 				 (void *)pr, 1);
193 }
194 
195 /* Power(C) State timer broadcast control */
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 	int state = cx - pr->power.states;
201 
202 	if (state >= pr->power.timer_broadcast_on_state) {
203 		unsigned long reason;
204 
205 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
206 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
207 		clockevents_notify(reason, &pr->id);
208 	}
209 }
210 
211 #else
212 
213 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
214 				   struct acpi_processor_cx *cstate) { }
215 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
216 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
217 				       struct acpi_processor_cx *cx,
218 				       int broadcast)
219 {
220 }
221 
222 #endif
223 
224 /*
225  * Suspend / resume control
226  */
227 static u32 saved_bm_rld;
228 
229 static void acpi_idle_bm_rld_save(void)
230 {
231 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
232 }
233 static void acpi_idle_bm_rld_restore(void)
234 {
235 	u32 resumed_bm_rld;
236 
237 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
238 
239 	if (resumed_bm_rld != saved_bm_rld)
240 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
241 }
242 
243 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
244 {
245 	acpi_idle_bm_rld_save();
246 	return 0;
247 }
248 
249 int acpi_processor_resume(struct acpi_device * device)
250 {
251 	acpi_idle_bm_rld_restore();
252 	return 0;
253 }
254 
255 #if defined(CONFIG_X86)
256 static void tsc_check_state(int state)
257 {
258 	switch (boot_cpu_data.x86_vendor) {
259 	case X86_VENDOR_AMD:
260 	case X86_VENDOR_INTEL:
261 		/*
262 		 * AMD Fam10h TSC will tick in all
263 		 * C/P/S0/S1 states when this bit is set.
264 		 */
265 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
266 			return;
267 
268 		/*FALL THROUGH*/
269 	default:
270 		/* TSC could halt in idle, so notify users */
271 		if (state > ACPI_STATE_C1)
272 			mark_tsc_unstable("TSC halts in idle");
273 	}
274 }
275 #else
276 static void tsc_check_state(int state) { return; }
277 #endif
278 
279 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
280 {
281 
282 	if (!pr)
283 		return -EINVAL;
284 
285 	if (!pr->pblk)
286 		return -ENODEV;
287 
288 	/* if info is obtained from pblk/fadt, type equals state */
289 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
290 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
291 
292 #ifndef CONFIG_HOTPLUG_CPU
293 	/*
294 	 * Check for P_LVL2_UP flag before entering C2 and above on
295 	 * an SMP system.
296 	 */
297 	if ((num_online_cpus() > 1) &&
298 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
299 		return -ENODEV;
300 #endif
301 
302 	/* determine C2 and C3 address from pblk */
303 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
304 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
305 
306 	/* determine latencies from FADT */
307 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
308 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
309 
310 	/*
311 	 * FADT specified C2 latency must be less than or equal to
312 	 * 100 microseconds.
313 	 */
314 	if (acpi_gbl_FADT.C2latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
315 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
316 			"C2 latency too large [%d]\n", acpi_gbl_FADT.C2latency));
317 		/* invalidate C2 */
318 		pr->power.states[ACPI_STATE_C2].address = 0;
319 	}
320 
321 	/*
322 	 * FADT supplied C3 latency must be less than or equal to
323 	 * 1000 microseconds.
324 	 */
325 	if (acpi_gbl_FADT.C3latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
326 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
327 			"C3 latency too large [%d]\n", acpi_gbl_FADT.C3latency));
328 		/* invalidate C3 */
329 		pr->power.states[ACPI_STATE_C3].address = 0;
330 	}
331 
332 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
333 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
334 			  pr->power.states[ACPI_STATE_C2].address,
335 			  pr->power.states[ACPI_STATE_C3].address));
336 
337 	return 0;
338 }
339 
340 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
341 {
342 	if (!pr->power.states[ACPI_STATE_C1].valid) {
343 		/* set the first C-State to C1 */
344 		/* all processors need to support C1 */
345 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
346 		pr->power.states[ACPI_STATE_C1].valid = 1;
347 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
348 	}
349 	/* the C0 state only exists as a filler in our array */
350 	pr->power.states[ACPI_STATE_C0].valid = 1;
351 	return 0;
352 }
353 
354 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
355 {
356 	acpi_status status = 0;
357 	u64 count;
358 	int current_count;
359 	int i;
360 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
361 	union acpi_object *cst;
362 
363 
364 	if (nocst)
365 		return -ENODEV;
366 
367 	current_count = 0;
368 
369 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
370 	if (ACPI_FAILURE(status)) {
371 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
372 		return -ENODEV;
373 	}
374 
375 	cst = buffer.pointer;
376 
377 	/* There must be at least 2 elements */
378 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
379 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
380 		status = -EFAULT;
381 		goto end;
382 	}
383 
384 	count = cst->package.elements[0].integer.value;
385 
386 	/* Validate number of power states. */
387 	if (count < 1 || count != cst->package.count - 1) {
388 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
389 		status = -EFAULT;
390 		goto end;
391 	}
392 
393 	/* Tell driver that at least _CST is supported. */
394 	pr->flags.has_cst = 1;
395 
396 	for (i = 1; i <= count; i++) {
397 		union acpi_object *element;
398 		union acpi_object *obj;
399 		struct acpi_power_register *reg;
400 		struct acpi_processor_cx cx;
401 
402 		memset(&cx, 0, sizeof(cx));
403 
404 		element = &(cst->package.elements[i]);
405 		if (element->type != ACPI_TYPE_PACKAGE)
406 			continue;
407 
408 		if (element->package.count != 4)
409 			continue;
410 
411 		obj = &(element->package.elements[0]);
412 
413 		if (obj->type != ACPI_TYPE_BUFFER)
414 			continue;
415 
416 		reg = (struct acpi_power_register *)obj->buffer.pointer;
417 
418 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
419 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
420 			continue;
421 
422 		/* There should be an easy way to extract an integer... */
423 		obj = &(element->package.elements[1]);
424 		if (obj->type != ACPI_TYPE_INTEGER)
425 			continue;
426 
427 		cx.type = obj->integer.value;
428 		/*
429 		 * Some buggy BIOSes won't list C1 in _CST -
430 		 * Let acpi_processor_get_power_info_default() handle them later
431 		 */
432 		if (i == 1 && cx.type != ACPI_STATE_C1)
433 			current_count++;
434 
435 		cx.address = reg->address;
436 		cx.index = current_count + 1;
437 
438 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
439 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
440 			if (acpi_processor_ffh_cstate_probe
441 					(pr->id, &cx, reg) == 0) {
442 				cx.entry_method = ACPI_CSTATE_FFH;
443 			} else if (cx.type == ACPI_STATE_C1) {
444 				/*
445 				 * C1 is a special case where FIXED_HARDWARE
446 				 * can be handled in non-MWAIT way as well.
447 				 * In that case, save this _CST entry info.
448 				 * Otherwise, ignore this info and continue.
449 				 */
450 				cx.entry_method = ACPI_CSTATE_HALT;
451 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
452 			} else {
453 				continue;
454 			}
455 			if (cx.type == ACPI_STATE_C1 &&
456 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
457 				/*
458 				 * In most cases the C1 space_id obtained from
459 				 * _CST object is FIXED_HARDWARE access mode.
460 				 * But when the option of idle=halt is added,
461 				 * the entry_method type should be changed from
462 				 * CSTATE_FFH to CSTATE_HALT.
463 				 * When the option of idle=nomwait is added,
464 				 * the C1 entry_method type should be
465 				 * CSTATE_HALT.
466 				 */
467 				cx.entry_method = ACPI_CSTATE_HALT;
468 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
469 			}
470 		} else {
471 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
472 				 cx.address);
473 		}
474 
475 		if (cx.type == ACPI_STATE_C1) {
476 			cx.valid = 1;
477 		}
478 
479 		obj = &(element->package.elements[2]);
480 		if (obj->type != ACPI_TYPE_INTEGER)
481 			continue;
482 
483 		cx.latency = obj->integer.value;
484 
485 		obj = &(element->package.elements[3]);
486 		if (obj->type != ACPI_TYPE_INTEGER)
487 			continue;
488 
489 		cx.power = obj->integer.value;
490 
491 		current_count++;
492 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
493 
494 		/*
495 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
496 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
497 		 */
498 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
499 			printk(KERN_WARNING
500 			       "Limiting number of power states to max (%d)\n",
501 			       ACPI_PROCESSOR_MAX_POWER);
502 			printk(KERN_WARNING
503 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
504 			break;
505 		}
506 	}
507 
508 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
509 			  current_count));
510 
511 	/* Validate number of power states discovered */
512 	if (current_count < 2)
513 		status = -EFAULT;
514 
515       end:
516 	kfree(buffer.pointer);
517 
518 	return status;
519 }
520 
521 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
522 					   struct acpi_processor_cx *cx)
523 {
524 	static int bm_check_flag = -1;
525 	static int bm_control_flag = -1;
526 
527 
528 	if (!cx->address)
529 		return;
530 
531 	/*
532 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
533 	 * DMA transfers are used by any ISA device to avoid livelock.
534 	 * Note that we could disable Type-F DMA (as recommended by
535 	 * the erratum), but this is known to disrupt certain ISA
536 	 * devices thus we take the conservative approach.
537 	 */
538 	else if (errata.piix4.fdma) {
539 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
540 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
541 		return;
542 	}
543 
544 	/* All the logic here assumes flags.bm_check is same across all CPUs */
545 	if (bm_check_flag == -1) {
546 		/* Determine whether bm_check is needed based on CPU  */
547 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
548 		bm_check_flag = pr->flags.bm_check;
549 		bm_control_flag = pr->flags.bm_control;
550 	} else {
551 		pr->flags.bm_check = bm_check_flag;
552 		pr->flags.bm_control = bm_control_flag;
553 	}
554 
555 	if (pr->flags.bm_check) {
556 		if (!pr->flags.bm_control) {
557 			if (pr->flags.has_cst != 1) {
558 				/* bus mastering control is necessary */
559 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
560 					"C3 support requires BM control\n"));
561 				return;
562 			} else {
563 				/* Here we enter C3 without bus mastering */
564 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
565 					"C3 support without BM control\n"));
566 			}
567 		}
568 	} else {
569 		/*
570 		 * WBINVD should be set in fadt, for C3 state to be
571 		 * supported on when bm_check is not required.
572 		 */
573 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
574 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
575 					  "Cache invalidation should work properly"
576 					  " for C3 to be enabled on SMP systems\n"));
577 			return;
578 		}
579 	}
580 
581 	/*
582 	 * Otherwise we've met all of our C3 requirements.
583 	 * Normalize the C3 latency to expidite policy.  Enable
584 	 * checking of bus mastering status (bm_check) so we can
585 	 * use this in our C3 policy
586 	 */
587 	cx->valid = 1;
588 
589 	cx->latency_ticks = cx->latency;
590 	/*
591 	 * On older chipsets, BM_RLD needs to be set
592 	 * in order for Bus Master activity to wake the
593 	 * system from C3.  Newer chipsets handle DMA
594 	 * during C3 automatically and BM_RLD is a NOP.
595 	 * In either case, the proper way to
596 	 * handle BM_RLD is to set it and leave it set.
597 	 */
598 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
599 
600 	return;
601 }
602 
603 static int acpi_processor_power_verify(struct acpi_processor *pr)
604 {
605 	unsigned int i;
606 	unsigned int working = 0;
607 
608 	pr->power.timer_broadcast_on_state = INT_MAX;
609 
610 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
611 		struct acpi_processor_cx *cx = &pr->power.states[i];
612 
613 		switch (cx->type) {
614 		case ACPI_STATE_C1:
615 			cx->valid = 1;
616 			break;
617 
618 		case ACPI_STATE_C2:
619 			if (!cx->address)
620 				break;
621 			cx->valid = 1;
622 			cx->latency_ticks = cx->latency; /* Normalize latency */
623 			break;
624 
625 		case ACPI_STATE_C3:
626 			acpi_processor_power_verify_c3(pr, cx);
627 			break;
628 		}
629 		if (!cx->valid)
630 			continue;
631 
632 		lapic_timer_check_state(i, pr, cx);
633 		tsc_check_state(cx->type);
634 		working++;
635 	}
636 
637 	lapic_timer_propagate_broadcast(pr);
638 
639 	return (working);
640 }
641 
642 static int acpi_processor_get_power_info(struct acpi_processor *pr)
643 {
644 	unsigned int i;
645 	int result;
646 
647 
648 	/* NOTE: the idle thread may not be running while calling
649 	 * this function */
650 
651 	/* Zero initialize all the C-states info. */
652 	memset(pr->power.states, 0, sizeof(pr->power.states));
653 
654 	result = acpi_processor_get_power_info_cst(pr);
655 	if (result == -ENODEV)
656 		result = acpi_processor_get_power_info_fadt(pr);
657 
658 	if (result)
659 		return result;
660 
661 	acpi_processor_get_power_info_default(pr);
662 
663 	pr->power.count = acpi_processor_power_verify(pr);
664 
665 	/*
666 	 * if one state of type C2 or C3 is available, mark this
667 	 * CPU as being "idle manageable"
668 	 */
669 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
670 		if (pr->power.states[i].valid) {
671 			pr->power.count = i;
672 			if (pr->power.states[i].type >= ACPI_STATE_C2)
673 				pr->flags.power = 1;
674 		}
675 	}
676 
677 	return 0;
678 }
679 
680 /**
681  * acpi_idle_bm_check - checks if bus master activity was detected
682  */
683 static int acpi_idle_bm_check(void)
684 {
685 	u32 bm_status = 0;
686 
687 	if (bm_check_disable)
688 		return 0;
689 
690 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
691 	if (bm_status)
692 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
693 	/*
694 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
695 	 * the true state of bus mastering activity; forcing us to
696 	 * manually check the BMIDEA bit of each IDE channel.
697 	 */
698 	else if (errata.piix4.bmisx) {
699 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
700 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
701 			bm_status = 1;
702 	}
703 	return bm_status;
704 }
705 
706 /**
707  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
708  * @cx: cstate data
709  *
710  * Caller disables interrupt before call and enables interrupt after return.
711  */
712 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
713 {
714 	/* Don't trace irqs off for idle */
715 	stop_critical_timings();
716 	if (cx->entry_method == ACPI_CSTATE_FFH) {
717 		/* Call into architectural FFH based C-state */
718 		acpi_processor_ffh_cstate_enter(cx);
719 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
720 		acpi_safe_halt();
721 	} else {
722 		/* IO port based C-state */
723 		inb(cx->address);
724 		/* Dummy wait op - must do something useless after P_LVL2 read
725 		   because chipsets cannot guarantee that STPCLK# signal
726 		   gets asserted in time to freeze execution properly. */
727 		inl(acpi_gbl_FADT.xpm_timer_block.address);
728 	}
729 	start_critical_timings();
730 }
731 
732 /**
733  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
734  * @dev: the target CPU
735  * @drv: cpuidle driver containing cpuidle state info
736  * @index: index of target state
737  *
738  * This is equivalent to the HALT instruction.
739  */
740 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
741 		struct cpuidle_driver *drv, int index)
742 {
743 	ktime_t  kt1, kt2;
744 	s64 idle_time;
745 	struct acpi_processor *pr;
746 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
747 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
748 
749 	pr = __this_cpu_read(processors);
750 	dev->last_residency = 0;
751 
752 	if (unlikely(!pr))
753 		return -EINVAL;
754 
755 	local_irq_disable();
756 
757 	lapic_timer_state_broadcast(pr, cx, 1);
758 	kt1 = ktime_get_real();
759 	acpi_idle_do_entry(cx);
760 	kt2 = ktime_get_real();
761 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
762 
763 	/* Update device last_residency*/
764 	dev->last_residency = (int)idle_time;
765 
766 	local_irq_enable();
767 	cx->usage++;
768 	lapic_timer_state_broadcast(pr, cx, 0);
769 
770 	return index;
771 }
772 
773 /**
774  * acpi_idle_enter_simple - enters an ACPI state without BM handling
775  * @dev: the target CPU
776  * @drv: cpuidle driver with cpuidle state information
777  * @index: the index of suggested state
778  */
779 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
780 		struct cpuidle_driver *drv, int index)
781 {
782 	struct acpi_processor *pr;
783 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
784 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
785 	ktime_t  kt1, kt2;
786 	s64 idle_time_ns;
787 	s64 idle_time;
788 
789 	pr = __this_cpu_read(processors);
790 	dev->last_residency = 0;
791 
792 	if (unlikely(!pr))
793 		return -EINVAL;
794 
795 	local_irq_disable();
796 
797 	if (cx->entry_method != ACPI_CSTATE_FFH) {
798 		current_thread_info()->status &= ~TS_POLLING;
799 		/*
800 		 * TS_POLLING-cleared state must be visible before we test
801 		 * NEED_RESCHED:
802 		 */
803 		smp_mb();
804 
805 		if (unlikely(need_resched())) {
806 			current_thread_info()->status |= TS_POLLING;
807 			local_irq_enable();
808 			return -EINVAL;
809 		}
810 	}
811 
812 	/*
813 	 * Must be done before busmaster disable as we might need to
814 	 * access HPET !
815 	 */
816 	lapic_timer_state_broadcast(pr, cx, 1);
817 
818 	if (cx->type == ACPI_STATE_C3)
819 		ACPI_FLUSH_CPU_CACHE();
820 
821 	kt1 = ktime_get_real();
822 	/* Tell the scheduler that we are going deep-idle: */
823 	sched_clock_idle_sleep_event();
824 	acpi_idle_do_entry(cx);
825 	kt2 = ktime_get_real();
826 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
827 	idle_time = idle_time_ns;
828 	do_div(idle_time, NSEC_PER_USEC);
829 
830 	/* Update device last_residency*/
831 	dev->last_residency = (int)idle_time;
832 
833 	/* Tell the scheduler how much we idled: */
834 	sched_clock_idle_wakeup_event(idle_time_ns);
835 
836 	local_irq_enable();
837 	if (cx->entry_method != ACPI_CSTATE_FFH)
838 		current_thread_info()->status |= TS_POLLING;
839 
840 	cx->usage++;
841 
842 	lapic_timer_state_broadcast(pr, cx, 0);
843 	cx->time += idle_time;
844 	return index;
845 }
846 
847 static int c3_cpu_count;
848 static DEFINE_RAW_SPINLOCK(c3_lock);
849 
850 /**
851  * acpi_idle_enter_bm - enters C3 with proper BM handling
852  * @dev: the target CPU
853  * @drv: cpuidle driver containing state data
854  * @index: the index of suggested state
855  *
856  * If BM is detected, the deepest non-C3 idle state is entered instead.
857  */
858 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
859 		struct cpuidle_driver *drv, int index)
860 {
861 	struct acpi_processor *pr;
862 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
863 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
864 	ktime_t  kt1, kt2;
865 	s64 idle_time_ns;
866 	s64 idle_time;
867 
868 
869 	pr = __this_cpu_read(processors);
870 	dev->last_residency = 0;
871 
872 	if (unlikely(!pr))
873 		return -EINVAL;
874 
875 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
876 		if (drv->safe_state_index >= 0) {
877 			return drv->states[drv->safe_state_index].enter(dev,
878 						drv, drv->safe_state_index);
879 		} else {
880 			local_irq_disable();
881 			acpi_safe_halt();
882 			local_irq_enable();
883 			return -EINVAL;
884 		}
885 	}
886 
887 	local_irq_disable();
888 
889 	if (cx->entry_method != ACPI_CSTATE_FFH) {
890 		current_thread_info()->status &= ~TS_POLLING;
891 		/*
892 		 * TS_POLLING-cleared state must be visible before we test
893 		 * NEED_RESCHED:
894 		 */
895 		smp_mb();
896 
897 		if (unlikely(need_resched())) {
898 			current_thread_info()->status |= TS_POLLING;
899 			local_irq_enable();
900 			return -EINVAL;
901 		}
902 	}
903 
904 	acpi_unlazy_tlb(smp_processor_id());
905 
906 	/* Tell the scheduler that we are going deep-idle: */
907 	sched_clock_idle_sleep_event();
908 	/*
909 	 * Must be done before busmaster disable as we might need to
910 	 * access HPET !
911 	 */
912 	lapic_timer_state_broadcast(pr, cx, 1);
913 
914 	kt1 = ktime_get_real();
915 	/*
916 	 * disable bus master
917 	 * bm_check implies we need ARB_DIS
918 	 * !bm_check implies we need cache flush
919 	 * bm_control implies whether we can do ARB_DIS
920 	 *
921 	 * That leaves a case where bm_check is set and bm_control is
922 	 * not set. In that case we cannot do much, we enter C3
923 	 * without doing anything.
924 	 */
925 	if (pr->flags.bm_check && pr->flags.bm_control) {
926 		raw_spin_lock(&c3_lock);
927 		c3_cpu_count++;
928 		/* Disable bus master arbitration when all CPUs are in C3 */
929 		if (c3_cpu_count == num_online_cpus())
930 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
931 		raw_spin_unlock(&c3_lock);
932 	} else if (!pr->flags.bm_check) {
933 		ACPI_FLUSH_CPU_CACHE();
934 	}
935 
936 	acpi_idle_do_entry(cx);
937 
938 	/* Re-enable bus master arbitration */
939 	if (pr->flags.bm_check && pr->flags.bm_control) {
940 		raw_spin_lock(&c3_lock);
941 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
942 		c3_cpu_count--;
943 		raw_spin_unlock(&c3_lock);
944 	}
945 	kt2 = ktime_get_real();
946 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
947 	idle_time = idle_time_ns;
948 	do_div(idle_time, NSEC_PER_USEC);
949 
950 	/* Update device last_residency*/
951 	dev->last_residency = (int)idle_time;
952 
953 	/* Tell the scheduler how much we idled: */
954 	sched_clock_idle_wakeup_event(idle_time_ns);
955 
956 	local_irq_enable();
957 	if (cx->entry_method != ACPI_CSTATE_FFH)
958 		current_thread_info()->status |= TS_POLLING;
959 
960 	cx->usage++;
961 
962 	lapic_timer_state_broadcast(pr, cx, 0);
963 	cx->time += idle_time;
964 	return index;
965 }
966 
967 struct cpuidle_driver acpi_idle_driver = {
968 	.name =		"acpi_idle",
969 	.owner =	THIS_MODULE,
970 };
971 
972 /**
973  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
974  * device i.e. per-cpu data
975  *
976  * @pr: the ACPI processor
977  */
978 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr)
979 {
980 	int i, count = CPUIDLE_DRIVER_STATE_START;
981 	struct acpi_processor_cx *cx;
982 	struct cpuidle_state_usage *state_usage;
983 	struct cpuidle_device *dev = &pr->power.dev;
984 
985 	if (!pr->flags.power_setup_done)
986 		return -EINVAL;
987 
988 	if (pr->flags.power == 0) {
989 		return -EINVAL;
990 	}
991 
992 	dev->cpu = pr->id;
993 
994 	if (max_cstate == 0)
995 		max_cstate = 1;
996 
997 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
998 		cx = &pr->power.states[i];
999 		state_usage = &dev->states_usage[count];
1000 
1001 		if (!cx->valid)
1002 			continue;
1003 
1004 #ifdef CONFIG_HOTPLUG_CPU
1005 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1006 		    !pr->flags.has_cst &&
1007 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1008 			continue;
1009 #endif
1010 
1011 		cpuidle_set_statedata(state_usage, cx);
1012 
1013 		count++;
1014 		if (count == CPUIDLE_STATE_MAX)
1015 			break;
1016 	}
1017 
1018 	dev->state_count = count;
1019 
1020 	if (!count)
1021 		return -EINVAL;
1022 
1023 	return 0;
1024 }
1025 
1026 /**
1027  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
1028  * global state data i.e. idle routines
1029  *
1030  * @pr: the ACPI processor
1031  */
1032 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1033 {
1034 	int i, count = CPUIDLE_DRIVER_STATE_START;
1035 	struct acpi_processor_cx *cx;
1036 	struct cpuidle_state *state;
1037 	struct cpuidle_driver *drv = &acpi_idle_driver;
1038 
1039 	if (!pr->flags.power_setup_done)
1040 		return -EINVAL;
1041 
1042 	if (pr->flags.power == 0)
1043 		return -EINVAL;
1044 
1045 	drv->safe_state_index = -1;
1046 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1047 		drv->states[i].name[0] = '\0';
1048 		drv->states[i].desc[0] = '\0';
1049 	}
1050 
1051 	if (max_cstate == 0)
1052 		max_cstate = 1;
1053 
1054 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1055 		cx = &pr->power.states[i];
1056 
1057 		if (!cx->valid)
1058 			continue;
1059 
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1062 		    !pr->flags.has_cst &&
1063 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1064 			continue;
1065 #endif
1066 
1067 		state = &drv->states[count];
1068 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1069 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1070 		state->exit_latency = cx->latency;
1071 		state->target_residency = cx->latency * latency_factor;
1072 
1073 		state->flags = 0;
1074 		switch (cx->type) {
1075 			case ACPI_STATE_C1:
1076 			if (cx->entry_method == ACPI_CSTATE_FFH)
1077 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1078 
1079 			state->enter = acpi_idle_enter_c1;
1080 			drv->safe_state_index = count;
1081 			break;
1082 
1083 			case ACPI_STATE_C2:
1084 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1085 			state->enter = acpi_idle_enter_simple;
1086 			drv->safe_state_index = count;
1087 			break;
1088 
1089 			case ACPI_STATE_C3:
1090 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1091 			state->enter = pr->flags.bm_check ?
1092 					acpi_idle_enter_bm :
1093 					acpi_idle_enter_simple;
1094 			break;
1095 		}
1096 
1097 		count++;
1098 		if (count == CPUIDLE_STATE_MAX)
1099 			break;
1100 	}
1101 
1102 	drv->state_count = count;
1103 
1104 	if (!count)
1105 		return -EINVAL;
1106 
1107 	return 0;
1108 }
1109 
1110 int acpi_processor_hotplug(struct acpi_processor *pr)
1111 {
1112 	int ret = 0;
1113 
1114 	if (disabled_by_idle_boot_param())
1115 		return 0;
1116 
1117 	if (!pr)
1118 		return -EINVAL;
1119 
1120 	if (nocst) {
1121 		return -ENODEV;
1122 	}
1123 
1124 	if (!pr->flags.power_setup_done)
1125 		return -ENODEV;
1126 
1127 	cpuidle_pause_and_lock();
1128 	cpuidle_disable_device(&pr->power.dev);
1129 	acpi_processor_get_power_info(pr);
1130 	if (pr->flags.power) {
1131 		acpi_processor_setup_cpuidle_cx(pr);
1132 		ret = cpuidle_enable_device(&pr->power.dev);
1133 	}
1134 	cpuidle_resume_and_unlock();
1135 
1136 	return ret;
1137 }
1138 
1139 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1140 {
1141 	int cpu;
1142 	struct acpi_processor *_pr;
1143 
1144 	if (disabled_by_idle_boot_param())
1145 		return 0;
1146 
1147 	if (!pr)
1148 		return -EINVAL;
1149 
1150 	if (nocst)
1151 		return -ENODEV;
1152 
1153 	if (!pr->flags.power_setup_done)
1154 		return -ENODEV;
1155 
1156 	/*
1157 	 * FIXME:  Design the ACPI notification to make it once per
1158 	 * system instead of once per-cpu.  This condition is a hack
1159 	 * to make the code that updates C-States be called once.
1160 	 */
1161 
1162 	if (smp_processor_id() == 0 &&
1163 			cpuidle_get_driver() == &acpi_idle_driver) {
1164 
1165 		cpuidle_pause_and_lock();
1166 		/* Protect against cpu-hotplug */
1167 		get_online_cpus();
1168 
1169 		/* Disable all cpuidle devices */
1170 		for_each_online_cpu(cpu) {
1171 			_pr = per_cpu(processors, cpu);
1172 			if (!_pr || !_pr->flags.power_setup_done)
1173 				continue;
1174 			cpuidle_disable_device(&_pr->power.dev);
1175 		}
1176 
1177 		/* Populate Updated C-state information */
1178 		acpi_processor_setup_cpuidle_states(pr);
1179 
1180 		/* Enable all cpuidle devices */
1181 		for_each_online_cpu(cpu) {
1182 			_pr = per_cpu(processors, cpu);
1183 			if (!_pr || !_pr->flags.power_setup_done)
1184 				continue;
1185 			acpi_processor_get_power_info(_pr);
1186 			if (_pr->flags.power) {
1187 				acpi_processor_setup_cpuidle_cx(_pr);
1188 				cpuidle_enable_device(&_pr->power.dev);
1189 			}
1190 		}
1191 		put_online_cpus();
1192 		cpuidle_resume_and_unlock();
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static int acpi_processor_registered;
1199 
1200 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1201 			      struct acpi_device *device)
1202 {
1203 	acpi_status status = 0;
1204 	int retval;
1205 	static int first_run;
1206 
1207 	if (disabled_by_idle_boot_param())
1208 		return 0;
1209 
1210 	if (!first_run) {
1211 		dmi_check_system(processor_power_dmi_table);
1212 		max_cstate = acpi_processor_cstate_check(max_cstate);
1213 		if (max_cstate < ACPI_C_STATES_MAX)
1214 			printk(KERN_NOTICE
1215 			       "ACPI: processor limited to max C-state %d\n",
1216 			       max_cstate);
1217 		first_run++;
1218 	}
1219 
1220 	if (!pr)
1221 		return -EINVAL;
1222 
1223 	if (acpi_gbl_FADT.cst_control && !nocst) {
1224 		status =
1225 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1226 		if (ACPI_FAILURE(status)) {
1227 			ACPI_EXCEPTION((AE_INFO, status,
1228 					"Notifying BIOS of _CST ability failed"));
1229 		}
1230 	}
1231 
1232 	acpi_processor_get_power_info(pr);
1233 	pr->flags.power_setup_done = 1;
1234 
1235 	/*
1236 	 * Install the idle handler if processor power management is supported.
1237 	 * Note that we use previously set idle handler will be used on
1238 	 * platforms that only support C1.
1239 	 */
1240 	if (pr->flags.power) {
1241 		/* Register acpi_idle_driver if not already registered */
1242 		if (!acpi_processor_registered) {
1243 			acpi_processor_setup_cpuidle_states(pr);
1244 			retval = cpuidle_register_driver(&acpi_idle_driver);
1245 			if (retval)
1246 				return retval;
1247 			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1248 					acpi_idle_driver.name);
1249 		}
1250 		/* Register per-cpu cpuidle_device. Cpuidle driver
1251 		 * must already be registered before registering device
1252 		 */
1253 		acpi_processor_setup_cpuidle_cx(pr);
1254 		retval = cpuidle_register_device(&pr->power.dev);
1255 		if (retval) {
1256 			if (acpi_processor_registered == 0)
1257 				cpuidle_unregister_driver(&acpi_idle_driver);
1258 			return retval;
1259 		}
1260 		acpi_processor_registered++;
1261 	}
1262 	return 0;
1263 }
1264 
1265 int acpi_processor_power_exit(struct acpi_processor *pr,
1266 			      struct acpi_device *device)
1267 {
1268 	if (disabled_by_idle_boot_param())
1269 		return 0;
1270 
1271 	if (pr->flags.power) {
1272 		cpuidle_unregister_device(&pr->power.dev);
1273 		acpi_processor_registered--;
1274 		if (acpi_processor_registered == 0)
1275 			cpuidle_unregister_driver(&acpi_idle_driver);
1276 	}
1277 
1278 	pr->flags.power_setup_done = 0;
1279 	return 0;
1280 }
1281