1 /* 2 * processor_idle - idle state submodule to the ACPI processor driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 8 * - Added processor hotplug support 9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 * - Added support for C3 on SMP 11 * 12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License as published by 16 * the Free Software Foundation; either version 2 of the License, or (at 17 * your option) any later version. 18 * 19 * This program is distributed in the hope that it will be useful, but 20 * WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 * General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 27 * 28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/proc_fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/acpi.h> 38 #include <linux/dmi.h> 39 #include <linux/moduleparam.h> 40 #include <linux/sched.h> /* need_resched() */ 41 #include <linux/latency.h> 42 #include <linux/clockchips.h> 43 44 /* 45 * Include the apic definitions for x86 to have the APIC timer related defines 46 * available also for UP (on SMP it gets magically included via linux/smp.h). 47 * asm/acpi.h is not an option, as it would require more include magic. Also 48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera. 49 */ 50 #ifdef CONFIG_X86 51 #include <asm/apic.h> 52 #endif 53 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 57 #include <acpi/acpi_bus.h> 58 #include <acpi/processor.h> 59 60 #define ACPI_PROCESSOR_COMPONENT 0x01000000 61 #define ACPI_PROCESSOR_CLASS "processor" 62 #define _COMPONENT ACPI_PROCESSOR_COMPONENT 63 ACPI_MODULE_NAME("processor_idle"); 64 #define ACPI_PROCESSOR_FILE_POWER "power" 65 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000) 66 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */ 67 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */ 68 static void (*pm_idle_save) (void) __read_mostly; 69 module_param(max_cstate, uint, 0644); 70 71 static unsigned int nocst __read_mostly; 72 module_param(nocst, uint, 0000); 73 74 /* 75 * bm_history -- bit-mask with a bit per jiffy of bus-master activity 76 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms 77 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms 78 * 100 HZ: 0x0000000F: 4 jiffies = 40ms 79 * reduce history for more aggressive entry into C3 80 */ 81 static unsigned int bm_history __read_mostly = 82 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1)); 83 module_param(bm_history, uint, 0644); 84 /* -------------------------------------------------------------------------- 85 Power Management 86 -------------------------------------------------------------------------- */ 87 88 /* 89 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3. 90 * For now disable this. Probably a bug somewhere else. 91 * 92 * To skip this limit, boot/load with a large max_cstate limit. 93 */ 94 static int set_max_cstate(struct dmi_system_id *id) 95 { 96 if (max_cstate > ACPI_PROCESSOR_MAX_POWER) 97 return 0; 98 99 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate." 100 " Override with \"processor.max_cstate=%d\"\n", id->ident, 101 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1); 102 103 max_cstate = (long)id->driver_data; 104 105 return 0; 106 } 107 108 /* Actually this shouldn't be __cpuinitdata, would be better to fix the 109 callers to only run once -AK */ 110 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = { 111 { set_max_cstate, "IBM ThinkPad R40e", { 112 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 113 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1}, 114 { set_max_cstate, "IBM ThinkPad R40e", { 115 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 116 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1}, 117 { set_max_cstate, "IBM ThinkPad R40e", { 118 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 119 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1}, 120 { set_max_cstate, "IBM ThinkPad R40e", { 121 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 122 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1}, 123 { set_max_cstate, "IBM ThinkPad R40e", { 124 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 125 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1}, 126 { set_max_cstate, "IBM ThinkPad R40e", { 127 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 128 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1}, 129 { set_max_cstate, "IBM ThinkPad R40e", { 130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 131 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1}, 132 { set_max_cstate, "IBM ThinkPad R40e", { 133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 134 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1}, 135 { set_max_cstate, "IBM ThinkPad R40e", { 136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 137 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1}, 138 { set_max_cstate, "IBM ThinkPad R40e", { 139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 140 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1}, 141 { set_max_cstate, "IBM ThinkPad R40e", { 142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 143 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1}, 144 { set_max_cstate, "IBM ThinkPad R40e", { 145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 146 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1}, 147 { set_max_cstate, "IBM ThinkPad R40e", { 148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 149 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1}, 150 { set_max_cstate, "IBM ThinkPad R40e", { 151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 152 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1}, 153 { set_max_cstate, "IBM ThinkPad R40e", { 154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 155 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1}, 156 { set_max_cstate, "IBM ThinkPad R40e", { 157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"), 158 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1}, 159 { set_max_cstate, "Medion 41700", { 160 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 161 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1}, 162 { set_max_cstate, "Clevo 5600D", { 163 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"), 164 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")}, 165 (void *)2}, 166 {}, 167 }; 168 169 static inline u32 ticks_elapsed(u32 t1, u32 t2) 170 { 171 if (t2 >= t1) 172 return (t2 - t1); 173 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER)) 174 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF); 175 else 176 return ((0xFFFFFFFF - t1) + t2); 177 } 178 179 static void 180 acpi_processor_power_activate(struct acpi_processor *pr, 181 struct acpi_processor_cx *new) 182 { 183 struct acpi_processor_cx *old; 184 185 if (!pr || !new) 186 return; 187 188 old = pr->power.state; 189 190 if (old) 191 old->promotion.count = 0; 192 new->demotion.count = 0; 193 194 /* Cleanup from old state. */ 195 if (old) { 196 switch (old->type) { 197 case ACPI_STATE_C3: 198 /* Disable bus master reload */ 199 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check) 200 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); 201 break; 202 } 203 } 204 205 /* Prepare to use new state. */ 206 switch (new->type) { 207 case ACPI_STATE_C3: 208 /* Enable bus master reload */ 209 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check) 210 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1); 211 break; 212 } 213 214 pr->power.state = new; 215 216 return; 217 } 218 219 static void acpi_safe_halt(void) 220 { 221 current_thread_info()->status &= ~TS_POLLING; 222 /* 223 * TS_POLLING-cleared state must be visible before we 224 * test NEED_RESCHED: 225 */ 226 smp_mb(); 227 if (!need_resched()) 228 safe_halt(); 229 current_thread_info()->status |= TS_POLLING; 230 } 231 232 static atomic_t c3_cpu_count; 233 234 /* Common C-state entry for C2, C3, .. */ 235 static void acpi_cstate_enter(struct acpi_processor_cx *cstate) 236 { 237 if (cstate->space_id == ACPI_CSTATE_FFH) { 238 /* Call into architectural FFH based C-state */ 239 acpi_processor_ffh_cstate_enter(cstate); 240 } else { 241 int unused; 242 /* IO port based C-state */ 243 inb(cstate->address); 244 /* Dummy wait op - must do something useless after P_LVL2 read 245 because chipsets cannot guarantee that STPCLK# signal 246 gets asserted in time to freeze execution properly. */ 247 unused = inl(acpi_gbl_FADT.xpm_timer_block.address); 248 } 249 } 250 251 #ifdef ARCH_APICTIMER_STOPS_ON_C3 252 253 /* 254 * Some BIOS implementations switch to C3 in the published C2 state. 255 * This seems to be a common problem on AMD boxen, but other vendors 256 * are affected too. We pick the most conservative approach: we assume 257 * that the local APIC stops in both C2 and C3. 258 */ 259 static void acpi_timer_check_state(int state, struct acpi_processor *pr, 260 struct acpi_processor_cx *cx) 261 { 262 struct acpi_processor_power *pwr = &pr->power; 263 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2; 264 265 /* 266 * Check, if one of the previous states already marked the lapic 267 * unstable 268 */ 269 if (pwr->timer_broadcast_on_state < state) 270 return; 271 272 if (cx->type >= type) 273 pr->power.timer_broadcast_on_state = state; 274 } 275 276 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) 277 { 278 #ifdef CONFIG_GENERIC_CLOCKEVENTS 279 unsigned long reason; 280 281 reason = pr->power.timer_broadcast_on_state < INT_MAX ? 282 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF; 283 284 clockevents_notify(reason, &pr->id); 285 #else 286 cpumask_t mask = cpumask_of_cpu(pr->id); 287 288 if (pr->power.timer_broadcast_on_state < INT_MAX) 289 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1); 290 else 291 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1); 292 #endif 293 } 294 295 /* Power(C) State timer broadcast control */ 296 static void acpi_state_timer_broadcast(struct acpi_processor *pr, 297 struct acpi_processor_cx *cx, 298 int broadcast) 299 { 300 #ifdef CONFIG_GENERIC_CLOCKEVENTS 301 302 int state = cx - pr->power.states; 303 304 if (state >= pr->power.timer_broadcast_on_state) { 305 unsigned long reason; 306 307 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER : 308 CLOCK_EVT_NOTIFY_BROADCAST_EXIT; 309 clockevents_notify(reason, &pr->id); 310 } 311 #endif 312 } 313 314 #else 315 316 static void acpi_timer_check_state(int state, struct acpi_processor *pr, 317 struct acpi_processor_cx *cstate) { } 318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { } 319 static void acpi_state_timer_broadcast(struct acpi_processor *pr, 320 struct acpi_processor_cx *cx, 321 int broadcast) 322 { 323 } 324 325 #endif 326 327 static void acpi_processor_idle(void) 328 { 329 struct acpi_processor *pr = NULL; 330 struct acpi_processor_cx *cx = NULL; 331 struct acpi_processor_cx *next_state = NULL; 332 int sleep_ticks = 0; 333 u32 t1, t2 = 0; 334 335 /* 336 * Interrupts must be disabled during bus mastering calculations and 337 * for C2/C3 transitions. 338 */ 339 local_irq_disable(); 340 341 pr = processors[smp_processor_id()]; 342 if (!pr) { 343 local_irq_enable(); 344 return; 345 } 346 347 /* 348 * Check whether we truly need to go idle, or should 349 * reschedule: 350 */ 351 if (unlikely(need_resched())) { 352 local_irq_enable(); 353 return; 354 } 355 356 cx = pr->power.state; 357 if (!cx) { 358 if (pm_idle_save) 359 pm_idle_save(); 360 else 361 acpi_safe_halt(); 362 return; 363 } 364 365 /* 366 * Check BM Activity 367 * ----------------- 368 * Check for bus mastering activity (if required), record, and check 369 * for demotion. 370 */ 371 if (pr->flags.bm_check) { 372 u32 bm_status = 0; 373 unsigned long diff = jiffies - pr->power.bm_check_timestamp; 374 375 if (diff > 31) 376 diff = 31; 377 378 pr->power.bm_activity <<= diff; 379 380 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status); 381 if (bm_status) { 382 pr->power.bm_activity |= 0x1; 383 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); 384 } 385 /* 386 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect 387 * the true state of bus mastering activity; forcing us to 388 * manually check the BMIDEA bit of each IDE channel. 389 */ 390 else if (errata.piix4.bmisx) { 391 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01) 392 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01)) 393 pr->power.bm_activity |= 0x1; 394 } 395 396 pr->power.bm_check_timestamp = jiffies; 397 398 /* 399 * If bus mastering is or was active this jiffy, demote 400 * to avoid a faulty transition. Note that the processor 401 * won't enter a low-power state during this call (to this 402 * function) but should upon the next. 403 * 404 * TBD: A better policy might be to fallback to the demotion 405 * state (use it for this quantum only) istead of 406 * demoting -- and rely on duration as our sole demotion 407 * qualification. This may, however, introduce DMA 408 * issues (e.g. floppy DMA transfer overrun/underrun). 409 */ 410 if ((pr->power.bm_activity & 0x1) && 411 cx->demotion.threshold.bm) { 412 local_irq_enable(); 413 next_state = cx->demotion.state; 414 goto end; 415 } 416 } 417 418 #ifdef CONFIG_HOTPLUG_CPU 419 /* 420 * Check for P_LVL2_UP flag before entering C2 and above on 421 * an SMP system. We do it here instead of doing it at _CST/P_LVL 422 * detection phase, to work cleanly with logical CPU hotplug. 423 */ 424 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 425 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 426 cx = &pr->power.states[ACPI_STATE_C1]; 427 #endif 428 429 /* 430 * Sleep: 431 * ------ 432 * Invoke the current Cx state to put the processor to sleep. 433 */ 434 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) { 435 current_thread_info()->status &= ~TS_POLLING; 436 /* 437 * TS_POLLING-cleared state must be visible before we 438 * test NEED_RESCHED: 439 */ 440 smp_mb(); 441 if (need_resched()) { 442 current_thread_info()->status |= TS_POLLING; 443 local_irq_enable(); 444 return; 445 } 446 } 447 448 switch (cx->type) { 449 450 case ACPI_STATE_C1: 451 /* 452 * Invoke C1. 453 * Use the appropriate idle routine, the one that would 454 * be used without acpi C-states. 455 */ 456 if (pm_idle_save) 457 pm_idle_save(); 458 else 459 acpi_safe_halt(); 460 461 /* 462 * TBD: Can't get time duration while in C1, as resumes 463 * go to an ISR rather than here. Need to instrument 464 * base interrupt handler. 465 */ 466 sleep_ticks = 0xFFFFFFFF; 467 break; 468 469 case ACPI_STATE_C2: 470 /* Get start time (ticks) */ 471 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); 472 /* Invoke C2 */ 473 acpi_state_timer_broadcast(pr, cx, 1); 474 acpi_cstate_enter(cx); 475 /* Get end time (ticks) */ 476 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); 477 478 #ifdef CONFIG_GENERIC_TIME 479 /* TSC halts in C2, so notify users */ 480 mark_tsc_unstable("possible TSC halt in C2"); 481 #endif 482 /* Re-enable interrupts */ 483 local_irq_enable(); 484 current_thread_info()->status |= TS_POLLING; 485 /* Compute time (ticks) that we were actually asleep */ 486 sleep_ticks = 487 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD; 488 acpi_state_timer_broadcast(pr, cx, 0); 489 break; 490 491 case ACPI_STATE_C3: 492 493 if (pr->flags.bm_check) { 494 if (atomic_inc_return(&c3_cpu_count) == 495 num_online_cpus()) { 496 /* 497 * All CPUs are trying to go to C3 498 * Disable bus master arbitration 499 */ 500 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1); 501 } 502 } else { 503 /* SMP with no shared cache... Invalidate cache */ 504 ACPI_FLUSH_CPU_CACHE(); 505 } 506 507 /* Get start time (ticks) */ 508 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address); 509 /* Invoke C3 */ 510 acpi_state_timer_broadcast(pr, cx, 1); 511 acpi_cstate_enter(cx); 512 /* Get end time (ticks) */ 513 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address); 514 if (pr->flags.bm_check) { 515 /* Enable bus master arbitration */ 516 atomic_dec(&c3_cpu_count); 517 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0); 518 } 519 520 #ifdef CONFIG_GENERIC_TIME 521 /* TSC halts in C3, so notify users */ 522 mark_tsc_unstable("TSC halts in C3"); 523 #endif 524 /* Re-enable interrupts */ 525 local_irq_enable(); 526 current_thread_info()->status |= TS_POLLING; 527 /* Compute time (ticks) that we were actually asleep */ 528 sleep_ticks = 529 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD; 530 acpi_state_timer_broadcast(pr, cx, 0); 531 break; 532 533 default: 534 local_irq_enable(); 535 return; 536 } 537 cx->usage++; 538 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0)) 539 cx->time += sleep_ticks; 540 541 next_state = pr->power.state; 542 543 #ifdef CONFIG_HOTPLUG_CPU 544 /* Don't do promotion/demotion */ 545 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) && 546 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) { 547 next_state = cx; 548 goto end; 549 } 550 #endif 551 552 /* 553 * Promotion? 554 * ---------- 555 * Track the number of longs (time asleep is greater than threshold) 556 * and promote when the count threshold is reached. Note that bus 557 * mastering activity may prevent promotions. 558 * Do not promote above max_cstate. 559 */ 560 if (cx->promotion.state && 561 ((cx->promotion.state - pr->power.states) <= max_cstate)) { 562 if (sleep_ticks > cx->promotion.threshold.ticks && 563 cx->promotion.state->latency <= system_latency_constraint()) { 564 cx->promotion.count++; 565 cx->demotion.count = 0; 566 if (cx->promotion.count >= 567 cx->promotion.threshold.count) { 568 if (pr->flags.bm_check) { 569 if (! 570 (pr->power.bm_activity & cx-> 571 promotion.threshold.bm)) { 572 next_state = 573 cx->promotion.state; 574 goto end; 575 } 576 } else { 577 next_state = cx->promotion.state; 578 goto end; 579 } 580 } 581 } 582 } 583 584 /* 585 * Demotion? 586 * --------- 587 * Track the number of shorts (time asleep is less than time threshold) 588 * and demote when the usage threshold is reached. 589 */ 590 if (cx->demotion.state) { 591 if (sleep_ticks < cx->demotion.threshold.ticks) { 592 cx->demotion.count++; 593 cx->promotion.count = 0; 594 if (cx->demotion.count >= cx->demotion.threshold.count) { 595 next_state = cx->demotion.state; 596 goto end; 597 } 598 } 599 } 600 601 end: 602 /* 603 * Demote if current state exceeds max_cstate 604 * or if the latency of the current state is unacceptable 605 */ 606 if ((pr->power.state - pr->power.states) > max_cstate || 607 pr->power.state->latency > system_latency_constraint()) { 608 if (cx->demotion.state) 609 next_state = cx->demotion.state; 610 } 611 612 /* 613 * New Cx State? 614 * ------------- 615 * If we're going to start using a new Cx state we must clean up 616 * from the previous and prepare to use the new. 617 */ 618 if (next_state != pr->power.state) 619 acpi_processor_power_activate(pr, next_state); 620 } 621 622 static int acpi_processor_set_power_policy(struct acpi_processor *pr) 623 { 624 unsigned int i; 625 unsigned int state_is_set = 0; 626 struct acpi_processor_cx *lower = NULL; 627 struct acpi_processor_cx *higher = NULL; 628 struct acpi_processor_cx *cx; 629 630 631 if (!pr) 632 return -EINVAL; 633 634 /* 635 * This function sets the default Cx state policy (OS idle handler). 636 * Our scheme is to promote quickly to C2 but more conservatively 637 * to C3. We're favoring C2 for its characteristics of low latency 638 * (quick response), good power savings, and ability to allow bus 639 * mastering activity. Note that the Cx state policy is completely 640 * customizable and can be altered dynamically. 641 */ 642 643 /* startup state */ 644 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 645 cx = &pr->power.states[i]; 646 if (!cx->valid) 647 continue; 648 649 if (!state_is_set) 650 pr->power.state = cx; 651 state_is_set++; 652 break; 653 } 654 655 if (!state_is_set) 656 return -ENODEV; 657 658 /* demotion */ 659 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 660 cx = &pr->power.states[i]; 661 if (!cx->valid) 662 continue; 663 664 if (lower) { 665 cx->demotion.state = lower; 666 cx->demotion.threshold.ticks = cx->latency_ticks; 667 cx->demotion.threshold.count = 1; 668 if (cx->type == ACPI_STATE_C3) 669 cx->demotion.threshold.bm = bm_history; 670 } 671 672 lower = cx; 673 } 674 675 /* promotion */ 676 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) { 677 cx = &pr->power.states[i]; 678 if (!cx->valid) 679 continue; 680 681 if (higher) { 682 cx->promotion.state = higher; 683 cx->promotion.threshold.ticks = cx->latency_ticks; 684 if (cx->type >= ACPI_STATE_C2) 685 cx->promotion.threshold.count = 4; 686 else 687 cx->promotion.threshold.count = 10; 688 if (higher->type == ACPI_STATE_C3) 689 cx->promotion.threshold.bm = bm_history; 690 } 691 692 higher = cx; 693 } 694 695 return 0; 696 } 697 698 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr) 699 { 700 701 if (!pr) 702 return -EINVAL; 703 704 if (!pr->pblk) 705 return -ENODEV; 706 707 /* if info is obtained from pblk/fadt, type equals state */ 708 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2; 709 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3; 710 711 #ifndef CONFIG_HOTPLUG_CPU 712 /* 713 * Check for P_LVL2_UP flag before entering C2 and above on 714 * an SMP system. 715 */ 716 if ((num_online_cpus() > 1) && 717 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) 718 return -ENODEV; 719 #endif 720 721 /* determine C2 and C3 address from pblk */ 722 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4; 723 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5; 724 725 /* determine latencies from FADT */ 726 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency; 727 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency; 728 729 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 730 "lvl2[0x%08x] lvl3[0x%08x]\n", 731 pr->power.states[ACPI_STATE_C2].address, 732 pr->power.states[ACPI_STATE_C3].address)); 733 734 return 0; 735 } 736 737 static int acpi_processor_get_power_info_default(struct acpi_processor *pr) 738 { 739 if (!pr->power.states[ACPI_STATE_C1].valid) { 740 /* set the first C-State to C1 */ 741 /* all processors need to support C1 */ 742 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1; 743 pr->power.states[ACPI_STATE_C1].valid = 1; 744 } 745 /* the C0 state only exists as a filler in our array */ 746 pr->power.states[ACPI_STATE_C0].valid = 1; 747 return 0; 748 } 749 750 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr) 751 { 752 acpi_status status = 0; 753 acpi_integer count; 754 int current_count; 755 int i; 756 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 757 union acpi_object *cst; 758 759 760 if (nocst) 761 return -ENODEV; 762 763 current_count = 0; 764 765 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer); 766 if (ACPI_FAILURE(status)) { 767 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n")); 768 return -ENODEV; 769 } 770 771 cst = buffer.pointer; 772 773 /* There must be at least 2 elements */ 774 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) { 775 printk(KERN_ERR PREFIX "not enough elements in _CST\n"); 776 status = -EFAULT; 777 goto end; 778 } 779 780 count = cst->package.elements[0].integer.value; 781 782 /* Validate number of power states. */ 783 if (count < 1 || count != cst->package.count - 1) { 784 printk(KERN_ERR PREFIX "count given by _CST is not valid\n"); 785 status = -EFAULT; 786 goto end; 787 } 788 789 /* Tell driver that at least _CST is supported. */ 790 pr->flags.has_cst = 1; 791 792 for (i = 1; i <= count; i++) { 793 union acpi_object *element; 794 union acpi_object *obj; 795 struct acpi_power_register *reg; 796 struct acpi_processor_cx cx; 797 798 memset(&cx, 0, sizeof(cx)); 799 800 element = &(cst->package.elements[i]); 801 if (element->type != ACPI_TYPE_PACKAGE) 802 continue; 803 804 if (element->package.count != 4) 805 continue; 806 807 obj = &(element->package.elements[0]); 808 809 if (obj->type != ACPI_TYPE_BUFFER) 810 continue; 811 812 reg = (struct acpi_power_register *)obj->buffer.pointer; 813 814 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO && 815 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) 816 continue; 817 818 /* There should be an easy way to extract an integer... */ 819 obj = &(element->package.elements[1]); 820 if (obj->type != ACPI_TYPE_INTEGER) 821 continue; 822 823 cx.type = obj->integer.value; 824 /* 825 * Some buggy BIOSes won't list C1 in _CST - 826 * Let acpi_processor_get_power_info_default() handle them later 827 */ 828 if (i == 1 && cx.type != ACPI_STATE_C1) 829 current_count++; 830 831 cx.address = reg->address; 832 cx.index = current_count + 1; 833 834 cx.space_id = ACPI_CSTATE_SYSTEMIO; 835 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { 836 if (acpi_processor_ffh_cstate_probe 837 (pr->id, &cx, reg) == 0) { 838 cx.space_id = ACPI_CSTATE_FFH; 839 } else if (cx.type != ACPI_STATE_C1) { 840 /* 841 * C1 is a special case where FIXED_HARDWARE 842 * can be handled in non-MWAIT way as well. 843 * In that case, save this _CST entry info. 844 * That is, we retain space_id of SYSTEM_IO for 845 * halt based C1. 846 * Otherwise, ignore this info and continue. 847 */ 848 continue; 849 } 850 } 851 852 obj = &(element->package.elements[2]); 853 if (obj->type != ACPI_TYPE_INTEGER) 854 continue; 855 856 cx.latency = obj->integer.value; 857 858 obj = &(element->package.elements[3]); 859 if (obj->type != ACPI_TYPE_INTEGER) 860 continue; 861 862 cx.power = obj->integer.value; 863 864 current_count++; 865 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx)); 866 867 /* 868 * We support total ACPI_PROCESSOR_MAX_POWER - 1 869 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1) 870 */ 871 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) { 872 printk(KERN_WARNING 873 "Limiting number of power states to max (%d)\n", 874 ACPI_PROCESSOR_MAX_POWER); 875 printk(KERN_WARNING 876 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n"); 877 break; 878 } 879 } 880 881 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n", 882 current_count)); 883 884 /* Validate number of power states discovered */ 885 if (current_count < 2) 886 status = -EFAULT; 887 888 end: 889 kfree(buffer.pointer); 890 891 return status; 892 } 893 894 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx) 895 { 896 897 if (!cx->address) 898 return; 899 900 /* 901 * C2 latency must be less than or equal to 100 902 * microseconds. 903 */ 904 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) { 905 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 906 "latency too large [%d]\n", cx->latency)); 907 return; 908 } 909 910 /* 911 * Otherwise we've met all of our C2 requirements. 912 * Normalize the C2 latency to expidite policy 913 */ 914 cx->valid = 1; 915 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); 916 917 return; 918 } 919 920 static void acpi_processor_power_verify_c3(struct acpi_processor *pr, 921 struct acpi_processor_cx *cx) 922 { 923 static int bm_check_flag; 924 925 926 if (!cx->address) 927 return; 928 929 /* 930 * C3 latency must be less than or equal to 1000 931 * microseconds. 932 */ 933 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) { 934 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 935 "latency too large [%d]\n", cx->latency)); 936 return; 937 } 938 939 /* 940 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast) 941 * DMA transfers are used by any ISA device to avoid livelock. 942 * Note that we could disable Type-F DMA (as recommended by 943 * the erratum), but this is known to disrupt certain ISA 944 * devices thus we take the conservative approach. 945 */ 946 else if (errata.piix4.fdma) { 947 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 948 "C3 not supported on PIIX4 with Type-F DMA\n")); 949 return; 950 } 951 952 /* All the logic here assumes flags.bm_check is same across all CPUs */ 953 if (!bm_check_flag) { 954 /* Determine whether bm_check is needed based on CPU */ 955 acpi_processor_power_init_bm_check(&(pr->flags), pr->id); 956 bm_check_flag = pr->flags.bm_check; 957 } else { 958 pr->flags.bm_check = bm_check_flag; 959 } 960 961 if (pr->flags.bm_check) { 962 /* bus mastering control is necessary */ 963 if (!pr->flags.bm_control) { 964 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 965 "C3 support requires bus mastering control\n")); 966 return; 967 } 968 } else { 969 /* 970 * WBINVD should be set in fadt, for C3 state to be 971 * supported on when bm_check is not required. 972 */ 973 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) { 974 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 975 "Cache invalidation should work properly" 976 " for C3 to be enabled on SMP systems\n")); 977 return; 978 } 979 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); 980 } 981 982 /* 983 * Otherwise we've met all of our C3 requirements. 984 * Normalize the C3 latency to expidite policy. Enable 985 * checking of bus mastering status (bm_check) so we can 986 * use this in our C3 policy 987 */ 988 cx->valid = 1; 989 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency); 990 991 return; 992 } 993 994 static int acpi_processor_power_verify(struct acpi_processor *pr) 995 { 996 unsigned int i; 997 unsigned int working = 0; 998 999 pr->power.timer_broadcast_on_state = INT_MAX; 1000 1001 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 1002 struct acpi_processor_cx *cx = &pr->power.states[i]; 1003 1004 switch (cx->type) { 1005 case ACPI_STATE_C1: 1006 cx->valid = 1; 1007 break; 1008 1009 case ACPI_STATE_C2: 1010 acpi_processor_power_verify_c2(cx); 1011 if (cx->valid) 1012 acpi_timer_check_state(i, pr, cx); 1013 break; 1014 1015 case ACPI_STATE_C3: 1016 acpi_processor_power_verify_c3(pr, cx); 1017 if (cx->valid) 1018 acpi_timer_check_state(i, pr, cx); 1019 break; 1020 } 1021 1022 if (cx->valid) 1023 working++; 1024 } 1025 1026 acpi_propagate_timer_broadcast(pr); 1027 1028 return (working); 1029 } 1030 1031 static int acpi_processor_get_power_info(struct acpi_processor *pr) 1032 { 1033 unsigned int i; 1034 int result; 1035 1036 1037 /* NOTE: the idle thread may not be running while calling 1038 * this function */ 1039 1040 /* Zero initialize all the C-states info. */ 1041 memset(pr->power.states, 0, sizeof(pr->power.states)); 1042 1043 result = acpi_processor_get_power_info_cst(pr); 1044 if (result == -ENODEV) 1045 result = acpi_processor_get_power_info_fadt(pr); 1046 1047 if (result) 1048 return result; 1049 1050 acpi_processor_get_power_info_default(pr); 1051 1052 pr->power.count = acpi_processor_power_verify(pr); 1053 1054 /* 1055 * Set Default Policy 1056 * ------------------ 1057 * Now that we know which states are supported, set the default 1058 * policy. Note that this policy can be changed dynamically 1059 * (e.g. encourage deeper sleeps to conserve battery life when 1060 * not on AC). 1061 */ 1062 result = acpi_processor_set_power_policy(pr); 1063 if (result) 1064 return result; 1065 1066 /* 1067 * if one state of type C2 or C3 is available, mark this 1068 * CPU as being "idle manageable" 1069 */ 1070 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) { 1071 if (pr->power.states[i].valid) { 1072 pr->power.count = i; 1073 if (pr->power.states[i].type >= ACPI_STATE_C2) 1074 pr->flags.power = 1; 1075 } 1076 } 1077 1078 return 0; 1079 } 1080 1081 int acpi_processor_cst_has_changed(struct acpi_processor *pr) 1082 { 1083 int result = 0; 1084 1085 1086 if (!pr) 1087 return -EINVAL; 1088 1089 if (nocst) { 1090 return -ENODEV; 1091 } 1092 1093 if (!pr->flags.power_setup_done) 1094 return -ENODEV; 1095 1096 /* Fall back to the default idle loop */ 1097 pm_idle = pm_idle_save; 1098 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */ 1099 1100 pr->flags.power = 0; 1101 result = acpi_processor_get_power_info(pr); 1102 if ((pr->flags.power == 1) && (pr->flags.power_setup_done)) 1103 pm_idle = acpi_processor_idle; 1104 1105 return result; 1106 } 1107 1108 /* proc interface */ 1109 1110 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset) 1111 { 1112 struct acpi_processor *pr = seq->private; 1113 unsigned int i; 1114 1115 1116 if (!pr) 1117 goto end; 1118 1119 seq_printf(seq, "active state: C%zd\n" 1120 "max_cstate: C%d\n" 1121 "bus master activity: %08x\n" 1122 "maximum allowed latency: %d usec\n", 1123 pr->power.state ? pr->power.state - pr->power.states : 0, 1124 max_cstate, (unsigned)pr->power.bm_activity, 1125 system_latency_constraint()); 1126 1127 seq_puts(seq, "states:\n"); 1128 1129 for (i = 1; i <= pr->power.count; i++) { 1130 seq_printf(seq, " %cC%d: ", 1131 (&pr->power.states[i] == 1132 pr->power.state ? '*' : ' '), i); 1133 1134 if (!pr->power.states[i].valid) { 1135 seq_puts(seq, "<not supported>\n"); 1136 continue; 1137 } 1138 1139 switch (pr->power.states[i].type) { 1140 case ACPI_STATE_C1: 1141 seq_printf(seq, "type[C1] "); 1142 break; 1143 case ACPI_STATE_C2: 1144 seq_printf(seq, "type[C2] "); 1145 break; 1146 case ACPI_STATE_C3: 1147 seq_printf(seq, "type[C3] "); 1148 break; 1149 default: 1150 seq_printf(seq, "type[--] "); 1151 break; 1152 } 1153 1154 if (pr->power.states[i].promotion.state) 1155 seq_printf(seq, "promotion[C%zd] ", 1156 (pr->power.states[i].promotion.state - 1157 pr->power.states)); 1158 else 1159 seq_puts(seq, "promotion[--] "); 1160 1161 if (pr->power.states[i].demotion.state) 1162 seq_printf(seq, "demotion[C%zd] ", 1163 (pr->power.states[i].demotion.state - 1164 pr->power.states)); 1165 else 1166 seq_puts(seq, "demotion[--] "); 1167 1168 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n", 1169 pr->power.states[i].latency, 1170 pr->power.states[i].usage, 1171 (unsigned long long)pr->power.states[i].time); 1172 } 1173 1174 end: 1175 return 0; 1176 } 1177 1178 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file) 1179 { 1180 return single_open(file, acpi_processor_power_seq_show, 1181 PDE(inode)->data); 1182 } 1183 1184 static const struct file_operations acpi_processor_power_fops = { 1185 .open = acpi_processor_power_open_fs, 1186 .read = seq_read, 1187 .llseek = seq_lseek, 1188 .release = single_release, 1189 }; 1190 1191 #ifdef CONFIG_SMP 1192 static void smp_callback(void *v) 1193 { 1194 /* we already woke the CPU up, nothing more to do */ 1195 } 1196 1197 /* 1198 * This function gets called when a part of the kernel has a new latency 1199 * requirement. This means we need to get all processors out of their C-state, 1200 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that 1201 * wakes them all right up. 1202 */ 1203 static int acpi_processor_latency_notify(struct notifier_block *b, 1204 unsigned long l, void *v) 1205 { 1206 smp_call_function(smp_callback, NULL, 0, 1); 1207 return NOTIFY_OK; 1208 } 1209 1210 static struct notifier_block acpi_processor_latency_notifier = { 1211 .notifier_call = acpi_processor_latency_notify, 1212 }; 1213 #endif 1214 1215 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr, 1216 struct acpi_device *device) 1217 { 1218 acpi_status status = 0; 1219 static int first_run; 1220 struct proc_dir_entry *entry = NULL; 1221 unsigned int i; 1222 1223 1224 if (!first_run) { 1225 dmi_check_system(processor_power_dmi_table); 1226 if (max_cstate < ACPI_C_STATES_MAX) 1227 printk(KERN_NOTICE 1228 "ACPI: processor limited to max C-state %d\n", 1229 max_cstate); 1230 first_run++; 1231 #ifdef CONFIG_SMP 1232 register_latency_notifier(&acpi_processor_latency_notifier); 1233 #endif 1234 } 1235 1236 if (!pr) 1237 return -EINVAL; 1238 1239 if (acpi_gbl_FADT.cst_control && !nocst) { 1240 status = 1241 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8); 1242 if (ACPI_FAILURE(status)) { 1243 ACPI_EXCEPTION((AE_INFO, status, 1244 "Notifying BIOS of _CST ability failed")); 1245 } 1246 } 1247 1248 acpi_processor_get_power_info(pr); 1249 1250 /* 1251 * Install the idle handler if processor power management is supported. 1252 * Note that we use previously set idle handler will be used on 1253 * platforms that only support C1. 1254 */ 1255 if ((pr->flags.power) && (!boot_option_idle_override)) { 1256 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id); 1257 for (i = 1; i <= pr->power.count; i++) 1258 if (pr->power.states[i].valid) 1259 printk(" C%d[C%d]", i, 1260 pr->power.states[i].type); 1261 printk(")\n"); 1262 1263 if (pr->id == 0) { 1264 pm_idle_save = pm_idle; 1265 pm_idle = acpi_processor_idle; 1266 } 1267 } 1268 1269 /* 'power' [R] */ 1270 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1271 S_IRUGO, acpi_device_dir(device)); 1272 if (!entry) 1273 return -EIO; 1274 else { 1275 entry->proc_fops = &acpi_processor_power_fops; 1276 entry->data = acpi_driver_data(device); 1277 entry->owner = THIS_MODULE; 1278 } 1279 1280 pr->flags.power_setup_done = 1; 1281 1282 return 0; 1283 } 1284 1285 int acpi_processor_power_exit(struct acpi_processor *pr, 1286 struct acpi_device *device) 1287 { 1288 1289 pr->flags.power_setup_done = 0; 1290 1291 if (acpi_device_dir(device)) 1292 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER, 1293 acpi_device_dir(device)); 1294 1295 /* Unregister the idle handler when processor #0 is removed. */ 1296 if (pr->id == 0) { 1297 pm_idle = pm_idle_save; 1298 1299 /* 1300 * We are about to unload the current idle thread pm callback 1301 * (pm_idle), Wait for all processors to update cached/local 1302 * copies of pm_idle before proceeding. 1303 */ 1304 cpu_idle_wait(); 1305 #ifdef CONFIG_SMP 1306 unregister_latency_notifier(&acpi_processor_latency_notifier); 1307 #endif 1308 } 1309 1310 return 0; 1311 } 1312