xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 5a1ea477)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27 
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
36 
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46 
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50 
51 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
52 
53 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
54 module_param(max_cstate, uint, 0000);
55 static unsigned int nocst __read_mostly;
56 module_param(nocst, uint, 0000);
57 static int bm_check_disable __read_mostly;
58 module_param(bm_check_disable, uint, 0000);
59 
60 static unsigned int latency_factor __read_mostly = 2;
61 module_param(latency_factor, uint, 0644);
62 
63 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
64 
65 struct cpuidle_driver acpi_idle_driver = {
66 	.name =		"acpi_idle",
67 	.owner =	THIS_MODULE,
68 };
69 
70 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
71 static
72 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
73 
74 static int disabled_by_idle_boot_param(void)
75 {
76 	return boot_option_idle_override == IDLE_POLL ||
77 		boot_option_idle_override == IDLE_HALT;
78 }
79 
80 /*
81  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
82  * For now disable this. Probably a bug somewhere else.
83  *
84  * To skip this limit, boot/load with a large max_cstate limit.
85  */
86 static int set_max_cstate(const struct dmi_system_id *id)
87 {
88 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
89 		return 0;
90 
91 	pr_notice("%s detected - limiting to C%ld max_cstate."
92 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
93 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
94 
95 	max_cstate = (long)id->driver_data;
96 
97 	return 0;
98 }
99 
100 static const struct dmi_system_id processor_power_dmi_table[] = {
101 	{ set_max_cstate, "Clevo 5600D", {
102 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
103 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
104 	 (void *)2},
105 	{ set_max_cstate, "Pavilion zv5000", {
106 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
107 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
108 	 (void *)1},
109 	{ set_max_cstate, "Asus L8400B", {
110 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
111 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
112 	 (void *)1},
113 	{},
114 };
115 
116 
117 /*
118  * Callers should disable interrupts before the call and enable
119  * interrupts after return.
120  */
121 static void __cpuidle acpi_safe_halt(void)
122 {
123 	if (!tif_need_resched()) {
124 		safe_halt();
125 		local_irq_disable();
126 	}
127 }
128 
129 #ifdef ARCH_APICTIMER_STOPS_ON_C3
130 
131 /*
132  * Some BIOS implementations switch to C3 in the published C2 state.
133  * This seems to be a common problem on AMD boxen, but other vendors
134  * are affected too. We pick the most conservative approach: we assume
135  * that the local APIC stops in both C2 and C3.
136  */
137 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
138 				   struct acpi_processor_cx *cx)
139 {
140 	struct acpi_processor_power *pwr = &pr->power;
141 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
142 
143 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
144 		return;
145 
146 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
147 		type = ACPI_STATE_C1;
148 
149 	/*
150 	 * Check, if one of the previous states already marked the lapic
151 	 * unstable
152 	 */
153 	if (pwr->timer_broadcast_on_state < state)
154 		return;
155 
156 	if (cx->type >= type)
157 		pr->power.timer_broadcast_on_state = state;
158 }
159 
160 static void __lapic_timer_propagate_broadcast(void *arg)
161 {
162 	struct acpi_processor *pr = (struct acpi_processor *) arg;
163 
164 	if (pr->power.timer_broadcast_on_state < INT_MAX)
165 		tick_broadcast_enable();
166 	else
167 		tick_broadcast_disable();
168 }
169 
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
171 {
172 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173 				 (void *)pr, 1);
174 }
175 
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178 				       struct acpi_processor_cx *cx,
179 				       int broadcast)
180 {
181 	int state = cx - pr->power.states;
182 
183 	if (state >= pr->power.timer_broadcast_on_state) {
184 		if (broadcast)
185 			tick_broadcast_enter();
186 		else
187 			tick_broadcast_exit();
188 	}
189 }
190 
191 #else
192 
193 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
194 				   struct acpi_processor_cx *cstate) { }
195 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 }
201 
202 #endif
203 
204 #if defined(CONFIG_X86)
205 static void tsc_check_state(int state)
206 {
207 	switch (boot_cpu_data.x86_vendor) {
208 	case X86_VENDOR_HYGON:
209 	case X86_VENDOR_AMD:
210 	case X86_VENDOR_INTEL:
211 	case X86_VENDOR_CENTAUR:
212 		/*
213 		 * AMD Fam10h TSC will tick in all
214 		 * C/P/S0/S1 states when this bit is set.
215 		 */
216 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
217 			return;
218 
219 		/*FALL THROUGH*/
220 	default:
221 		/* TSC could halt in idle, so notify users */
222 		if (state > ACPI_STATE_C1)
223 			mark_tsc_unstable("TSC halts in idle");
224 	}
225 }
226 #else
227 static void tsc_check_state(int state) { return; }
228 #endif
229 
230 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
231 {
232 
233 	if (!pr->pblk)
234 		return -ENODEV;
235 
236 	/* if info is obtained from pblk/fadt, type equals state */
237 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
238 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
239 
240 #ifndef CONFIG_HOTPLUG_CPU
241 	/*
242 	 * Check for P_LVL2_UP flag before entering C2 and above on
243 	 * an SMP system.
244 	 */
245 	if ((num_online_cpus() > 1) &&
246 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
247 		return -ENODEV;
248 #endif
249 
250 	/* determine C2 and C3 address from pblk */
251 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
252 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
253 
254 	/* determine latencies from FADT */
255 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
256 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
257 
258 	/*
259 	 * FADT specified C2 latency must be less than or equal to
260 	 * 100 microseconds.
261 	 */
262 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
263 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
264 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
265 		/* invalidate C2 */
266 		pr->power.states[ACPI_STATE_C2].address = 0;
267 	}
268 
269 	/*
270 	 * FADT supplied C3 latency must be less than or equal to
271 	 * 1000 microseconds.
272 	 */
273 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
274 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
275 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
276 		/* invalidate C3 */
277 		pr->power.states[ACPI_STATE_C3].address = 0;
278 	}
279 
280 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
281 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
282 			  pr->power.states[ACPI_STATE_C2].address,
283 			  pr->power.states[ACPI_STATE_C3].address));
284 
285 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
286 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
287 			 pr->power.states[ACPI_STATE_C2].address);
288 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
289 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
290 			 pr->power.states[ACPI_STATE_C3].address);
291 
292 	return 0;
293 }
294 
295 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
296 {
297 	if (!pr->power.states[ACPI_STATE_C1].valid) {
298 		/* set the first C-State to C1 */
299 		/* all processors need to support C1 */
300 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
301 		pr->power.states[ACPI_STATE_C1].valid = 1;
302 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
303 
304 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
305 			 ACPI_CX_DESC_LEN, "ACPI HLT");
306 	}
307 	/* the C0 state only exists as a filler in our array */
308 	pr->power.states[ACPI_STATE_C0].valid = 1;
309 	return 0;
310 }
311 
312 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
313 {
314 	acpi_status status;
315 	u64 count;
316 	int current_count;
317 	int i, ret = 0;
318 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
319 	union acpi_object *cst;
320 
321 	if (nocst)
322 		return -ENODEV;
323 
324 	current_count = 0;
325 
326 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
327 	if (ACPI_FAILURE(status)) {
328 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
329 		return -ENODEV;
330 	}
331 
332 	cst = buffer.pointer;
333 
334 	/* There must be at least 2 elements */
335 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
336 		pr_err("not enough elements in _CST\n");
337 		ret = -EFAULT;
338 		goto end;
339 	}
340 
341 	count = cst->package.elements[0].integer.value;
342 
343 	/* Validate number of power states. */
344 	if (count < 1 || count != cst->package.count - 1) {
345 		pr_err("count given by _CST is not valid\n");
346 		ret = -EFAULT;
347 		goto end;
348 	}
349 
350 	/* Tell driver that at least _CST is supported. */
351 	pr->flags.has_cst = 1;
352 
353 	for (i = 1; i <= count; i++) {
354 		union acpi_object *element;
355 		union acpi_object *obj;
356 		struct acpi_power_register *reg;
357 		struct acpi_processor_cx cx;
358 
359 		memset(&cx, 0, sizeof(cx));
360 
361 		element = &(cst->package.elements[i]);
362 		if (element->type != ACPI_TYPE_PACKAGE)
363 			continue;
364 
365 		if (element->package.count != 4)
366 			continue;
367 
368 		obj = &(element->package.elements[0]);
369 
370 		if (obj->type != ACPI_TYPE_BUFFER)
371 			continue;
372 
373 		reg = (struct acpi_power_register *)obj->buffer.pointer;
374 
375 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
376 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
377 			continue;
378 
379 		/* There should be an easy way to extract an integer... */
380 		obj = &(element->package.elements[1]);
381 		if (obj->type != ACPI_TYPE_INTEGER)
382 			continue;
383 
384 		cx.type = obj->integer.value;
385 		/*
386 		 * Some buggy BIOSes won't list C1 in _CST -
387 		 * Let acpi_processor_get_power_info_default() handle them later
388 		 */
389 		if (i == 1 && cx.type != ACPI_STATE_C1)
390 			current_count++;
391 
392 		cx.address = reg->address;
393 		cx.index = current_count + 1;
394 
395 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
396 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
397 			if (acpi_processor_ffh_cstate_probe
398 					(pr->id, &cx, reg) == 0) {
399 				cx.entry_method = ACPI_CSTATE_FFH;
400 			} else if (cx.type == ACPI_STATE_C1) {
401 				/*
402 				 * C1 is a special case where FIXED_HARDWARE
403 				 * can be handled in non-MWAIT way as well.
404 				 * In that case, save this _CST entry info.
405 				 * Otherwise, ignore this info and continue.
406 				 */
407 				cx.entry_method = ACPI_CSTATE_HALT;
408 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
409 			} else {
410 				continue;
411 			}
412 			if (cx.type == ACPI_STATE_C1 &&
413 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
414 				/*
415 				 * In most cases the C1 space_id obtained from
416 				 * _CST object is FIXED_HARDWARE access mode.
417 				 * But when the option of idle=halt is added,
418 				 * the entry_method type should be changed from
419 				 * CSTATE_FFH to CSTATE_HALT.
420 				 * When the option of idle=nomwait is added,
421 				 * the C1 entry_method type should be
422 				 * CSTATE_HALT.
423 				 */
424 				cx.entry_method = ACPI_CSTATE_HALT;
425 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
426 			}
427 		} else {
428 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
429 				 cx.address);
430 		}
431 
432 		if (cx.type == ACPI_STATE_C1) {
433 			cx.valid = 1;
434 		}
435 
436 		obj = &(element->package.elements[2]);
437 		if (obj->type != ACPI_TYPE_INTEGER)
438 			continue;
439 
440 		cx.latency = obj->integer.value;
441 
442 		obj = &(element->package.elements[3]);
443 		if (obj->type != ACPI_TYPE_INTEGER)
444 			continue;
445 
446 		current_count++;
447 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
448 
449 		/*
450 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
451 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
452 		 */
453 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
454 			pr_warn("Limiting number of power states to max (%d)\n",
455 				ACPI_PROCESSOR_MAX_POWER);
456 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
457 			break;
458 		}
459 	}
460 
461 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
462 			  current_count));
463 
464 	/* Validate number of power states discovered */
465 	if (current_count < 2)
466 		ret = -EFAULT;
467 
468       end:
469 	kfree(buffer.pointer);
470 
471 	return ret;
472 }
473 
474 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
475 					   struct acpi_processor_cx *cx)
476 {
477 	static int bm_check_flag = -1;
478 	static int bm_control_flag = -1;
479 
480 
481 	if (!cx->address)
482 		return;
483 
484 	/*
485 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
486 	 * DMA transfers are used by any ISA device to avoid livelock.
487 	 * Note that we could disable Type-F DMA (as recommended by
488 	 * the erratum), but this is known to disrupt certain ISA
489 	 * devices thus we take the conservative approach.
490 	 */
491 	else if (errata.piix4.fdma) {
492 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
493 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
494 		return;
495 	}
496 
497 	/* All the logic here assumes flags.bm_check is same across all CPUs */
498 	if (bm_check_flag == -1) {
499 		/* Determine whether bm_check is needed based on CPU  */
500 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
501 		bm_check_flag = pr->flags.bm_check;
502 		bm_control_flag = pr->flags.bm_control;
503 	} else {
504 		pr->flags.bm_check = bm_check_flag;
505 		pr->flags.bm_control = bm_control_flag;
506 	}
507 
508 	if (pr->flags.bm_check) {
509 		if (!pr->flags.bm_control) {
510 			if (pr->flags.has_cst != 1) {
511 				/* bus mastering control is necessary */
512 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
513 					"C3 support requires BM control\n"));
514 				return;
515 			} else {
516 				/* Here we enter C3 without bus mastering */
517 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
518 					"C3 support without BM control\n"));
519 			}
520 		}
521 	} else {
522 		/*
523 		 * WBINVD should be set in fadt, for C3 state to be
524 		 * supported on when bm_check is not required.
525 		 */
526 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
527 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
528 					  "Cache invalidation should work properly"
529 					  " for C3 to be enabled on SMP systems\n"));
530 			return;
531 		}
532 	}
533 
534 	/*
535 	 * Otherwise we've met all of our C3 requirements.
536 	 * Normalize the C3 latency to expidite policy.  Enable
537 	 * checking of bus mastering status (bm_check) so we can
538 	 * use this in our C3 policy
539 	 */
540 	cx->valid = 1;
541 
542 	/*
543 	 * On older chipsets, BM_RLD needs to be set
544 	 * in order for Bus Master activity to wake the
545 	 * system from C3.  Newer chipsets handle DMA
546 	 * during C3 automatically and BM_RLD is a NOP.
547 	 * In either case, the proper way to
548 	 * handle BM_RLD is to set it and leave it set.
549 	 */
550 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
551 
552 	return;
553 }
554 
555 static int acpi_processor_power_verify(struct acpi_processor *pr)
556 {
557 	unsigned int i;
558 	unsigned int working = 0;
559 
560 	pr->power.timer_broadcast_on_state = INT_MAX;
561 
562 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
563 		struct acpi_processor_cx *cx = &pr->power.states[i];
564 
565 		switch (cx->type) {
566 		case ACPI_STATE_C1:
567 			cx->valid = 1;
568 			break;
569 
570 		case ACPI_STATE_C2:
571 			if (!cx->address)
572 				break;
573 			cx->valid = 1;
574 			break;
575 
576 		case ACPI_STATE_C3:
577 			acpi_processor_power_verify_c3(pr, cx);
578 			break;
579 		}
580 		if (!cx->valid)
581 			continue;
582 
583 		lapic_timer_check_state(i, pr, cx);
584 		tsc_check_state(cx->type);
585 		working++;
586 	}
587 
588 	lapic_timer_propagate_broadcast(pr);
589 
590 	return (working);
591 }
592 
593 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
594 {
595 	unsigned int i;
596 	int result;
597 
598 
599 	/* NOTE: the idle thread may not be running while calling
600 	 * this function */
601 
602 	/* Zero initialize all the C-states info. */
603 	memset(pr->power.states, 0, sizeof(pr->power.states));
604 
605 	result = acpi_processor_get_power_info_cst(pr);
606 	if (result == -ENODEV)
607 		result = acpi_processor_get_power_info_fadt(pr);
608 
609 	if (result)
610 		return result;
611 
612 	acpi_processor_get_power_info_default(pr);
613 
614 	pr->power.count = acpi_processor_power_verify(pr);
615 
616 	/*
617 	 * if one state of type C2 or C3 is available, mark this
618 	 * CPU as being "idle manageable"
619 	 */
620 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
621 		if (pr->power.states[i].valid) {
622 			pr->power.count = i;
623 			if (pr->power.states[i].type >= ACPI_STATE_C2)
624 				pr->flags.power = 1;
625 		}
626 	}
627 
628 	return 0;
629 }
630 
631 /**
632  * acpi_idle_bm_check - checks if bus master activity was detected
633  */
634 static int acpi_idle_bm_check(void)
635 {
636 	u32 bm_status = 0;
637 
638 	if (bm_check_disable)
639 		return 0;
640 
641 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
642 	if (bm_status)
643 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
644 	/*
645 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
646 	 * the true state of bus mastering activity; forcing us to
647 	 * manually check the BMIDEA bit of each IDE channel.
648 	 */
649 	else if (errata.piix4.bmisx) {
650 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
651 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
652 			bm_status = 1;
653 	}
654 	return bm_status;
655 }
656 
657 /**
658  * acpi_idle_do_entry - enter idle state using the appropriate method
659  * @cx: cstate data
660  *
661  * Caller disables interrupt before call and enables interrupt after return.
662  */
663 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
664 {
665 	if (cx->entry_method == ACPI_CSTATE_FFH) {
666 		/* Call into architectural FFH based C-state */
667 		acpi_processor_ffh_cstate_enter(cx);
668 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
669 		acpi_safe_halt();
670 	} else {
671 		/* IO port based C-state */
672 		inb(cx->address);
673 		/* Dummy wait op - must do something useless after P_LVL2 read
674 		   because chipsets cannot guarantee that STPCLK# signal
675 		   gets asserted in time to freeze execution properly. */
676 		inl(acpi_gbl_FADT.xpm_timer_block.address);
677 	}
678 }
679 
680 /**
681  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
682  * @dev: the target CPU
683  * @index: the index of suggested state
684  */
685 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
686 {
687 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
688 
689 	ACPI_FLUSH_CPU_CACHE();
690 
691 	while (1) {
692 
693 		if (cx->entry_method == ACPI_CSTATE_HALT)
694 			safe_halt();
695 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
696 			inb(cx->address);
697 			/* See comment in acpi_idle_do_entry() */
698 			inl(acpi_gbl_FADT.xpm_timer_block.address);
699 		} else
700 			return -ENODEV;
701 	}
702 
703 	/* Never reached */
704 	return 0;
705 }
706 
707 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
708 {
709 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
710 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
711 }
712 
713 static int c3_cpu_count;
714 static DEFINE_RAW_SPINLOCK(c3_lock);
715 
716 /**
717  * acpi_idle_enter_bm - enters C3 with proper BM handling
718  * @pr: Target processor
719  * @cx: Target state context
720  * @timer_bc: Whether or not to change timer mode to broadcast
721  */
722 static void acpi_idle_enter_bm(struct acpi_processor *pr,
723 			       struct acpi_processor_cx *cx, bool timer_bc)
724 {
725 	acpi_unlazy_tlb(smp_processor_id());
726 
727 	/*
728 	 * Must be done before busmaster disable as we might need to
729 	 * access HPET !
730 	 */
731 	if (timer_bc)
732 		lapic_timer_state_broadcast(pr, cx, 1);
733 
734 	/*
735 	 * disable bus master
736 	 * bm_check implies we need ARB_DIS
737 	 * bm_control implies whether we can do ARB_DIS
738 	 *
739 	 * That leaves a case where bm_check is set and bm_control is
740 	 * not set. In that case we cannot do much, we enter C3
741 	 * without doing anything.
742 	 */
743 	if (pr->flags.bm_control) {
744 		raw_spin_lock(&c3_lock);
745 		c3_cpu_count++;
746 		/* Disable bus master arbitration when all CPUs are in C3 */
747 		if (c3_cpu_count == num_online_cpus())
748 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
749 		raw_spin_unlock(&c3_lock);
750 	}
751 
752 	acpi_idle_do_entry(cx);
753 
754 	/* Re-enable bus master arbitration */
755 	if (pr->flags.bm_control) {
756 		raw_spin_lock(&c3_lock);
757 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
758 		c3_cpu_count--;
759 		raw_spin_unlock(&c3_lock);
760 	}
761 
762 	if (timer_bc)
763 		lapic_timer_state_broadcast(pr, cx, 0);
764 }
765 
766 static int acpi_idle_enter(struct cpuidle_device *dev,
767 			   struct cpuidle_driver *drv, int index)
768 {
769 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
770 	struct acpi_processor *pr;
771 
772 	pr = __this_cpu_read(processors);
773 	if (unlikely(!pr))
774 		return -EINVAL;
775 
776 	if (cx->type != ACPI_STATE_C1) {
777 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
778 			index = ACPI_IDLE_STATE_START;
779 			cx = per_cpu(acpi_cstate[index], dev->cpu);
780 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
781 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
782 				acpi_idle_enter_bm(pr, cx, true);
783 				return index;
784 			} else if (drv->safe_state_index >= 0) {
785 				index = drv->safe_state_index;
786 				cx = per_cpu(acpi_cstate[index], dev->cpu);
787 			} else {
788 				acpi_safe_halt();
789 				return -EBUSY;
790 			}
791 		}
792 	}
793 
794 	lapic_timer_state_broadcast(pr, cx, 1);
795 
796 	if (cx->type == ACPI_STATE_C3)
797 		ACPI_FLUSH_CPU_CACHE();
798 
799 	acpi_idle_do_entry(cx);
800 
801 	lapic_timer_state_broadcast(pr, cx, 0);
802 
803 	return index;
804 }
805 
806 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
807 				   struct cpuidle_driver *drv, int index)
808 {
809 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
810 
811 	if (cx->type == ACPI_STATE_C3) {
812 		struct acpi_processor *pr = __this_cpu_read(processors);
813 
814 		if (unlikely(!pr))
815 			return;
816 
817 		if (pr->flags.bm_check) {
818 			acpi_idle_enter_bm(pr, cx, false);
819 			return;
820 		} else {
821 			ACPI_FLUSH_CPU_CACHE();
822 		}
823 	}
824 	acpi_idle_do_entry(cx);
825 }
826 
827 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
828 					   struct cpuidle_device *dev)
829 {
830 	int i, count = ACPI_IDLE_STATE_START;
831 	struct acpi_processor_cx *cx;
832 
833 	if (max_cstate == 0)
834 		max_cstate = 1;
835 
836 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
837 		cx = &pr->power.states[i];
838 
839 		if (!cx->valid)
840 			continue;
841 
842 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
843 
844 		count++;
845 		if (count == CPUIDLE_STATE_MAX)
846 			break;
847 	}
848 
849 	if (!count)
850 		return -EINVAL;
851 
852 	return 0;
853 }
854 
855 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
856 {
857 	int i, count;
858 	struct acpi_processor_cx *cx;
859 	struct cpuidle_state *state;
860 	struct cpuidle_driver *drv = &acpi_idle_driver;
861 
862 	if (max_cstate == 0)
863 		max_cstate = 1;
864 
865 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
866 		cpuidle_poll_state_init(drv);
867 		count = 1;
868 	} else {
869 		count = 0;
870 	}
871 
872 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
873 		cx = &pr->power.states[i];
874 
875 		if (!cx->valid)
876 			continue;
877 
878 		state = &drv->states[count];
879 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
880 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
881 		state->exit_latency = cx->latency;
882 		state->target_residency = cx->latency * latency_factor;
883 		state->enter = acpi_idle_enter;
884 
885 		state->flags = 0;
886 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
887 			state->enter_dead = acpi_idle_play_dead;
888 			drv->safe_state_index = count;
889 		}
890 		/*
891 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
892 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
893 		 * particularly interesting from the suspend-to-idle angle, so
894 		 * avoid C1 and the situations in which we may need to fall back
895 		 * to it altogether.
896 		 */
897 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
898 			state->enter_s2idle = acpi_idle_enter_s2idle;
899 
900 		count++;
901 		if (count == CPUIDLE_STATE_MAX)
902 			break;
903 	}
904 
905 	drv->state_count = count;
906 
907 	if (!count)
908 		return -EINVAL;
909 
910 	return 0;
911 }
912 
913 static inline void acpi_processor_cstate_first_run_checks(void)
914 {
915 	acpi_status status;
916 	static int first_run;
917 
918 	if (first_run)
919 		return;
920 	dmi_check_system(processor_power_dmi_table);
921 	max_cstate = acpi_processor_cstate_check(max_cstate);
922 	if (max_cstate < ACPI_C_STATES_MAX)
923 		pr_notice("ACPI: processor limited to max C-state %d\n",
924 			  max_cstate);
925 	first_run++;
926 
927 	if (acpi_gbl_FADT.cst_control && !nocst) {
928 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
929 					    acpi_gbl_FADT.cst_control, 8);
930 		if (ACPI_FAILURE(status))
931 			ACPI_EXCEPTION((AE_INFO, status,
932 					"Notifying BIOS of _CST ability failed"));
933 	}
934 }
935 #else
936 
937 static inline int disabled_by_idle_boot_param(void) { return 0; }
938 static inline void acpi_processor_cstate_first_run_checks(void) { }
939 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
940 {
941 	return -ENODEV;
942 }
943 
944 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
945 					   struct cpuidle_device *dev)
946 {
947 	return -EINVAL;
948 }
949 
950 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
951 {
952 	return -EINVAL;
953 }
954 
955 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
956 
957 struct acpi_lpi_states_array {
958 	unsigned int size;
959 	unsigned int composite_states_size;
960 	struct acpi_lpi_state *entries;
961 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
962 };
963 
964 static int obj_get_integer(union acpi_object *obj, u32 *value)
965 {
966 	if (obj->type != ACPI_TYPE_INTEGER)
967 		return -EINVAL;
968 
969 	*value = obj->integer.value;
970 	return 0;
971 }
972 
973 static int acpi_processor_evaluate_lpi(acpi_handle handle,
974 				       struct acpi_lpi_states_array *info)
975 {
976 	acpi_status status;
977 	int ret = 0;
978 	int pkg_count, state_idx = 1, loop;
979 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
980 	union acpi_object *lpi_data;
981 	struct acpi_lpi_state *lpi_state;
982 
983 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
984 	if (ACPI_FAILURE(status)) {
985 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
986 		return -ENODEV;
987 	}
988 
989 	lpi_data = buffer.pointer;
990 
991 	/* There must be at least 4 elements = 3 elements + 1 package */
992 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
993 	    lpi_data->package.count < 4) {
994 		pr_debug("not enough elements in _LPI\n");
995 		ret = -ENODATA;
996 		goto end;
997 	}
998 
999 	pkg_count = lpi_data->package.elements[2].integer.value;
1000 
1001 	/* Validate number of power states. */
1002 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
1003 		pr_debug("count given by _LPI is not valid\n");
1004 		ret = -ENODATA;
1005 		goto end;
1006 	}
1007 
1008 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
1009 	if (!lpi_state) {
1010 		ret = -ENOMEM;
1011 		goto end;
1012 	}
1013 
1014 	info->size = pkg_count;
1015 	info->entries = lpi_state;
1016 
1017 	/* LPI States start at index 3 */
1018 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1019 		union acpi_object *element, *pkg_elem, *obj;
1020 
1021 		element = &lpi_data->package.elements[loop];
1022 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1023 			continue;
1024 
1025 		pkg_elem = element->package.elements;
1026 
1027 		obj = pkg_elem + 6;
1028 		if (obj->type == ACPI_TYPE_BUFFER) {
1029 			struct acpi_power_register *reg;
1030 
1031 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1032 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1033 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1034 				continue;
1035 
1036 			lpi_state->address = reg->address;
1037 			lpi_state->entry_method =
1038 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1039 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1040 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1041 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1042 			lpi_state->address = obj->integer.value;
1043 		} else {
1044 			continue;
1045 		}
1046 
1047 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1048 
1049 		obj = pkg_elem + 9;
1050 		if (obj->type == ACPI_TYPE_STRING)
1051 			strlcpy(lpi_state->desc, obj->string.pointer,
1052 				ACPI_CX_DESC_LEN);
1053 
1054 		lpi_state->index = state_idx;
1055 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1056 			pr_debug("No min. residency found, assuming 10 us\n");
1057 			lpi_state->min_residency = 10;
1058 		}
1059 
1060 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1061 			pr_debug("No wakeup residency found, assuming 10 us\n");
1062 			lpi_state->wake_latency = 10;
1063 		}
1064 
1065 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1066 			lpi_state->flags = 0;
1067 
1068 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1069 			lpi_state->arch_flags = 0;
1070 
1071 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1072 			lpi_state->res_cnt_freq = 1;
1073 
1074 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1075 			lpi_state->enable_parent_state = 0;
1076 	}
1077 
1078 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1079 end:
1080 	kfree(buffer.pointer);
1081 	return ret;
1082 }
1083 
1084 /*
1085  * flat_state_cnt - the number of composite LPI states after the process of flattening
1086  */
1087 static int flat_state_cnt;
1088 
1089 /**
1090  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1091  *
1092  * @local: local LPI state
1093  * @parent: parent LPI state
1094  * @result: composite LPI state
1095  */
1096 static bool combine_lpi_states(struct acpi_lpi_state *local,
1097 			       struct acpi_lpi_state *parent,
1098 			       struct acpi_lpi_state *result)
1099 {
1100 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1101 		if (!parent->address) /* 0 means autopromotable */
1102 			return false;
1103 		result->address = local->address + parent->address;
1104 	} else {
1105 		result->address = parent->address;
1106 	}
1107 
1108 	result->min_residency = max(local->min_residency, parent->min_residency);
1109 	result->wake_latency = local->wake_latency + parent->wake_latency;
1110 	result->enable_parent_state = parent->enable_parent_state;
1111 	result->entry_method = local->entry_method;
1112 
1113 	result->flags = parent->flags;
1114 	result->arch_flags = parent->arch_flags;
1115 	result->index = parent->index;
1116 
1117 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1118 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1119 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1120 	return true;
1121 }
1122 
1123 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1124 
1125 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1126 				  struct acpi_lpi_state *t)
1127 {
1128 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1129 }
1130 
1131 static int flatten_lpi_states(struct acpi_processor *pr,
1132 			      struct acpi_lpi_states_array *curr_level,
1133 			      struct acpi_lpi_states_array *prev_level)
1134 {
1135 	int i, j, state_count = curr_level->size;
1136 	struct acpi_lpi_state *p, *t = curr_level->entries;
1137 
1138 	curr_level->composite_states_size = 0;
1139 	for (j = 0; j < state_count; j++, t++) {
1140 		struct acpi_lpi_state *flpi;
1141 
1142 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1143 			continue;
1144 
1145 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1146 			pr_warn("Limiting number of LPI states to max (%d)\n",
1147 				ACPI_PROCESSOR_MAX_POWER);
1148 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1149 			break;
1150 		}
1151 
1152 		flpi = &pr->power.lpi_states[flat_state_cnt];
1153 
1154 		if (!prev_level) { /* leaf/processor node */
1155 			memcpy(flpi, t, sizeof(*t));
1156 			stash_composite_state(curr_level, flpi);
1157 			flat_state_cnt++;
1158 			continue;
1159 		}
1160 
1161 		for (i = 0; i < prev_level->composite_states_size; i++) {
1162 			p = prev_level->composite_states[i];
1163 			if (t->index <= p->enable_parent_state &&
1164 			    combine_lpi_states(p, t, flpi)) {
1165 				stash_composite_state(curr_level, flpi);
1166 				flat_state_cnt++;
1167 				flpi++;
1168 			}
1169 		}
1170 	}
1171 
1172 	kfree(curr_level->entries);
1173 	return 0;
1174 }
1175 
1176 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1177 {
1178 	int ret, i;
1179 	acpi_status status;
1180 	acpi_handle handle = pr->handle, pr_ahandle;
1181 	struct acpi_device *d = NULL;
1182 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1183 
1184 	if (!osc_pc_lpi_support_confirmed)
1185 		return -EOPNOTSUPP;
1186 
1187 	if (!acpi_has_method(handle, "_LPI"))
1188 		return -EINVAL;
1189 
1190 	flat_state_cnt = 0;
1191 	prev = &info[0];
1192 	curr = &info[1];
1193 	handle = pr->handle;
1194 	ret = acpi_processor_evaluate_lpi(handle, prev);
1195 	if (ret)
1196 		return ret;
1197 	flatten_lpi_states(pr, prev, NULL);
1198 
1199 	status = acpi_get_parent(handle, &pr_ahandle);
1200 	while (ACPI_SUCCESS(status)) {
1201 		acpi_bus_get_device(pr_ahandle, &d);
1202 		handle = pr_ahandle;
1203 
1204 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1205 			break;
1206 
1207 		/* can be optional ? */
1208 		if (!acpi_has_method(handle, "_LPI"))
1209 			break;
1210 
1211 		ret = acpi_processor_evaluate_lpi(handle, curr);
1212 		if (ret)
1213 			break;
1214 
1215 		/* flatten all the LPI states in this level of hierarchy */
1216 		flatten_lpi_states(pr, curr, prev);
1217 
1218 		tmp = prev, prev = curr, curr = tmp;
1219 
1220 		status = acpi_get_parent(handle, &pr_ahandle);
1221 	}
1222 
1223 	pr->power.count = flat_state_cnt;
1224 	/* reset the index after flattening */
1225 	for (i = 0; i < pr->power.count; i++)
1226 		pr->power.lpi_states[i].index = i;
1227 
1228 	/* Tell driver that _LPI is supported. */
1229 	pr->flags.has_lpi = 1;
1230 	pr->flags.power = 1;
1231 
1232 	return 0;
1233 }
1234 
1235 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1236 {
1237 	return -ENODEV;
1238 }
1239 
1240 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1241 {
1242 	return -ENODEV;
1243 }
1244 
1245 /**
1246  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1247  * @dev: the target CPU
1248  * @drv: cpuidle driver containing cpuidle state info
1249  * @index: index of target state
1250  *
1251  * Return: 0 for success or negative value for error
1252  */
1253 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1254 			       struct cpuidle_driver *drv, int index)
1255 {
1256 	struct acpi_processor *pr;
1257 	struct acpi_lpi_state *lpi;
1258 
1259 	pr = __this_cpu_read(processors);
1260 
1261 	if (unlikely(!pr))
1262 		return -EINVAL;
1263 
1264 	lpi = &pr->power.lpi_states[index];
1265 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1266 		return acpi_processor_ffh_lpi_enter(lpi);
1267 
1268 	return -EINVAL;
1269 }
1270 
1271 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1272 {
1273 	int i;
1274 	struct acpi_lpi_state *lpi;
1275 	struct cpuidle_state *state;
1276 	struct cpuidle_driver *drv = &acpi_idle_driver;
1277 
1278 	if (!pr->flags.has_lpi)
1279 		return -EOPNOTSUPP;
1280 
1281 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1282 		lpi = &pr->power.lpi_states[i];
1283 
1284 		state = &drv->states[i];
1285 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1286 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1287 		state->exit_latency = lpi->wake_latency;
1288 		state->target_residency = lpi->min_residency;
1289 		if (lpi->arch_flags)
1290 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1291 		state->enter = acpi_idle_lpi_enter;
1292 		drv->safe_state_index = i;
1293 	}
1294 
1295 	drv->state_count = i;
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1302  * global state data i.e. idle routines
1303  *
1304  * @pr: the ACPI processor
1305  */
1306 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1307 {
1308 	int i;
1309 	struct cpuidle_driver *drv = &acpi_idle_driver;
1310 
1311 	if (!pr->flags.power_setup_done || !pr->flags.power)
1312 		return -EINVAL;
1313 
1314 	drv->safe_state_index = -1;
1315 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1316 		drv->states[i].name[0] = '\0';
1317 		drv->states[i].desc[0] = '\0';
1318 	}
1319 
1320 	if (pr->flags.has_lpi)
1321 		return acpi_processor_setup_lpi_states(pr);
1322 
1323 	return acpi_processor_setup_cstates(pr);
1324 }
1325 
1326 /**
1327  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1328  * device i.e. per-cpu data
1329  *
1330  * @pr: the ACPI processor
1331  * @dev : the cpuidle device
1332  */
1333 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1334 					    struct cpuidle_device *dev)
1335 {
1336 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1337 		return -EINVAL;
1338 
1339 	dev->cpu = pr->id;
1340 	if (pr->flags.has_lpi)
1341 		return acpi_processor_ffh_lpi_probe(pr->id);
1342 
1343 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1344 }
1345 
1346 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1347 {
1348 	int ret;
1349 
1350 	ret = acpi_processor_get_lpi_info(pr);
1351 	if (ret)
1352 		ret = acpi_processor_get_cstate_info(pr);
1353 
1354 	return ret;
1355 }
1356 
1357 int acpi_processor_hotplug(struct acpi_processor *pr)
1358 {
1359 	int ret = 0;
1360 	struct cpuidle_device *dev;
1361 
1362 	if (disabled_by_idle_boot_param())
1363 		return 0;
1364 
1365 	if (!pr->flags.power_setup_done)
1366 		return -ENODEV;
1367 
1368 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1369 	cpuidle_pause_and_lock();
1370 	cpuidle_disable_device(dev);
1371 	ret = acpi_processor_get_power_info(pr);
1372 	if (!ret && pr->flags.power) {
1373 		acpi_processor_setup_cpuidle_dev(pr, dev);
1374 		ret = cpuidle_enable_device(dev);
1375 	}
1376 	cpuidle_resume_and_unlock();
1377 
1378 	return ret;
1379 }
1380 
1381 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1382 {
1383 	int cpu;
1384 	struct acpi_processor *_pr;
1385 	struct cpuidle_device *dev;
1386 
1387 	if (disabled_by_idle_boot_param())
1388 		return 0;
1389 
1390 	if (!pr->flags.power_setup_done)
1391 		return -ENODEV;
1392 
1393 	/*
1394 	 * FIXME:  Design the ACPI notification to make it once per
1395 	 * system instead of once per-cpu.  This condition is a hack
1396 	 * to make the code that updates C-States be called once.
1397 	 */
1398 
1399 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1400 
1401 		/* Protect against cpu-hotplug */
1402 		get_online_cpus();
1403 		cpuidle_pause_and_lock();
1404 
1405 		/* Disable all cpuidle devices */
1406 		for_each_online_cpu(cpu) {
1407 			_pr = per_cpu(processors, cpu);
1408 			if (!_pr || !_pr->flags.power_setup_done)
1409 				continue;
1410 			dev = per_cpu(acpi_cpuidle_device, cpu);
1411 			cpuidle_disable_device(dev);
1412 		}
1413 
1414 		/* Populate Updated C-state information */
1415 		acpi_processor_get_power_info(pr);
1416 		acpi_processor_setup_cpuidle_states(pr);
1417 
1418 		/* Enable all cpuidle devices */
1419 		for_each_online_cpu(cpu) {
1420 			_pr = per_cpu(processors, cpu);
1421 			if (!_pr || !_pr->flags.power_setup_done)
1422 				continue;
1423 			acpi_processor_get_power_info(_pr);
1424 			if (_pr->flags.power) {
1425 				dev = per_cpu(acpi_cpuidle_device, cpu);
1426 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1427 				cpuidle_enable_device(dev);
1428 			}
1429 		}
1430 		cpuidle_resume_and_unlock();
1431 		put_online_cpus();
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 static int acpi_processor_registered;
1438 
1439 int acpi_processor_power_init(struct acpi_processor *pr)
1440 {
1441 	int retval;
1442 	struct cpuidle_device *dev;
1443 
1444 	if (disabled_by_idle_boot_param())
1445 		return 0;
1446 
1447 	acpi_processor_cstate_first_run_checks();
1448 
1449 	if (!acpi_processor_get_power_info(pr))
1450 		pr->flags.power_setup_done = 1;
1451 
1452 	/*
1453 	 * Install the idle handler if processor power management is supported.
1454 	 * Note that we use previously set idle handler will be used on
1455 	 * platforms that only support C1.
1456 	 */
1457 	if (pr->flags.power) {
1458 		/* Register acpi_idle_driver if not already registered */
1459 		if (!acpi_processor_registered) {
1460 			acpi_processor_setup_cpuidle_states(pr);
1461 			retval = cpuidle_register_driver(&acpi_idle_driver);
1462 			if (retval)
1463 				return retval;
1464 			pr_debug("%s registered with cpuidle\n",
1465 				 acpi_idle_driver.name);
1466 		}
1467 
1468 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1469 		if (!dev)
1470 			return -ENOMEM;
1471 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1472 
1473 		acpi_processor_setup_cpuidle_dev(pr, dev);
1474 
1475 		/* Register per-cpu cpuidle_device. Cpuidle driver
1476 		 * must already be registered before registering device
1477 		 */
1478 		retval = cpuidle_register_device(dev);
1479 		if (retval) {
1480 			if (acpi_processor_registered == 0)
1481 				cpuidle_unregister_driver(&acpi_idle_driver);
1482 			return retval;
1483 		}
1484 		acpi_processor_registered++;
1485 	}
1486 	return 0;
1487 }
1488 
1489 int acpi_processor_power_exit(struct acpi_processor *pr)
1490 {
1491 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1492 
1493 	if (disabled_by_idle_boot_param())
1494 		return 0;
1495 
1496 	if (pr->flags.power) {
1497 		cpuidle_unregister_device(dev);
1498 		acpi_processor_registered--;
1499 		if (acpi_processor_registered == 0)
1500 			cpuidle_unregister_driver(&acpi_idle_driver);
1501 	}
1502 
1503 	pr->flags.power_setup_done = 0;
1504 	return 0;
1505 }
1506