xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 48c926cd)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27 
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
36 
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46 
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50 
51 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
52 
53 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
54 module_param(max_cstate, uint, 0000);
55 static unsigned int nocst __read_mostly;
56 module_param(nocst, uint, 0000);
57 static int bm_check_disable __read_mostly;
58 module_param(bm_check_disable, uint, 0000);
59 
60 static unsigned int latency_factor __read_mostly = 2;
61 module_param(latency_factor, uint, 0644);
62 
63 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
64 
65 struct cpuidle_driver acpi_idle_driver = {
66 	.name =		"acpi_idle",
67 	.owner =	THIS_MODULE,
68 };
69 
70 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
71 static
72 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
73 
74 static int disabled_by_idle_boot_param(void)
75 {
76 	return boot_option_idle_override == IDLE_POLL ||
77 		boot_option_idle_override == IDLE_HALT;
78 }
79 
80 /*
81  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
82  * For now disable this. Probably a bug somewhere else.
83  *
84  * To skip this limit, boot/load with a large max_cstate limit.
85  */
86 static int set_max_cstate(const struct dmi_system_id *id)
87 {
88 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
89 		return 0;
90 
91 	pr_notice("%s detected - limiting to C%ld max_cstate."
92 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
93 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
94 
95 	max_cstate = (long)id->driver_data;
96 
97 	return 0;
98 }
99 
100 static const struct dmi_system_id processor_power_dmi_table[] = {
101 	{ set_max_cstate, "Clevo 5600D", {
102 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
103 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
104 	 (void *)2},
105 	{ set_max_cstate, "Pavilion zv5000", {
106 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
107 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
108 	 (void *)1},
109 	{ set_max_cstate, "Asus L8400B", {
110 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
111 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
112 	 (void *)1},
113 	{},
114 };
115 
116 
117 /*
118  * Callers should disable interrupts before the call and enable
119  * interrupts after return.
120  */
121 static void __cpuidle acpi_safe_halt(void)
122 {
123 	if (!tif_need_resched()) {
124 		safe_halt();
125 		local_irq_disable();
126 	}
127 }
128 
129 #ifdef ARCH_APICTIMER_STOPS_ON_C3
130 
131 /*
132  * Some BIOS implementations switch to C3 in the published C2 state.
133  * This seems to be a common problem on AMD boxen, but other vendors
134  * are affected too. We pick the most conservative approach: we assume
135  * that the local APIC stops in both C2 and C3.
136  */
137 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
138 				   struct acpi_processor_cx *cx)
139 {
140 	struct acpi_processor_power *pwr = &pr->power;
141 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
142 
143 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
144 		return;
145 
146 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
147 		type = ACPI_STATE_C1;
148 
149 	/*
150 	 * Check, if one of the previous states already marked the lapic
151 	 * unstable
152 	 */
153 	if (pwr->timer_broadcast_on_state < state)
154 		return;
155 
156 	if (cx->type >= type)
157 		pr->power.timer_broadcast_on_state = state;
158 }
159 
160 static void __lapic_timer_propagate_broadcast(void *arg)
161 {
162 	struct acpi_processor *pr = (struct acpi_processor *) arg;
163 
164 	if (pr->power.timer_broadcast_on_state < INT_MAX)
165 		tick_broadcast_enable();
166 	else
167 		tick_broadcast_disable();
168 }
169 
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
171 {
172 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173 				 (void *)pr, 1);
174 }
175 
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178 				       struct acpi_processor_cx *cx,
179 				       int broadcast)
180 {
181 	int state = cx - pr->power.states;
182 
183 	if (state >= pr->power.timer_broadcast_on_state) {
184 		if (broadcast)
185 			tick_broadcast_enter();
186 		else
187 			tick_broadcast_exit();
188 	}
189 }
190 
191 #else
192 
193 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
194 				   struct acpi_processor_cx *cstate) { }
195 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
196 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
197 				       struct acpi_processor_cx *cx,
198 				       int broadcast)
199 {
200 }
201 
202 #endif
203 
204 #if defined(CONFIG_X86)
205 static void tsc_check_state(int state)
206 {
207 	switch (boot_cpu_data.x86_vendor) {
208 	case X86_VENDOR_AMD:
209 	case X86_VENDOR_INTEL:
210 		/*
211 		 * AMD Fam10h TSC will tick in all
212 		 * C/P/S0/S1 states when this bit is set.
213 		 */
214 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
215 			return;
216 
217 		/*FALL THROUGH*/
218 	default:
219 		/* TSC could halt in idle, so notify users */
220 		if (state > ACPI_STATE_C1)
221 			mark_tsc_unstable("TSC halts in idle");
222 	}
223 }
224 #else
225 static void tsc_check_state(int state) { return; }
226 #endif
227 
228 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
229 {
230 
231 	if (!pr->pblk)
232 		return -ENODEV;
233 
234 	/* if info is obtained from pblk/fadt, type equals state */
235 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
236 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
237 
238 #ifndef CONFIG_HOTPLUG_CPU
239 	/*
240 	 * Check for P_LVL2_UP flag before entering C2 and above on
241 	 * an SMP system.
242 	 */
243 	if ((num_online_cpus() > 1) &&
244 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
245 		return -ENODEV;
246 #endif
247 
248 	/* determine C2 and C3 address from pblk */
249 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
250 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
251 
252 	/* determine latencies from FADT */
253 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
254 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
255 
256 	/*
257 	 * FADT specified C2 latency must be less than or equal to
258 	 * 100 microseconds.
259 	 */
260 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
261 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
262 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
263 		/* invalidate C2 */
264 		pr->power.states[ACPI_STATE_C2].address = 0;
265 	}
266 
267 	/*
268 	 * FADT supplied C3 latency must be less than or equal to
269 	 * 1000 microseconds.
270 	 */
271 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
272 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
273 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
274 		/* invalidate C3 */
275 		pr->power.states[ACPI_STATE_C3].address = 0;
276 	}
277 
278 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
279 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
280 			  pr->power.states[ACPI_STATE_C2].address,
281 			  pr->power.states[ACPI_STATE_C3].address));
282 
283 	return 0;
284 }
285 
286 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
287 {
288 	if (!pr->power.states[ACPI_STATE_C1].valid) {
289 		/* set the first C-State to C1 */
290 		/* all processors need to support C1 */
291 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
292 		pr->power.states[ACPI_STATE_C1].valid = 1;
293 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
294 	}
295 	/* the C0 state only exists as a filler in our array */
296 	pr->power.states[ACPI_STATE_C0].valid = 1;
297 	return 0;
298 }
299 
300 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
301 {
302 	acpi_status status;
303 	u64 count;
304 	int current_count;
305 	int i, ret = 0;
306 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
307 	union acpi_object *cst;
308 
309 	if (nocst)
310 		return -ENODEV;
311 
312 	current_count = 0;
313 
314 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
315 	if (ACPI_FAILURE(status)) {
316 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
317 		return -ENODEV;
318 	}
319 
320 	cst = buffer.pointer;
321 
322 	/* There must be at least 2 elements */
323 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
324 		pr_err("not enough elements in _CST\n");
325 		ret = -EFAULT;
326 		goto end;
327 	}
328 
329 	count = cst->package.elements[0].integer.value;
330 
331 	/* Validate number of power states. */
332 	if (count < 1 || count != cst->package.count - 1) {
333 		pr_err("count given by _CST is not valid\n");
334 		ret = -EFAULT;
335 		goto end;
336 	}
337 
338 	/* Tell driver that at least _CST is supported. */
339 	pr->flags.has_cst = 1;
340 
341 	for (i = 1; i <= count; i++) {
342 		union acpi_object *element;
343 		union acpi_object *obj;
344 		struct acpi_power_register *reg;
345 		struct acpi_processor_cx cx;
346 
347 		memset(&cx, 0, sizeof(cx));
348 
349 		element = &(cst->package.elements[i]);
350 		if (element->type != ACPI_TYPE_PACKAGE)
351 			continue;
352 
353 		if (element->package.count != 4)
354 			continue;
355 
356 		obj = &(element->package.elements[0]);
357 
358 		if (obj->type != ACPI_TYPE_BUFFER)
359 			continue;
360 
361 		reg = (struct acpi_power_register *)obj->buffer.pointer;
362 
363 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
364 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
365 			continue;
366 
367 		/* There should be an easy way to extract an integer... */
368 		obj = &(element->package.elements[1]);
369 		if (obj->type != ACPI_TYPE_INTEGER)
370 			continue;
371 
372 		cx.type = obj->integer.value;
373 		/*
374 		 * Some buggy BIOSes won't list C1 in _CST -
375 		 * Let acpi_processor_get_power_info_default() handle them later
376 		 */
377 		if (i == 1 && cx.type != ACPI_STATE_C1)
378 			current_count++;
379 
380 		cx.address = reg->address;
381 		cx.index = current_count + 1;
382 
383 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
384 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
385 			if (acpi_processor_ffh_cstate_probe
386 					(pr->id, &cx, reg) == 0) {
387 				cx.entry_method = ACPI_CSTATE_FFH;
388 			} else if (cx.type == ACPI_STATE_C1) {
389 				/*
390 				 * C1 is a special case where FIXED_HARDWARE
391 				 * can be handled in non-MWAIT way as well.
392 				 * In that case, save this _CST entry info.
393 				 * Otherwise, ignore this info and continue.
394 				 */
395 				cx.entry_method = ACPI_CSTATE_HALT;
396 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
397 			} else {
398 				continue;
399 			}
400 			if (cx.type == ACPI_STATE_C1 &&
401 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
402 				/*
403 				 * In most cases the C1 space_id obtained from
404 				 * _CST object is FIXED_HARDWARE access mode.
405 				 * But when the option of idle=halt is added,
406 				 * the entry_method type should be changed from
407 				 * CSTATE_FFH to CSTATE_HALT.
408 				 * When the option of idle=nomwait is added,
409 				 * the C1 entry_method type should be
410 				 * CSTATE_HALT.
411 				 */
412 				cx.entry_method = ACPI_CSTATE_HALT;
413 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
414 			}
415 		} else {
416 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
417 				 cx.address);
418 		}
419 
420 		if (cx.type == ACPI_STATE_C1) {
421 			cx.valid = 1;
422 		}
423 
424 		obj = &(element->package.elements[2]);
425 		if (obj->type != ACPI_TYPE_INTEGER)
426 			continue;
427 
428 		cx.latency = obj->integer.value;
429 
430 		obj = &(element->package.elements[3]);
431 		if (obj->type != ACPI_TYPE_INTEGER)
432 			continue;
433 
434 		current_count++;
435 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
436 
437 		/*
438 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
439 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
440 		 */
441 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
442 			pr_warn("Limiting number of power states to max (%d)\n",
443 				ACPI_PROCESSOR_MAX_POWER);
444 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
445 			break;
446 		}
447 	}
448 
449 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
450 			  current_count));
451 
452 	/* Validate number of power states discovered */
453 	if (current_count < 2)
454 		ret = -EFAULT;
455 
456       end:
457 	kfree(buffer.pointer);
458 
459 	return ret;
460 }
461 
462 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
463 					   struct acpi_processor_cx *cx)
464 {
465 	static int bm_check_flag = -1;
466 	static int bm_control_flag = -1;
467 
468 
469 	if (!cx->address)
470 		return;
471 
472 	/*
473 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
474 	 * DMA transfers are used by any ISA device to avoid livelock.
475 	 * Note that we could disable Type-F DMA (as recommended by
476 	 * the erratum), but this is known to disrupt certain ISA
477 	 * devices thus we take the conservative approach.
478 	 */
479 	else if (errata.piix4.fdma) {
480 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
481 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
482 		return;
483 	}
484 
485 	/* All the logic here assumes flags.bm_check is same across all CPUs */
486 	if (bm_check_flag == -1) {
487 		/* Determine whether bm_check is needed based on CPU  */
488 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
489 		bm_check_flag = pr->flags.bm_check;
490 		bm_control_flag = pr->flags.bm_control;
491 	} else {
492 		pr->flags.bm_check = bm_check_flag;
493 		pr->flags.bm_control = bm_control_flag;
494 	}
495 
496 	if (pr->flags.bm_check) {
497 		if (!pr->flags.bm_control) {
498 			if (pr->flags.has_cst != 1) {
499 				/* bus mastering control is necessary */
500 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
501 					"C3 support requires BM control\n"));
502 				return;
503 			} else {
504 				/* Here we enter C3 without bus mastering */
505 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
506 					"C3 support without BM control\n"));
507 			}
508 		}
509 	} else {
510 		/*
511 		 * WBINVD should be set in fadt, for C3 state to be
512 		 * supported on when bm_check is not required.
513 		 */
514 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
515 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
516 					  "Cache invalidation should work properly"
517 					  " for C3 to be enabled on SMP systems\n"));
518 			return;
519 		}
520 	}
521 
522 	/*
523 	 * Otherwise we've met all of our C3 requirements.
524 	 * Normalize the C3 latency to expidite policy.  Enable
525 	 * checking of bus mastering status (bm_check) so we can
526 	 * use this in our C3 policy
527 	 */
528 	cx->valid = 1;
529 
530 	/*
531 	 * On older chipsets, BM_RLD needs to be set
532 	 * in order for Bus Master activity to wake the
533 	 * system from C3.  Newer chipsets handle DMA
534 	 * during C3 automatically and BM_RLD is a NOP.
535 	 * In either case, the proper way to
536 	 * handle BM_RLD is to set it and leave it set.
537 	 */
538 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
539 
540 	return;
541 }
542 
543 static int acpi_processor_power_verify(struct acpi_processor *pr)
544 {
545 	unsigned int i;
546 	unsigned int working = 0;
547 
548 	pr->power.timer_broadcast_on_state = INT_MAX;
549 
550 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
551 		struct acpi_processor_cx *cx = &pr->power.states[i];
552 
553 		switch (cx->type) {
554 		case ACPI_STATE_C1:
555 			cx->valid = 1;
556 			break;
557 
558 		case ACPI_STATE_C2:
559 			if (!cx->address)
560 				break;
561 			cx->valid = 1;
562 			break;
563 
564 		case ACPI_STATE_C3:
565 			acpi_processor_power_verify_c3(pr, cx);
566 			break;
567 		}
568 		if (!cx->valid)
569 			continue;
570 
571 		lapic_timer_check_state(i, pr, cx);
572 		tsc_check_state(cx->type);
573 		working++;
574 	}
575 
576 	lapic_timer_propagate_broadcast(pr);
577 
578 	return (working);
579 }
580 
581 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
582 {
583 	unsigned int i;
584 	int result;
585 
586 
587 	/* NOTE: the idle thread may not be running while calling
588 	 * this function */
589 
590 	/* Zero initialize all the C-states info. */
591 	memset(pr->power.states, 0, sizeof(pr->power.states));
592 
593 	result = acpi_processor_get_power_info_cst(pr);
594 	if (result == -ENODEV)
595 		result = acpi_processor_get_power_info_fadt(pr);
596 
597 	if (result)
598 		return result;
599 
600 	acpi_processor_get_power_info_default(pr);
601 
602 	pr->power.count = acpi_processor_power_verify(pr);
603 
604 	/*
605 	 * if one state of type C2 or C3 is available, mark this
606 	 * CPU as being "idle manageable"
607 	 */
608 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
609 		if (pr->power.states[i].valid) {
610 			pr->power.count = i;
611 			if (pr->power.states[i].type >= ACPI_STATE_C2)
612 				pr->flags.power = 1;
613 		}
614 	}
615 
616 	return 0;
617 }
618 
619 /**
620  * acpi_idle_bm_check - checks if bus master activity was detected
621  */
622 static int acpi_idle_bm_check(void)
623 {
624 	u32 bm_status = 0;
625 
626 	if (bm_check_disable)
627 		return 0;
628 
629 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
630 	if (bm_status)
631 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
632 	/*
633 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
634 	 * the true state of bus mastering activity; forcing us to
635 	 * manually check the BMIDEA bit of each IDE channel.
636 	 */
637 	else if (errata.piix4.bmisx) {
638 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
639 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
640 			bm_status = 1;
641 	}
642 	return bm_status;
643 }
644 
645 /**
646  * acpi_idle_do_entry - enter idle state using the appropriate method
647  * @cx: cstate data
648  *
649  * Caller disables interrupt before call and enables interrupt after return.
650  */
651 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
652 {
653 	if (cx->entry_method == ACPI_CSTATE_FFH) {
654 		/* Call into architectural FFH based C-state */
655 		acpi_processor_ffh_cstate_enter(cx);
656 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
657 		acpi_safe_halt();
658 	} else {
659 		/* IO port based C-state */
660 		inb(cx->address);
661 		/* Dummy wait op - must do something useless after P_LVL2 read
662 		   because chipsets cannot guarantee that STPCLK# signal
663 		   gets asserted in time to freeze execution properly. */
664 		inl(acpi_gbl_FADT.xpm_timer_block.address);
665 	}
666 }
667 
668 /**
669  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
670  * @dev: the target CPU
671  * @index: the index of suggested state
672  */
673 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
674 {
675 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
676 
677 	ACPI_FLUSH_CPU_CACHE();
678 
679 	while (1) {
680 
681 		if (cx->entry_method == ACPI_CSTATE_HALT)
682 			safe_halt();
683 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
684 			inb(cx->address);
685 			/* See comment in acpi_idle_do_entry() */
686 			inl(acpi_gbl_FADT.xpm_timer_block.address);
687 		} else
688 			return -ENODEV;
689 	}
690 
691 	/* Never reached */
692 	return 0;
693 }
694 
695 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
696 {
697 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
698 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
699 }
700 
701 static int c3_cpu_count;
702 static DEFINE_RAW_SPINLOCK(c3_lock);
703 
704 /**
705  * acpi_idle_enter_bm - enters C3 with proper BM handling
706  * @pr: Target processor
707  * @cx: Target state context
708  * @timer_bc: Whether or not to change timer mode to broadcast
709  */
710 static void acpi_idle_enter_bm(struct acpi_processor *pr,
711 			       struct acpi_processor_cx *cx, bool timer_bc)
712 {
713 	/*
714 	 * Must be done before busmaster disable as we might need to
715 	 * access HPET !
716 	 */
717 	if (timer_bc)
718 		lapic_timer_state_broadcast(pr, cx, 1);
719 
720 	/*
721 	 * disable bus master
722 	 * bm_check implies we need ARB_DIS
723 	 * bm_control implies whether we can do ARB_DIS
724 	 *
725 	 * That leaves a case where bm_check is set and bm_control is
726 	 * not set. In that case we cannot do much, we enter C3
727 	 * without doing anything.
728 	 */
729 	if (pr->flags.bm_control) {
730 		raw_spin_lock(&c3_lock);
731 		c3_cpu_count++;
732 		/* Disable bus master arbitration when all CPUs are in C3 */
733 		if (c3_cpu_count == num_online_cpus())
734 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
735 		raw_spin_unlock(&c3_lock);
736 	}
737 
738 	acpi_idle_do_entry(cx);
739 
740 	/* Re-enable bus master arbitration */
741 	if (pr->flags.bm_control) {
742 		raw_spin_lock(&c3_lock);
743 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
744 		c3_cpu_count--;
745 		raw_spin_unlock(&c3_lock);
746 	}
747 
748 	if (timer_bc)
749 		lapic_timer_state_broadcast(pr, cx, 0);
750 }
751 
752 static int acpi_idle_enter(struct cpuidle_device *dev,
753 			   struct cpuidle_driver *drv, int index)
754 {
755 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
756 	struct acpi_processor *pr;
757 
758 	pr = __this_cpu_read(processors);
759 	if (unlikely(!pr))
760 		return -EINVAL;
761 
762 	if (cx->type != ACPI_STATE_C1) {
763 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
764 			index = ACPI_IDLE_STATE_START;
765 			cx = per_cpu(acpi_cstate[index], dev->cpu);
766 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
767 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
768 				acpi_idle_enter_bm(pr, cx, true);
769 				return index;
770 			} else if (drv->safe_state_index >= 0) {
771 				index = drv->safe_state_index;
772 				cx = per_cpu(acpi_cstate[index], dev->cpu);
773 			} else {
774 				acpi_safe_halt();
775 				return -EBUSY;
776 			}
777 		}
778 	}
779 
780 	lapic_timer_state_broadcast(pr, cx, 1);
781 
782 	if (cx->type == ACPI_STATE_C3)
783 		ACPI_FLUSH_CPU_CACHE();
784 
785 	acpi_idle_do_entry(cx);
786 
787 	lapic_timer_state_broadcast(pr, cx, 0);
788 
789 	return index;
790 }
791 
792 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
793 				   struct cpuidle_driver *drv, int index)
794 {
795 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
796 
797 	if (cx->type == ACPI_STATE_C3) {
798 		struct acpi_processor *pr = __this_cpu_read(processors);
799 
800 		if (unlikely(!pr))
801 			return;
802 
803 		if (pr->flags.bm_check) {
804 			acpi_idle_enter_bm(pr, cx, false);
805 			return;
806 		} else {
807 			ACPI_FLUSH_CPU_CACHE();
808 		}
809 	}
810 	acpi_idle_do_entry(cx);
811 }
812 
813 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
814 					   struct cpuidle_device *dev)
815 {
816 	int i, count = ACPI_IDLE_STATE_START;
817 	struct acpi_processor_cx *cx;
818 
819 	if (max_cstate == 0)
820 		max_cstate = 1;
821 
822 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
823 		cx = &pr->power.states[i];
824 
825 		if (!cx->valid)
826 			continue;
827 
828 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
829 
830 		count++;
831 		if (count == CPUIDLE_STATE_MAX)
832 			break;
833 	}
834 
835 	if (!count)
836 		return -EINVAL;
837 
838 	return 0;
839 }
840 
841 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
842 {
843 	int i, count;
844 	struct acpi_processor_cx *cx;
845 	struct cpuidle_state *state;
846 	struct cpuidle_driver *drv = &acpi_idle_driver;
847 
848 	if (max_cstate == 0)
849 		max_cstate = 1;
850 
851 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
852 		cpuidle_poll_state_init(drv);
853 		count = 1;
854 	} else {
855 		count = 0;
856 	}
857 
858 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
859 		cx = &pr->power.states[i];
860 
861 		if (!cx->valid)
862 			continue;
863 
864 		state = &drv->states[count];
865 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
866 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
867 		state->exit_latency = cx->latency;
868 		state->target_residency = cx->latency * latency_factor;
869 		state->enter = acpi_idle_enter;
870 
871 		state->flags = 0;
872 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
873 			state->enter_dead = acpi_idle_play_dead;
874 			drv->safe_state_index = count;
875 		}
876 		/*
877 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
878 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
879 		 * particularly interesting from the suspend-to-idle angle, so
880 		 * avoid C1 and the situations in which we may need to fall back
881 		 * to it altogether.
882 		 */
883 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
884 			state->enter_s2idle = acpi_idle_enter_s2idle;
885 
886 		count++;
887 		if (count == CPUIDLE_STATE_MAX)
888 			break;
889 	}
890 
891 	drv->state_count = count;
892 
893 	if (!count)
894 		return -EINVAL;
895 
896 	return 0;
897 }
898 
899 static inline void acpi_processor_cstate_first_run_checks(void)
900 {
901 	acpi_status status;
902 	static int first_run;
903 
904 	if (first_run)
905 		return;
906 	dmi_check_system(processor_power_dmi_table);
907 	max_cstate = acpi_processor_cstate_check(max_cstate);
908 	if (max_cstate < ACPI_C_STATES_MAX)
909 		pr_notice("ACPI: processor limited to max C-state %d\n",
910 			  max_cstate);
911 	first_run++;
912 
913 	if (acpi_gbl_FADT.cst_control && !nocst) {
914 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
915 					    acpi_gbl_FADT.cst_control, 8);
916 		if (ACPI_FAILURE(status))
917 			ACPI_EXCEPTION((AE_INFO, status,
918 					"Notifying BIOS of _CST ability failed"));
919 	}
920 }
921 #else
922 
923 static inline int disabled_by_idle_boot_param(void) { return 0; }
924 static inline void acpi_processor_cstate_first_run_checks(void) { }
925 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
926 {
927 	return -ENODEV;
928 }
929 
930 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
931 					   struct cpuidle_device *dev)
932 {
933 	return -EINVAL;
934 }
935 
936 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
937 {
938 	return -EINVAL;
939 }
940 
941 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
942 
943 struct acpi_lpi_states_array {
944 	unsigned int size;
945 	unsigned int composite_states_size;
946 	struct acpi_lpi_state *entries;
947 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
948 };
949 
950 static int obj_get_integer(union acpi_object *obj, u32 *value)
951 {
952 	if (obj->type != ACPI_TYPE_INTEGER)
953 		return -EINVAL;
954 
955 	*value = obj->integer.value;
956 	return 0;
957 }
958 
959 static int acpi_processor_evaluate_lpi(acpi_handle handle,
960 				       struct acpi_lpi_states_array *info)
961 {
962 	acpi_status status;
963 	int ret = 0;
964 	int pkg_count, state_idx = 1, loop;
965 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
966 	union acpi_object *lpi_data;
967 	struct acpi_lpi_state *lpi_state;
968 
969 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
970 	if (ACPI_FAILURE(status)) {
971 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
972 		return -ENODEV;
973 	}
974 
975 	lpi_data = buffer.pointer;
976 
977 	/* There must be at least 4 elements = 3 elements + 1 package */
978 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
979 	    lpi_data->package.count < 4) {
980 		pr_debug("not enough elements in _LPI\n");
981 		ret = -ENODATA;
982 		goto end;
983 	}
984 
985 	pkg_count = lpi_data->package.elements[2].integer.value;
986 
987 	/* Validate number of power states. */
988 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
989 		pr_debug("count given by _LPI is not valid\n");
990 		ret = -ENODATA;
991 		goto end;
992 	}
993 
994 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
995 	if (!lpi_state) {
996 		ret = -ENOMEM;
997 		goto end;
998 	}
999 
1000 	info->size = pkg_count;
1001 	info->entries = lpi_state;
1002 
1003 	/* LPI States start at index 3 */
1004 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1005 		union acpi_object *element, *pkg_elem, *obj;
1006 
1007 		element = &lpi_data->package.elements[loop];
1008 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1009 			continue;
1010 
1011 		pkg_elem = element->package.elements;
1012 
1013 		obj = pkg_elem + 6;
1014 		if (obj->type == ACPI_TYPE_BUFFER) {
1015 			struct acpi_power_register *reg;
1016 
1017 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1018 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1019 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1020 				continue;
1021 
1022 			lpi_state->address = reg->address;
1023 			lpi_state->entry_method =
1024 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1025 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1026 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1027 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1028 			lpi_state->address = obj->integer.value;
1029 		} else {
1030 			continue;
1031 		}
1032 
1033 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1034 
1035 		obj = pkg_elem + 9;
1036 		if (obj->type == ACPI_TYPE_STRING)
1037 			strlcpy(lpi_state->desc, obj->string.pointer,
1038 				ACPI_CX_DESC_LEN);
1039 
1040 		lpi_state->index = state_idx;
1041 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1042 			pr_debug("No min. residency found, assuming 10 us\n");
1043 			lpi_state->min_residency = 10;
1044 		}
1045 
1046 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1047 			pr_debug("No wakeup residency found, assuming 10 us\n");
1048 			lpi_state->wake_latency = 10;
1049 		}
1050 
1051 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1052 			lpi_state->flags = 0;
1053 
1054 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1055 			lpi_state->arch_flags = 0;
1056 
1057 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1058 			lpi_state->res_cnt_freq = 1;
1059 
1060 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1061 			lpi_state->enable_parent_state = 0;
1062 	}
1063 
1064 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1065 end:
1066 	kfree(buffer.pointer);
1067 	return ret;
1068 }
1069 
1070 /*
1071  * flat_state_cnt - the number of composite LPI states after the process of flattening
1072  */
1073 static int flat_state_cnt;
1074 
1075 /**
1076  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1077  *
1078  * @local: local LPI state
1079  * @parent: parent LPI state
1080  * @result: composite LPI state
1081  */
1082 static bool combine_lpi_states(struct acpi_lpi_state *local,
1083 			       struct acpi_lpi_state *parent,
1084 			       struct acpi_lpi_state *result)
1085 {
1086 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1087 		if (!parent->address) /* 0 means autopromotable */
1088 			return false;
1089 		result->address = local->address + parent->address;
1090 	} else {
1091 		result->address = parent->address;
1092 	}
1093 
1094 	result->min_residency = max(local->min_residency, parent->min_residency);
1095 	result->wake_latency = local->wake_latency + parent->wake_latency;
1096 	result->enable_parent_state = parent->enable_parent_state;
1097 	result->entry_method = local->entry_method;
1098 
1099 	result->flags = parent->flags;
1100 	result->arch_flags = parent->arch_flags;
1101 	result->index = parent->index;
1102 
1103 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1104 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1105 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1106 	return true;
1107 }
1108 
1109 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1110 
1111 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1112 				  struct acpi_lpi_state *t)
1113 {
1114 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1115 }
1116 
1117 static int flatten_lpi_states(struct acpi_processor *pr,
1118 			      struct acpi_lpi_states_array *curr_level,
1119 			      struct acpi_lpi_states_array *prev_level)
1120 {
1121 	int i, j, state_count = curr_level->size;
1122 	struct acpi_lpi_state *p, *t = curr_level->entries;
1123 
1124 	curr_level->composite_states_size = 0;
1125 	for (j = 0; j < state_count; j++, t++) {
1126 		struct acpi_lpi_state *flpi;
1127 
1128 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1129 			continue;
1130 
1131 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1132 			pr_warn("Limiting number of LPI states to max (%d)\n",
1133 				ACPI_PROCESSOR_MAX_POWER);
1134 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1135 			break;
1136 		}
1137 
1138 		flpi = &pr->power.lpi_states[flat_state_cnt];
1139 
1140 		if (!prev_level) { /* leaf/processor node */
1141 			memcpy(flpi, t, sizeof(*t));
1142 			stash_composite_state(curr_level, flpi);
1143 			flat_state_cnt++;
1144 			continue;
1145 		}
1146 
1147 		for (i = 0; i < prev_level->composite_states_size; i++) {
1148 			p = prev_level->composite_states[i];
1149 			if (t->index <= p->enable_parent_state &&
1150 			    combine_lpi_states(p, t, flpi)) {
1151 				stash_composite_state(curr_level, flpi);
1152 				flat_state_cnt++;
1153 				flpi++;
1154 			}
1155 		}
1156 	}
1157 
1158 	kfree(curr_level->entries);
1159 	return 0;
1160 }
1161 
1162 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1163 {
1164 	int ret, i;
1165 	acpi_status status;
1166 	acpi_handle handle = pr->handle, pr_ahandle;
1167 	struct acpi_device *d = NULL;
1168 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1169 
1170 	if (!osc_pc_lpi_support_confirmed)
1171 		return -EOPNOTSUPP;
1172 
1173 	if (!acpi_has_method(handle, "_LPI"))
1174 		return -EINVAL;
1175 
1176 	flat_state_cnt = 0;
1177 	prev = &info[0];
1178 	curr = &info[1];
1179 	handle = pr->handle;
1180 	ret = acpi_processor_evaluate_lpi(handle, prev);
1181 	if (ret)
1182 		return ret;
1183 	flatten_lpi_states(pr, prev, NULL);
1184 
1185 	status = acpi_get_parent(handle, &pr_ahandle);
1186 	while (ACPI_SUCCESS(status)) {
1187 		acpi_bus_get_device(pr_ahandle, &d);
1188 		handle = pr_ahandle;
1189 
1190 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1191 			break;
1192 
1193 		/* can be optional ? */
1194 		if (!acpi_has_method(handle, "_LPI"))
1195 			break;
1196 
1197 		ret = acpi_processor_evaluate_lpi(handle, curr);
1198 		if (ret)
1199 			break;
1200 
1201 		/* flatten all the LPI states in this level of hierarchy */
1202 		flatten_lpi_states(pr, curr, prev);
1203 
1204 		tmp = prev, prev = curr, curr = tmp;
1205 
1206 		status = acpi_get_parent(handle, &pr_ahandle);
1207 	}
1208 
1209 	pr->power.count = flat_state_cnt;
1210 	/* reset the index after flattening */
1211 	for (i = 0; i < pr->power.count; i++)
1212 		pr->power.lpi_states[i].index = i;
1213 
1214 	/* Tell driver that _LPI is supported. */
1215 	pr->flags.has_lpi = 1;
1216 	pr->flags.power = 1;
1217 
1218 	return 0;
1219 }
1220 
1221 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1222 {
1223 	return -ENODEV;
1224 }
1225 
1226 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1227 {
1228 	return -ENODEV;
1229 }
1230 
1231 /**
1232  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1233  * @dev: the target CPU
1234  * @drv: cpuidle driver containing cpuidle state info
1235  * @index: index of target state
1236  *
1237  * Return: 0 for success or negative value for error
1238  */
1239 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1240 			       struct cpuidle_driver *drv, int index)
1241 {
1242 	struct acpi_processor *pr;
1243 	struct acpi_lpi_state *lpi;
1244 
1245 	pr = __this_cpu_read(processors);
1246 
1247 	if (unlikely(!pr))
1248 		return -EINVAL;
1249 
1250 	lpi = &pr->power.lpi_states[index];
1251 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1252 		return acpi_processor_ffh_lpi_enter(lpi);
1253 
1254 	return -EINVAL;
1255 }
1256 
1257 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1258 {
1259 	int i;
1260 	struct acpi_lpi_state *lpi;
1261 	struct cpuidle_state *state;
1262 	struct cpuidle_driver *drv = &acpi_idle_driver;
1263 
1264 	if (!pr->flags.has_lpi)
1265 		return -EOPNOTSUPP;
1266 
1267 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1268 		lpi = &pr->power.lpi_states[i];
1269 
1270 		state = &drv->states[i];
1271 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1272 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1273 		state->exit_latency = lpi->wake_latency;
1274 		state->target_residency = lpi->min_residency;
1275 		if (lpi->arch_flags)
1276 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1277 		state->enter = acpi_idle_lpi_enter;
1278 		drv->safe_state_index = i;
1279 	}
1280 
1281 	drv->state_count = i;
1282 
1283 	return 0;
1284 }
1285 
1286 /**
1287  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1288  * global state data i.e. idle routines
1289  *
1290  * @pr: the ACPI processor
1291  */
1292 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1293 {
1294 	int i;
1295 	struct cpuidle_driver *drv = &acpi_idle_driver;
1296 
1297 	if (!pr->flags.power_setup_done || !pr->flags.power)
1298 		return -EINVAL;
1299 
1300 	drv->safe_state_index = -1;
1301 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1302 		drv->states[i].name[0] = '\0';
1303 		drv->states[i].desc[0] = '\0';
1304 	}
1305 
1306 	if (pr->flags.has_lpi)
1307 		return acpi_processor_setup_lpi_states(pr);
1308 
1309 	return acpi_processor_setup_cstates(pr);
1310 }
1311 
1312 /**
1313  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1314  * device i.e. per-cpu data
1315  *
1316  * @pr: the ACPI processor
1317  * @dev : the cpuidle device
1318  */
1319 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1320 					    struct cpuidle_device *dev)
1321 {
1322 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1323 		return -EINVAL;
1324 
1325 	dev->cpu = pr->id;
1326 	if (pr->flags.has_lpi)
1327 		return acpi_processor_ffh_lpi_probe(pr->id);
1328 
1329 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1330 }
1331 
1332 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1333 {
1334 	int ret;
1335 
1336 	ret = acpi_processor_get_lpi_info(pr);
1337 	if (ret)
1338 		ret = acpi_processor_get_cstate_info(pr);
1339 
1340 	return ret;
1341 }
1342 
1343 int acpi_processor_hotplug(struct acpi_processor *pr)
1344 {
1345 	int ret = 0;
1346 	struct cpuidle_device *dev;
1347 
1348 	if (disabled_by_idle_boot_param())
1349 		return 0;
1350 
1351 	if (!pr->flags.power_setup_done)
1352 		return -ENODEV;
1353 
1354 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1355 	cpuidle_pause_and_lock();
1356 	cpuidle_disable_device(dev);
1357 	ret = acpi_processor_get_power_info(pr);
1358 	if (!ret && pr->flags.power) {
1359 		acpi_processor_setup_cpuidle_dev(pr, dev);
1360 		ret = cpuidle_enable_device(dev);
1361 	}
1362 	cpuidle_resume_and_unlock();
1363 
1364 	return ret;
1365 }
1366 
1367 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1368 {
1369 	int cpu;
1370 	struct acpi_processor *_pr;
1371 	struct cpuidle_device *dev;
1372 
1373 	if (disabled_by_idle_boot_param())
1374 		return 0;
1375 
1376 	if (!pr->flags.power_setup_done)
1377 		return -ENODEV;
1378 
1379 	/*
1380 	 * FIXME:  Design the ACPI notification to make it once per
1381 	 * system instead of once per-cpu.  This condition is a hack
1382 	 * to make the code that updates C-States be called once.
1383 	 */
1384 
1385 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1386 
1387 		/* Protect against cpu-hotplug */
1388 		get_online_cpus();
1389 		cpuidle_pause_and_lock();
1390 
1391 		/* Disable all cpuidle devices */
1392 		for_each_online_cpu(cpu) {
1393 			_pr = per_cpu(processors, cpu);
1394 			if (!_pr || !_pr->flags.power_setup_done)
1395 				continue;
1396 			dev = per_cpu(acpi_cpuidle_device, cpu);
1397 			cpuidle_disable_device(dev);
1398 		}
1399 
1400 		/* Populate Updated C-state information */
1401 		acpi_processor_get_power_info(pr);
1402 		acpi_processor_setup_cpuidle_states(pr);
1403 
1404 		/* Enable all cpuidle devices */
1405 		for_each_online_cpu(cpu) {
1406 			_pr = per_cpu(processors, cpu);
1407 			if (!_pr || !_pr->flags.power_setup_done)
1408 				continue;
1409 			acpi_processor_get_power_info(_pr);
1410 			if (_pr->flags.power) {
1411 				dev = per_cpu(acpi_cpuidle_device, cpu);
1412 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1413 				cpuidle_enable_device(dev);
1414 			}
1415 		}
1416 		cpuidle_resume_and_unlock();
1417 		put_online_cpus();
1418 	}
1419 
1420 	return 0;
1421 }
1422 
1423 static int acpi_processor_registered;
1424 
1425 int acpi_processor_power_init(struct acpi_processor *pr)
1426 {
1427 	int retval;
1428 	struct cpuidle_device *dev;
1429 
1430 	if (disabled_by_idle_boot_param())
1431 		return 0;
1432 
1433 	acpi_processor_cstate_first_run_checks();
1434 
1435 	if (!acpi_processor_get_power_info(pr))
1436 		pr->flags.power_setup_done = 1;
1437 
1438 	/*
1439 	 * Install the idle handler if processor power management is supported.
1440 	 * Note that we use previously set idle handler will be used on
1441 	 * platforms that only support C1.
1442 	 */
1443 	if (pr->flags.power) {
1444 		/* Register acpi_idle_driver if not already registered */
1445 		if (!acpi_processor_registered) {
1446 			acpi_processor_setup_cpuidle_states(pr);
1447 			retval = cpuidle_register_driver(&acpi_idle_driver);
1448 			if (retval)
1449 				return retval;
1450 			pr_debug("%s registered with cpuidle\n",
1451 				 acpi_idle_driver.name);
1452 		}
1453 
1454 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1455 		if (!dev)
1456 			return -ENOMEM;
1457 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1458 
1459 		acpi_processor_setup_cpuidle_dev(pr, dev);
1460 
1461 		/* Register per-cpu cpuidle_device. Cpuidle driver
1462 		 * must already be registered before registering device
1463 		 */
1464 		retval = cpuidle_register_device(dev);
1465 		if (retval) {
1466 			if (acpi_processor_registered == 0)
1467 				cpuidle_unregister_driver(&acpi_idle_driver);
1468 			return retval;
1469 		}
1470 		acpi_processor_registered++;
1471 	}
1472 	return 0;
1473 }
1474 
1475 int acpi_processor_power_exit(struct acpi_processor *pr)
1476 {
1477 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1478 
1479 	if (disabled_by_idle_boot_param())
1480 		return 0;
1481 
1482 	if (pr->flags.power) {
1483 		cpuidle_unregister_device(dev);
1484 		acpi_processor_registered--;
1485 		if (acpi_processor_registered == 0)
1486 			cpuidle_unregister_driver(&acpi_idle_driver);
1487 	}
1488 
1489 	pr->flags.power_setup_done = 0;
1490 	return 0;
1491 }
1492