xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 4419617e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23 
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33 
34 #define ACPI_PROCESSOR_CLASS            "processor"
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37 
38 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39 
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46 
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49 
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51 
52 struct cpuidle_driver acpi_idle_driver = {
53 	.name =		"acpi_idle",
54 	.owner =	THIS_MODULE,
55 };
56 
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60 
61 static int disabled_by_idle_boot_param(void)
62 {
63 	return boot_option_idle_override == IDLE_POLL ||
64 		boot_option_idle_override == IDLE_HALT;
65 }
66 
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 		return 0;
77 
78 	pr_notice("%s detected - limiting to C%ld max_cstate."
79 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81 
82 	max_cstate = (long)id->driver_data;
83 
84 	return 0;
85 }
86 
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 	{ set_max_cstate, "Clevo 5600D", {
89 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 	 (void *)2},
92 	{ set_max_cstate, "Pavilion zv5000", {
93 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 	 (void *)1},
96 	{ set_max_cstate, "Asus L8400B", {
97 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 	 (void *)1},
100 	{},
101 };
102 
103 
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110 	if (!tif_need_resched()) {
111 		safe_halt();
112 		local_irq_disable();
113 	}
114 }
115 
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117 
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 				   struct acpi_processor_cx *cx)
126 {
127 	struct acpi_processor_power *pwr = &pr->power;
128 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129 
130 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 		return;
132 
133 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 		type = ACPI_STATE_C1;
135 
136 	/*
137 	 * Check, if one of the previous states already marked the lapic
138 	 * unstable
139 	 */
140 	if (pwr->timer_broadcast_on_state < state)
141 		return;
142 
143 	if (cx->type >= type)
144 		pr->power.timer_broadcast_on_state = state;
145 }
146 
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149 	struct acpi_processor *pr = (struct acpi_processor *) arg;
150 
151 	if (pr->power.timer_broadcast_on_state < INT_MAX)
152 		tick_broadcast_enable();
153 	else
154 		tick_broadcast_disable();
155 }
156 
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 				 (void *)pr, 1);
161 }
162 
163 /* Power(C) State timer broadcast control */
164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165 				       struct acpi_processor_cx *cx,
166 				       int broadcast)
167 {
168 	int state = cx - pr->power.states;
169 
170 	if (state >= pr->power.timer_broadcast_on_state) {
171 		if (broadcast)
172 			tick_broadcast_enter();
173 		else
174 			tick_broadcast_exit();
175 	}
176 }
177 
178 #else
179 
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181 				   struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184 				       struct acpi_processor_cx *cx,
185 				       int broadcast)
186 {
187 }
188 
189 #endif
190 
191 #if defined(CONFIG_X86)
192 static void tsc_check_state(int state)
193 {
194 	switch (boot_cpu_data.x86_vendor) {
195 	case X86_VENDOR_HYGON:
196 	case X86_VENDOR_AMD:
197 	case X86_VENDOR_INTEL:
198 	case X86_VENDOR_CENTAUR:
199 		/*
200 		 * AMD Fam10h TSC will tick in all
201 		 * C/P/S0/S1 states when this bit is set.
202 		 */
203 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
204 			return;
205 
206 		/*FALL THROUGH*/
207 	default:
208 		/* TSC could halt in idle, so notify users */
209 		if (state > ACPI_STATE_C1)
210 			mark_tsc_unstable("TSC halts in idle");
211 	}
212 }
213 #else
214 static void tsc_check_state(int state) { return; }
215 #endif
216 
217 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
218 {
219 
220 	if (!pr->pblk)
221 		return -ENODEV;
222 
223 	/* if info is obtained from pblk/fadt, type equals state */
224 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
225 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
226 
227 #ifndef CONFIG_HOTPLUG_CPU
228 	/*
229 	 * Check for P_LVL2_UP flag before entering C2 and above on
230 	 * an SMP system.
231 	 */
232 	if ((num_online_cpus() > 1) &&
233 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
234 		return -ENODEV;
235 #endif
236 
237 	/* determine C2 and C3 address from pblk */
238 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
239 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
240 
241 	/* determine latencies from FADT */
242 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
243 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
244 
245 	/*
246 	 * FADT specified C2 latency must be less than or equal to
247 	 * 100 microseconds.
248 	 */
249 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
250 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
251 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
252 		/* invalidate C2 */
253 		pr->power.states[ACPI_STATE_C2].address = 0;
254 	}
255 
256 	/*
257 	 * FADT supplied C3 latency must be less than or equal to
258 	 * 1000 microseconds.
259 	 */
260 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
261 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
262 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
263 		/* invalidate C3 */
264 		pr->power.states[ACPI_STATE_C3].address = 0;
265 	}
266 
267 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
269 			  pr->power.states[ACPI_STATE_C2].address,
270 			  pr->power.states[ACPI_STATE_C3].address));
271 
272 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
273 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
274 			 pr->power.states[ACPI_STATE_C2].address);
275 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
276 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
277 			 pr->power.states[ACPI_STATE_C3].address);
278 
279 	return 0;
280 }
281 
282 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
283 {
284 	if (!pr->power.states[ACPI_STATE_C1].valid) {
285 		/* set the first C-State to C1 */
286 		/* all processors need to support C1 */
287 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
288 		pr->power.states[ACPI_STATE_C1].valid = 1;
289 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
290 
291 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
292 			 ACPI_CX_DESC_LEN, "ACPI HLT");
293 	}
294 	/* the C0 state only exists as a filler in our array */
295 	pr->power.states[ACPI_STATE_C0].valid = 1;
296 	return 0;
297 }
298 
299 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
300 {
301 	acpi_status status;
302 	u64 count;
303 	int current_count;
304 	int i, ret = 0;
305 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
306 	union acpi_object *cst;
307 
308 	if (nocst)
309 		return -ENODEV;
310 
311 	current_count = 0;
312 
313 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
314 	if (ACPI_FAILURE(status)) {
315 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
316 		return -ENODEV;
317 	}
318 
319 	cst = buffer.pointer;
320 
321 	/* There must be at least 2 elements */
322 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
323 		pr_err("not enough elements in _CST\n");
324 		ret = -EFAULT;
325 		goto end;
326 	}
327 
328 	count = cst->package.elements[0].integer.value;
329 
330 	/* Validate number of power states. */
331 	if (count < 1 || count != cst->package.count - 1) {
332 		pr_err("count given by _CST is not valid\n");
333 		ret = -EFAULT;
334 		goto end;
335 	}
336 
337 	/* Tell driver that at least _CST is supported. */
338 	pr->flags.has_cst = 1;
339 
340 	for (i = 1; i <= count; i++) {
341 		union acpi_object *element;
342 		union acpi_object *obj;
343 		struct acpi_power_register *reg;
344 		struct acpi_processor_cx cx;
345 
346 		memset(&cx, 0, sizeof(cx));
347 
348 		element = &(cst->package.elements[i]);
349 		if (element->type != ACPI_TYPE_PACKAGE)
350 			continue;
351 
352 		if (element->package.count != 4)
353 			continue;
354 
355 		obj = &(element->package.elements[0]);
356 
357 		if (obj->type != ACPI_TYPE_BUFFER)
358 			continue;
359 
360 		reg = (struct acpi_power_register *)obj->buffer.pointer;
361 
362 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
363 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
364 			continue;
365 
366 		/* There should be an easy way to extract an integer... */
367 		obj = &(element->package.elements[1]);
368 		if (obj->type != ACPI_TYPE_INTEGER)
369 			continue;
370 
371 		cx.type = obj->integer.value;
372 		/*
373 		 * Some buggy BIOSes won't list C1 in _CST -
374 		 * Let acpi_processor_get_power_info_default() handle them later
375 		 */
376 		if (i == 1 && cx.type != ACPI_STATE_C1)
377 			current_count++;
378 
379 		cx.address = reg->address;
380 		cx.index = current_count + 1;
381 
382 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
383 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
384 			if (acpi_processor_ffh_cstate_probe
385 					(pr->id, &cx, reg) == 0) {
386 				cx.entry_method = ACPI_CSTATE_FFH;
387 			} else if (cx.type == ACPI_STATE_C1) {
388 				/*
389 				 * C1 is a special case where FIXED_HARDWARE
390 				 * can be handled in non-MWAIT way as well.
391 				 * In that case, save this _CST entry info.
392 				 * Otherwise, ignore this info and continue.
393 				 */
394 				cx.entry_method = ACPI_CSTATE_HALT;
395 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
396 			} else {
397 				continue;
398 			}
399 			if (cx.type == ACPI_STATE_C1 &&
400 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
401 				/*
402 				 * In most cases the C1 space_id obtained from
403 				 * _CST object is FIXED_HARDWARE access mode.
404 				 * But when the option of idle=halt is added,
405 				 * the entry_method type should be changed from
406 				 * CSTATE_FFH to CSTATE_HALT.
407 				 * When the option of idle=nomwait is added,
408 				 * the C1 entry_method type should be
409 				 * CSTATE_HALT.
410 				 */
411 				cx.entry_method = ACPI_CSTATE_HALT;
412 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
413 			}
414 		} else {
415 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
416 				 cx.address);
417 		}
418 
419 		if (cx.type == ACPI_STATE_C1) {
420 			cx.valid = 1;
421 		}
422 
423 		obj = &(element->package.elements[2]);
424 		if (obj->type != ACPI_TYPE_INTEGER)
425 			continue;
426 
427 		cx.latency = obj->integer.value;
428 
429 		obj = &(element->package.elements[3]);
430 		if (obj->type != ACPI_TYPE_INTEGER)
431 			continue;
432 
433 		current_count++;
434 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
435 
436 		/*
437 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
438 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
439 		 */
440 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
441 			pr_warn("Limiting number of power states to max (%d)\n",
442 				ACPI_PROCESSOR_MAX_POWER);
443 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
444 			break;
445 		}
446 	}
447 
448 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
449 			  current_count));
450 
451 	/* Validate number of power states discovered */
452 	if (current_count < 2)
453 		ret = -EFAULT;
454 
455       end:
456 	kfree(buffer.pointer);
457 
458 	return ret;
459 }
460 
461 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
462 					   struct acpi_processor_cx *cx)
463 {
464 	static int bm_check_flag = -1;
465 	static int bm_control_flag = -1;
466 
467 
468 	if (!cx->address)
469 		return;
470 
471 	/*
472 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
473 	 * DMA transfers are used by any ISA device to avoid livelock.
474 	 * Note that we could disable Type-F DMA (as recommended by
475 	 * the erratum), but this is known to disrupt certain ISA
476 	 * devices thus we take the conservative approach.
477 	 */
478 	else if (errata.piix4.fdma) {
479 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
480 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
481 		return;
482 	}
483 
484 	/* All the logic here assumes flags.bm_check is same across all CPUs */
485 	if (bm_check_flag == -1) {
486 		/* Determine whether bm_check is needed based on CPU  */
487 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
488 		bm_check_flag = pr->flags.bm_check;
489 		bm_control_flag = pr->flags.bm_control;
490 	} else {
491 		pr->flags.bm_check = bm_check_flag;
492 		pr->flags.bm_control = bm_control_flag;
493 	}
494 
495 	if (pr->flags.bm_check) {
496 		if (!pr->flags.bm_control) {
497 			if (pr->flags.has_cst != 1) {
498 				/* bus mastering control is necessary */
499 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
500 					"C3 support requires BM control\n"));
501 				return;
502 			} else {
503 				/* Here we enter C3 without bus mastering */
504 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
505 					"C3 support without BM control\n"));
506 			}
507 		}
508 	} else {
509 		/*
510 		 * WBINVD should be set in fadt, for C3 state to be
511 		 * supported on when bm_check is not required.
512 		 */
513 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
514 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
515 					  "Cache invalidation should work properly"
516 					  " for C3 to be enabled on SMP systems\n"));
517 			return;
518 		}
519 	}
520 
521 	/*
522 	 * Otherwise we've met all of our C3 requirements.
523 	 * Normalize the C3 latency to expidite policy.  Enable
524 	 * checking of bus mastering status (bm_check) so we can
525 	 * use this in our C3 policy
526 	 */
527 	cx->valid = 1;
528 
529 	/*
530 	 * On older chipsets, BM_RLD needs to be set
531 	 * in order for Bus Master activity to wake the
532 	 * system from C3.  Newer chipsets handle DMA
533 	 * during C3 automatically and BM_RLD is a NOP.
534 	 * In either case, the proper way to
535 	 * handle BM_RLD is to set it and leave it set.
536 	 */
537 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
538 
539 	return;
540 }
541 
542 static int acpi_processor_power_verify(struct acpi_processor *pr)
543 {
544 	unsigned int i;
545 	unsigned int working = 0;
546 
547 	pr->power.timer_broadcast_on_state = INT_MAX;
548 
549 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
550 		struct acpi_processor_cx *cx = &pr->power.states[i];
551 
552 		switch (cx->type) {
553 		case ACPI_STATE_C1:
554 			cx->valid = 1;
555 			break;
556 
557 		case ACPI_STATE_C2:
558 			if (!cx->address)
559 				break;
560 			cx->valid = 1;
561 			break;
562 
563 		case ACPI_STATE_C3:
564 			acpi_processor_power_verify_c3(pr, cx);
565 			break;
566 		}
567 		if (!cx->valid)
568 			continue;
569 
570 		lapic_timer_check_state(i, pr, cx);
571 		tsc_check_state(cx->type);
572 		working++;
573 	}
574 
575 	lapic_timer_propagate_broadcast(pr);
576 
577 	return (working);
578 }
579 
580 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
581 {
582 	unsigned int i;
583 	int result;
584 
585 
586 	/* NOTE: the idle thread may not be running while calling
587 	 * this function */
588 
589 	/* Zero initialize all the C-states info. */
590 	memset(pr->power.states, 0, sizeof(pr->power.states));
591 
592 	result = acpi_processor_get_power_info_cst(pr);
593 	if (result == -ENODEV)
594 		result = acpi_processor_get_power_info_fadt(pr);
595 
596 	if (result)
597 		return result;
598 
599 	acpi_processor_get_power_info_default(pr);
600 
601 	pr->power.count = acpi_processor_power_verify(pr);
602 
603 	/*
604 	 * if one state of type C2 or C3 is available, mark this
605 	 * CPU as being "idle manageable"
606 	 */
607 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
608 		if (pr->power.states[i].valid) {
609 			pr->power.count = i;
610 			if (pr->power.states[i].type >= ACPI_STATE_C2)
611 				pr->flags.power = 1;
612 		}
613 	}
614 
615 	return 0;
616 }
617 
618 /**
619  * acpi_idle_bm_check - checks if bus master activity was detected
620  */
621 static int acpi_idle_bm_check(void)
622 {
623 	u32 bm_status = 0;
624 
625 	if (bm_check_disable)
626 		return 0;
627 
628 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
629 	if (bm_status)
630 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
631 	/*
632 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
633 	 * the true state of bus mastering activity; forcing us to
634 	 * manually check the BMIDEA bit of each IDE channel.
635 	 */
636 	else if (errata.piix4.bmisx) {
637 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
638 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
639 			bm_status = 1;
640 	}
641 	return bm_status;
642 }
643 
644 /**
645  * acpi_idle_do_entry - enter idle state using the appropriate method
646  * @cx: cstate data
647  *
648  * Caller disables interrupt before call and enables interrupt after return.
649  */
650 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
651 {
652 	if (cx->entry_method == ACPI_CSTATE_FFH) {
653 		/* Call into architectural FFH based C-state */
654 		acpi_processor_ffh_cstate_enter(cx);
655 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
656 		acpi_safe_halt();
657 	} else {
658 		/* IO port based C-state */
659 		inb(cx->address);
660 		/* Dummy wait op - must do something useless after P_LVL2 read
661 		   because chipsets cannot guarantee that STPCLK# signal
662 		   gets asserted in time to freeze execution properly. */
663 		inl(acpi_gbl_FADT.xpm_timer_block.address);
664 	}
665 }
666 
667 /**
668  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
669  * @dev: the target CPU
670  * @index: the index of suggested state
671  */
672 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
673 {
674 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
675 
676 	ACPI_FLUSH_CPU_CACHE();
677 
678 	while (1) {
679 
680 		if (cx->entry_method == ACPI_CSTATE_HALT)
681 			safe_halt();
682 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
683 			inb(cx->address);
684 			/* See comment in acpi_idle_do_entry() */
685 			inl(acpi_gbl_FADT.xpm_timer_block.address);
686 		} else
687 			return -ENODEV;
688 	}
689 
690 	/* Never reached */
691 	return 0;
692 }
693 
694 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
695 {
696 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
697 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
698 }
699 
700 static int c3_cpu_count;
701 static DEFINE_RAW_SPINLOCK(c3_lock);
702 
703 /**
704  * acpi_idle_enter_bm - enters C3 with proper BM handling
705  * @pr: Target processor
706  * @cx: Target state context
707  * @timer_bc: Whether or not to change timer mode to broadcast
708  */
709 static void acpi_idle_enter_bm(struct acpi_processor *pr,
710 			       struct acpi_processor_cx *cx, bool timer_bc)
711 {
712 	acpi_unlazy_tlb(smp_processor_id());
713 
714 	/*
715 	 * Must be done before busmaster disable as we might need to
716 	 * access HPET !
717 	 */
718 	if (timer_bc)
719 		lapic_timer_state_broadcast(pr, cx, 1);
720 
721 	/*
722 	 * disable bus master
723 	 * bm_check implies we need ARB_DIS
724 	 * bm_control implies whether we can do ARB_DIS
725 	 *
726 	 * That leaves a case where bm_check is set and bm_control is
727 	 * not set. In that case we cannot do much, we enter C3
728 	 * without doing anything.
729 	 */
730 	if (pr->flags.bm_control) {
731 		raw_spin_lock(&c3_lock);
732 		c3_cpu_count++;
733 		/* Disable bus master arbitration when all CPUs are in C3 */
734 		if (c3_cpu_count == num_online_cpus())
735 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
736 		raw_spin_unlock(&c3_lock);
737 	}
738 
739 	acpi_idle_do_entry(cx);
740 
741 	/* Re-enable bus master arbitration */
742 	if (pr->flags.bm_control) {
743 		raw_spin_lock(&c3_lock);
744 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
745 		c3_cpu_count--;
746 		raw_spin_unlock(&c3_lock);
747 	}
748 
749 	if (timer_bc)
750 		lapic_timer_state_broadcast(pr, cx, 0);
751 }
752 
753 static int acpi_idle_enter(struct cpuidle_device *dev,
754 			   struct cpuidle_driver *drv, int index)
755 {
756 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
757 	struct acpi_processor *pr;
758 
759 	pr = __this_cpu_read(processors);
760 	if (unlikely(!pr))
761 		return -EINVAL;
762 
763 	if (cx->type != ACPI_STATE_C1) {
764 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
765 			index = ACPI_IDLE_STATE_START;
766 			cx = per_cpu(acpi_cstate[index], dev->cpu);
767 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
768 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
769 				acpi_idle_enter_bm(pr, cx, true);
770 				return index;
771 			} else if (drv->safe_state_index >= 0) {
772 				index = drv->safe_state_index;
773 				cx = per_cpu(acpi_cstate[index], dev->cpu);
774 			} else {
775 				acpi_safe_halt();
776 				return -EBUSY;
777 			}
778 		}
779 	}
780 
781 	lapic_timer_state_broadcast(pr, cx, 1);
782 
783 	if (cx->type == ACPI_STATE_C3)
784 		ACPI_FLUSH_CPU_CACHE();
785 
786 	acpi_idle_do_entry(cx);
787 
788 	lapic_timer_state_broadcast(pr, cx, 0);
789 
790 	return index;
791 }
792 
793 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
794 				   struct cpuidle_driver *drv, int index)
795 {
796 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
797 
798 	if (cx->type == ACPI_STATE_C3) {
799 		struct acpi_processor *pr = __this_cpu_read(processors);
800 
801 		if (unlikely(!pr))
802 			return;
803 
804 		if (pr->flags.bm_check) {
805 			acpi_idle_enter_bm(pr, cx, false);
806 			return;
807 		} else {
808 			ACPI_FLUSH_CPU_CACHE();
809 		}
810 	}
811 	acpi_idle_do_entry(cx);
812 }
813 
814 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
815 					   struct cpuidle_device *dev)
816 {
817 	int i, count = ACPI_IDLE_STATE_START;
818 	struct acpi_processor_cx *cx;
819 
820 	if (max_cstate == 0)
821 		max_cstate = 1;
822 
823 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
824 		cx = &pr->power.states[i];
825 
826 		if (!cx->valid)
827 			continue;
828 
829 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
830 
831 		count++;
832 		if (count == CPUIDLE_STATE_MAX)
833 			break;
834 	}
835 
836 	if (!count)
837 		return -EINVAL;
838 
839 	return 0;
840 }
841 
842 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
843 {
844 	int i, count;
845 	struct acpi_processor_cx *cx;
846 	struct cpuidle_state *state;
847 	struct cpuidle_driver *drv = &acpi_idle_driver;
848 
849 	if (max_cstate == 0)
850 		max_cstate = 1;
851 
852 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
853 		cpuidle_poll_state_init(drv);
854 		count = 1;
855 	} else {
856 		count = 0;
857 	}
858 
859 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
860 		cx = &pr->power.states[i];
861 
862 		if (!cx->valid)
863 			continue;
864 
865 		state = &drv->states[count];
866 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
867 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
868 		state->exit_latency = cx->latency;
869 		state->target_residency = cx->latency * latency_factor;
870 		state->enter = acpi_idle_enter;
871 
872 		state->flags = 0;
873 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
874 			state->enter_dead = acpi_idle_play_dead;
875 			drv->safe_state_index = count;
876 		}
877 		/*
878 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
879 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
880 		 * particularly interesting from the suspend-to-idle angle, so
881 		 * avoid C1 and the situations in which we may need to fall back
882 		 * to it altogether.
883 		 */
884 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
885 			state->enter_s2idle = acpi_idle_enter_s2idle;
886 
887 		count++;
888 		if (count == CPUIDLE_STATE_MAX)
889 			break;
890 	}
891 
892 	drv->state_count = count;
893 
894 	if (!count)
895 		return -EINVAL;
896 
897 	return 0;
898 }
899 
900 static inline void acpi_processor_cstate_first_run_checks(void)
901 {
902 	acpi_status status;
903 	static int first_run;
904 
905 	if (first_run)
906 		return;
907 	dmi_check_system(processor_power_dmi_table);
908 	max_cstate = acpi_processor_cstate_check(max_cstate);
909 	if (max_cstate < ACPI_C_STATES_MAX)
910 		pr_notice("ACPI: processor limited to max C-state %d\n",
911 			  max_cstate);
912 	first_run++;
913 
914 	if (acpi_gbl_FADT.cst_control && !nocst) {
915 		status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
916 					    acpi_gbl_FADT.cst_control, 8);
917 		if (ACPI_FAILURE(status))
918 			ACPI_EXCEPTION((AE_INFO, status,
919 					"Notifying BIOS of _CST ability failed"));
920 	}
921 }
922 #else
923 
924 static inline int disabled_by_idle_boot_param(void) { return 0; }
925 static inline void acpi_processor_cstate_first_run_checks(void) { }
926 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
927 {
928 	return -ENODEV;
929 }
930 
931 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
932 					   struct cpuidle_device *dev)
933 {
934 	return -EINVAL;
935 }
936 
937 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
938 {
939 	return -EINVAL;
940 }
941 
942 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
943 
944 struct acpi_lpi_states_array {
945 	unsigned int size;
946 	unsigned int composite_states_size;
947 	struct acpi_lpi_state *entries;
948 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
949 };
950 
951 static int obj_get_integer(union acpi_object *obj, u32 *value)
952 {
953 	if (obj->type != ACPI_TYPE_INTEGER)
954 		return -EINVAL;
955 
956 	*value = obj->integer.value;
957 	return 0;
958 }
959 
960 static int acpi_processor_evaluate_lpi(acpi_handle handle,
961 				       struct acpi_lpi_states_array *info)
962 {
963 	acpi_status status;
964 	int ret = 0;
965 	int pkg_count, state_idx = 1, loop;
966 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
967 	union acpi_object *lpi_data;
968 	struct acpi_lpi_state *lpi_state;
969 
970 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
971 	if (ACPI_FAILURE(status)) {
972 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
973 		return -ENODEV;
974 	}
975 
976 	lpi_data = buffer.pointer;
977 
978 	/* There must be at least 4 elements = 3 elements + 1 package */
979 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
980 	    lpi_data->package.count < 4) {
981 		pr_debug("not enough elements in _LPI\n");
982 		ret = -ENODATA;
983 		goto end;
984 	}
985 
986 	pkg_count = lpi_data->package.elements[2].integer.value;
987 
988 	/* Validate number of power states. */
989 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
990 		pr_debug("count given by _LPI is not valid\n");
991 		ret = -ENODATA;
992 		goto end;
993 	}
994 
995 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
996 	if (!lpi_state) {
997 		ret = -ENOMEM;
998 		goto end;
999 	}
1000 
1001 	info->size = pkg_count;
1002 	info->entries = lpi_state;
1003 
1004 	/* LPI States start at index 3 */
1005 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
1006 		union acpi_object *element, *pkg_elem, *obj;
1007 
1008 		element = &lpi_data->package.elements[loop];
1009 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1010 			continue;
1011 
1012 		pkg_elem = element->package.elements;
1013 
1014 		obj = pkg_elem + 6;
1015 		if (obj->type == ACPI_TYPE_BUFFER) {
1016 			struct acpi_power_register *reg;
1017 
1018 			reg = (struct acpi_power_register *)obj->buffer.pointer;
1019 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1020 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1021 				continue;
1022 
1023 			lpi_state->address = reg->address;
1024 			lpi_state->entry_method =
1025 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1026 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1027 		} else if (obj->type == ACPI_TYPE_INTEGER) {
1028 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1029 			lpi_state->address = obj->integer.value;
1030 		} else {
1031 			continue;
1032 		}
1033 
1034 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1035 
1036 		obj = pkg_elem + 9;
1037 		if (obj->type == ACPI_TYPE_STRING)
1038 			strlcpy(lpi_state->desc, obj->string.pointer,
1039 				ACPI_CX_DESC_LEN);
1040 
1041 		lpi_state->index = state_idx;
1042 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1043 			pr_debug("No min. residency found, assuming 10 us\n");
1044 			lpi_state->min_residency = 10;
1045 		}
1046 
1047 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1048 			pr_debug("No wakeup residency found, assuming 10 us\n");
1049 			lpi_state->wake_latency = 10;
1050 		}
1051 
1052 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1053 			lpi_state->flags = 0;
1054 
1055 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1056 			lpi_state->arch_flags = 0;
1057 
1058 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1059 			lpi_state->res_cnt_freq = 1;
1060 
1061 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1062 			lpi_state->enable_parent_state = 0;
1063 	}
1064 
1065 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1066 end:
1067 	kfree(buffer.pointer);
1068 	return ret;
1069 }
1070 
1071 /*
1072  * flat_state_cnt - the number of composite LPI states after the process of flattening
1073  */
1074 static int flat_state_cnt;
1075 
1076 /**
1077  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1078  *
1079  * @local: local LPI state
1080  * @parent: parent LPI state
1081  * @result: composite LPI state
1082  */
1083 static bool combine_lpi_states(struct acpi_lpi_state *local,
1084 			       struct acpi_lpi_state *parent,
1085 			       struct acpi_lpi_state *result)
1086 {
1087 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1088 		if (!parent->address) /* 0 means autopromotable */
1089 			return false;
1090 		result->address = local->address + parent->address;
1091 	} else {
1092 		result->address = parent->address;
1093 	}
1094 
1095 	result->min_residency = max(local->min_residency, parent->min_residency);
1096 	result->wake_latency = local->wake_latency + parent->wake_latency;
1097 	result->enable_parent_state = parent->enable_parent_state;
1098 	result->entry_method = local->entry_method;
1099 
1100 	result->flags = parent->flags;
1101 	result->arch_flags = parent->arch_flags;
1102 	result->index = parent->index;
1103 
1104 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1105 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1106 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1107 	return true;
1108 }
1109 
1110 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1111 
1112 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1113 				  struct acpi_lpi_state *t)
1114 {
1115 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1116 }
1117 
1118 static int flatten_lpi_states(struct acpi_processor *pr,
1119 			      struct acpi_lpi_states_array *curr_level,
1120 			      struct acpi_lpi_states_array *prev_level)
1121 {
1122 	int i, j, state_count = curr_level->size;
1123 	struct acpi_lpi_state *p, *t = curr_level->entries;
1124 
1125 	curr_level->composite_states_size = 0;
1126 	for (j = 0; j < state_count; j++, t++) {
1127 		struct acpi_lpi_state *flpi;
1128 
1129 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1130 			continue;
1131 
1132 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1133 			pr_warn("Limiting number of LPI states to max (%d)\n",
1134 				ACPI_PROCESSOR_MAX_POWER);
1135 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1136 			break;
1137 		}
1138 
1139 		flpi = &pr->power.lpi_states[flat_state_cnt];
1140 
1141 		if (!prev_level) { /* leaf/processor node */
1142 			memcpy(flpi, t, sizeof(*t));
1143 			stash_composite_state(curr_level, flpi);
1144 			flat_state_cnt++;
1145 			continue;
1146 		}
1147 
1148 		for (i = 0; i < prev_level->composite_states_size; i++) {
1149 			p = prev_level->composite_states[i];
1150 			if (t->index <= p->enable_parent_state &&
1151 			    combine_lpi_states(p, t, flpi)) {
1152 				stash_composite_state(curr_level, flpi);
1153 				flat_state_cnt++;
1154 				flpi++;
1155 			}
1156 		}
1157 	}
1158 
1159 	kfree(curr_level->entries);
1160 	return 0;
1161 }
1162 
1163 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1164 {
1165 	int ret, i;
1166 	acpi_status status;
1167 	acpi_handle handle = pr->handle, pr_ahandle;
1168 	struct acpi_device *d = NULL;
1169 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1170 
1171 	if (!osc_pc_lpi_support_confirmed)
1172 		return -EOPNOTSUPP;
1173 
1174 	if (!acpi_has_method(handle, "_LPI"))
1175 		return -EINVAL;
1176 
1177 	flat_state_cnt = 0;
1178 	prev = &info[0];
1179 	curr = &info[1];
1180 	handle = pr->handle;
1181 	ret = acpi_processor_evaluate_lpi(handle, prev);
1182 	if (ret)
1183 		return ret;
1184 	flatten_lpi_states(pr, prev, NULL);
1185 
1186 	status = acpi_get_parent(handle, &pr_ahandle);
1187 	while (ACPI_SUCCESS(status)) {
1188 		acpi_bus_get_device(pr_ahandle, &d);
1189 		handle = pr_ahandle;
1190 
1191 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1192 			break;
1193 
1194 		/* can be optional ? */
1195 		if (!acpi_has_method(handle, "_LPI"))
1196 			break;
1197 
1198 		ret = acpi_processor_evaluate_lpi(handle, curr);
1199 		if (ret)
1200 			break;
1201 
1202 		/* flatten all the LPI states in this level of hierarchy */
1203 		flatten_lpi_states(pr, curr, prev);
1204 
1205 		tmp = prev, prev = curr, curr = tmp;
1206 
1207 		status = acpi_get_parent(handle, &pr_ahandle);
1208 	}
1209 
1210 	pr->power.count = flat_state_cnt;
1211 	/* reset the index after flattening */
1212 	for (i = 0; i < pr->power.count; i++)
1213 		pr->power.lpi_states[i].index = i;
1214 
1215 	/* Tell driver that _LPI is supported. */
1216 	pr->flags.has_lpi = 1;
1217 	pr->flags.power = 1;
1218 
1219 	return 0;
1220 }
1221 
1222 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1223 {
1224 	return -ENODEV;
1225 }
1226 
1227 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1228 {
1229 	return -ENODEV;
1230 }
1231 
1232 /**
1233  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1234  * @dev: the target CPU
1235  * @drv: cpuidle driver containing cpuidle state info
1236  * @index: index of target state
1237  *
1238  * Return: 0 for success or negative value for error
1239  */
1240 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1241 			       struct cpuidle_driver *drv, int index)
1242 {
1243 	struct acpi_processor *pr;
1244 	struct acpi_lpi_state *lpi;
1245 
1246 	pr = __this_cpu_read(processors);
1247 
1248 	if (unlikely(!pr))
1249 		return -EINVAL;
1250 
1251 	lpi = &pr->power.lpi_states[index];
1252 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1253 		return acpi_processor_ffh_lpi_enter(lpi);
1254 
1255 	return -EINVAL;
1256 }
1257 
1258 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1259 {
1260 	int i;
1261 	struct acpi_lpi_state *lpi;
1262 	struct cpuidle_state *state;
1263 	struct cpuidle_driver *drv = &acpi_idle_driver;
1264 
1265 	if (!pr->flags.has_lpi)
1266 		return -EOPNOTSUPP;
1267 
1268 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1269 		lpi = &pr->power.lpi_states[i];
1270 
1271 		state = &drv->states[i];
1272 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1273 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1274 		state->exit_latency = lpi->wake_latency;
1275 		state->target_residency = lpi->min_residency;
1276 		if (lpi->arch_flags)
1277 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1278 		state->enter = acpi_idle_lpi_enter;
1279 		drv->safe_state_index = i;
1280 	}
1281 
1282 	drv->state_count = i;
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1289  * global state data i.e. idle routines
1290  *
1291  * @pr: the ACPI processor
1292  */
1293 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1294 {
1295 	int i;
1296 	struct cpuidle_driver *drv = &acpi_idle_driver;
1297 
1298 	if (!pr->flags.power_setup_done || !pr->flags.power)
1299 		return -EINVAL;
1300 
1301 	drv->safe_state_index = -1;
1302 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1303 		drv->states[i].name[0] = '\0';
1304 		drv->states[i].desc[0] = '\0';
1305 	}
1306 
1307 	if (pr->flags.has_lpi)
1308 		return acpi_processor_setup_lpi_states(pr);
1309 
1310 	return acpi_processor_setup_cstates(pr);
1311 }
1312 
1313 /**
1314  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1315  * device i.e. per-cpu data
1316  *
1317  * @pr: the ACPI processor
1318  * @dev : the cpuidle device
1319  */
1320 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1321 					    struct cpuidle_device *dev)
1322 {
1323 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1324 		return -EINVAL;
1325 
1326 	dev->cpu = pr->id;
1327 	if (pr->flags.has_lpi)
1328 		return acpi_processor_ffh_lpi_probe(pr->id);
1329 
1330 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1331 }
1332 
1333 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1334 {
1335 	int ret;
1336 
1337 	ret = acpi_processor_get_lpi_info(pr);
1338 	if (ret)
1339 		ret = acpi_processor_get_cstate_info(pr);
1340 
1341 	return ret;
1342 }
1343 
1344 int acpi_processor_hotplug(struct acpi_processor *pr)
1345 {
1346 	int ret = 0;
1347 	struct cpuidle_device *dev;
1348 
1349 	if (disabled_by_idle_boot_param())
1350 		return 0;
1351 
1352 	if (!pr->flags.power_setup_done)
1353 		return -ENODEV;
1354 
1355 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1356 	cpuidle_pause_and_lock();
1357 	cpuidle_disable_device(dev);
1358 	ret = acpi_processor_get_power_info(pr);
1359 	if (!ret && pr->flags.power) {
1360 		acpi_processor_setup_cpuidle_dev(pr, dev);
1361 		ret = cpuidle_enable_device(dev);
1362 	}
1363 	cpuidle_resume_and_unlock();
1364 
1365 	return ret;
1366 }
1367 
1368 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1369 {
1370 	int cpu;
1371 	struct acpi_processor *_pr;
1372 	struct cpuidle_device *dev;
1373 
1374 	if (disabled_by_idle_boot_param())
1375 		return 0;
1376 
1377 	if (!pr->flags.power_setup_done)
1378 		return -ENODEV;
1379 
1380 	/*
1381 	 * FIXME:  Design the ACPI notification to make it once per
1382 	 * system instead of once per-cpu.  This condition is a hack
1383 	 * to make the code that updates C-States be called once.
1384 	 */
1385 
1386 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1387 
1388 		/* Protect against cpu-hotplug */
1389 		get_online_cpus();
1390 		cpuidle_pause_and_lock();
1391 
1392 		/* Disable all cpuidle devices */
1393 		for_each_online_cpu(cpu) {
1394 			_pr = per_cpu(processors, cpu);
1395 			if (!_pr || !_pr->flags.power_setup_done)
1396 				continue;
1397 			dev = per_cpu(acpi_cpuidle_device, cpu);
1398 			cpuidle_disable_device(dev);
1399 		}
1400 
1401 		/* Populate Updated C-state information */
1402 		acpi_processor_get_power_info(pr);
1403 		acpi_processor_setup_cpuidle_states(pr);
1404 
1405 		/* Enable all cpuidle devices */
1406 		for_each_online_cpu(cpu) {
1407 			_pr = per_cpu(processors, cpu);
1408 			if (!_pr || !_pr->flags.power_setup_done)
1409 				continue;
1410 			acpi_processor_get_power_info(_pr);
1411 			if (_pr->flags.power) {
1412 				dev = per_cpu(acpi_cpuidle_device, cpu);
1413 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1414 				cpuidle_enable_device(dev);
1415 			}
1416 		}
1417 		cpuidle_resume_and_unlock();
1418 		put_online_cpus();
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 static int acpi_processor_registered;
1425 
1426 int acpi_processor_power_init(struct acpi_processor *pr)
1427 {
1428 	int retval;
1429 	struct cpuidle_device *dev;
1430 
1431 	if (disabled_by_idle_boot_param())
1432 		return 0;
1433 
1434 	acpi_processor_cstate_first_run_checks();
1435 
1436 	if (!acpi_processor_get_power_info(pr))
1437 		pr->flags.power_setup_done = 1;
1438 
1439 	/*
1440 	 * Install the idle handler if processor power management is supported.
1441 	 * Note that we use previously set idle handler will be used on
1442 	 * platforms that only support C1.
1443 	 */
1444 	if (pr->flags.power) {
1445 		/* Register acpi_idle_driver if not already registered */
1446 		if (!acpi_processor_registered) {
1447 			acpi_processor_setup_cpuidle_states(pr);
1448 			retval = cpuidle_register_driver(&acpi_idle_driver);
1449 			if (retval)
1450 				return retval;
1451 			pr_debug("%s registered with cpuidle\n",
1452 				 acpi_idle_driver.name);
1453 		}
1454 
1455 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1456 		if (!dev)
1457 			return -ENOMEM;
1458 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1459 
1460 		acpi_processor_setup_cpuidle_dev(pr, dev);
1461 
1462 		/* Register per-cpu cpuidle_device. Cpuidle driver
1463 		 * must already be registered before registering device
1464 		 */
1465 		retval = cpuidle_register_device(dev);
1466 		if (retval) {
1467 			if (acpi_processor_registered == 0)
1468 				cpuidle_unregister_driver(&acpi_idle_driver);
1469 			return retval;
1470 		}
1471 		acpi_processor_registered++;
1472 	}
1473 	return 0;
1474 }
1475 
1476 int acpi_processor_power_exit(struct acpi_processor *pr)
1477 {
1478 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1479 
1480 	if (disabled_by_idle_boot_param())
1481 		return 0;
1482 
1483 	if (pr->flags.power) {
1484 		cpuidle_unregister_device(dev);
1485 		acpi_processor_registered--;
1486 		if (acpi_processor_registered == 0)
1487 			cpuidle_unregister_driver(&acpi_idle_driver);
1488 	}
1489 
1490 	pr->flags.power_setup_done = 0;
1491 	return 0;
1492 }
1493