xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 17408e59)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/sort.h>
20 #include <linux/tick.h>
21 #include <linux/cpuidle.h>
22 #include <linux/cpu.h>
23 #include <linux/minmax.h>
24 #include <acpi/processor.h>
25 
26 /*
27  * Include the apic definitions for x86 to have the APIC timer related defines
28  * available also for UP (on SMP it gets magically included via linux/smp.h).
29  * asm/acpi.h is not an option, as it would require more include magic. Also
30  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
31  */
32 #ifdef CONFIG_X86
33 #include <asm/apic.h>
34 #include <asm/cpu.h>
35 #endif
36 
37 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
38 
39 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
40 module_param(max_cstate, uint, 0000);
41 static unsigned int nocst __read_mostly;
42 module_param(nocst, uint, 0000);
43 static int bm_check_disable __read_mostly;
44 module_param(bm_check_disable, uint, 0000);
45 
46 static unsigned int latency_factor __read_mostly = 2;
47 module_param(latency_factor, uint, 0644);
48 
49 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
50 
51 struct cpuidle_driver acpi_idle_driver = {
52 	.name =		"acpi_idle",
53 	.owner =	THIS_MODULE,
54 };
55 
56 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
57 static
58 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
59 
60 static int disabled_by_idle_boot_param(void)
61 {
62 	return boot_option_idle_override == IDLE_POLL ||
63 		boot_option_idle_override == IDLE_HALT;
64 }
65 
66 /*
67  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
68  * For now disable this. Probably a bug somewhere else.
69  *
70  * To skip this limit, boot/load with a large max_cstate limit.
71  */
72 static int set_max_cstate(const struct dmi_system_id *id)
73 {
74 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
75 		return 0;
76 
77 	pr_notice("%s detected - limiting to C%ld max_cstate."
78 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
79 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
80 
81 	max_cstate = (long)id->driver_data;
82 
83 	return 0;
84 }
85 
86 static const struct dmi_system_id processor_power_dmi_table[] = {
87 	{ set_max_cstate, "Clevo 5600D", {
88 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
89 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
90 	 (void *)2},
91 	{ set_max_cstate, "Pavilion zv5000", {
92 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
93 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
94 	 (void *)1},
95 	{ set_max_cstate, "Asus L8400B", {
96 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
97 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
98 	 (void *)1},
99 	/* T40 can not handle C3 idle state */
100 	{ set_max_cstate, "IBM ThinkPad T40", {
101 	  DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
102 	  DMI_MATCH(DMI_PRODUCT_NAME, "23737CU")},
103 	 (void *)2},
104 	{},
105 };
106 
107 
108 /*
109  * Callers should disable interrupts before the call and enable
110  * interrupts after return.
111  */
112 static void __cpuidle acpi_safe_halt(void)
113 {
114 	if (!tif_need_resched()) {
115 		safe_halt();
116 		local_irq_disable();
117 	}
118 }
119 
120 #ifdef ARCH_APICTIMER_STOPS_ON_C3
121 
122 /*
123  * Some BIOS implementations switch to C3 in the published C2 state.
124  * This seems to be a common problem on AMD boxen, but other vendors
125  * are affected too. We pick the most conservative approach: we assume
126  * that the local APIC stops in both C2 and C3.
127  */
128 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
129 				   struct acpi_processor_cx *cx)
130 {
131 	struct acpi_processor_power *pwr = &pr->power;
132 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
133 
134 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
135 		return;
136 
137 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
138 		type = ACPI_STATE_C1;
139 
140 	/*
141 	 * Check, if one of the previous states already marked the lapic
142 	 * unstable
143 	 */
144 	if (pwr->timer_broadcast_on_state < state)
145 		return;
146 
147 	if (cx->type >= type)
148 		pr->power.timer_broadcast_on_state = state;
149 }
150 
151 static void __lapic_timer_propagate_broadcast(void *arg)
152 {
153 	struct acpi_processor *pr = (struct acpi_processor *) arg;
154 
155 	if (pr->power.timer_broadcast_on_state < INT_MAX)
156 		tick_broadcast_enable();
157 	else
158 		tick_broadcast_disable();
159 }
160 
161 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
162 {
163 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
164 				 (void *)pr, 1);
165 }
166 
167 /* Power(C) State timer broadcast control */
168 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
169 					struct acpi_processor_cx *cx)
170 {
171 	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
172 }
173 
174 #else
175 
176 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
177 				   struct acpi_processor_cx *cstate) { }
178 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
179 
180 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
181 					struct acpi_processor_cx *cx)
182 {
183 	return false;
184 }
185 
186 #endif
187 
188 #if defined(CONFIG_X86)
189 static void tsc_check_state(int state)
190 {
191 	switch (boot_cpu_data.x86_vendor) {
192 	case X86_VENDOR_HYGON:
193 	case X86_VENDOR_AMD:
194 	case X86_VENDOR_INTEL:
195 	case X86_VENDOR_CENTAUR:
196 	case X86_VENDOR_ZHAOXIN:
197 		/*
198 		 * AMD Fam10h TSC will tick in all
199 		 * C/P/S0/S1 states when this bit is set.
200 		 */
201 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
202 			return;
203 		fallthrough;
204 	default:
205 		/* TSC could halt in idle, so notify users */
206 		if (state > ACPI_STATE_C1)
207 			mark_tsc_unstable("TSC halts in idle");
208 	}
209 }
210 #else
211 static void tsc_check_state(int state) { return; }
212 #endif
213 
214 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
215 {
216 
217 	if (!pr->pblk)
218 		return -ENODEV;
219 
220 	/* if info is obtained from pblk/fadt, type equals state */
221 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
222 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
223 
224 #ifndef CONFIG_HOTPLUG_CPU
225 	/*
226 	 * Check for P_LVL2_UP flag before entering C2 and above on
227 	 * an SMP system.
228 	 */
229 	if ((num_online_cpus() > 1) &&
230 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
231 		return -ENODEV;
232 #endif
233 
234 	/* determine C2 and C3 address from pblk */
235 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
236 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
237 
238 	/* determine latencies from FADT */
239 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
240 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
241 
242 	/*
243 	 * FADT specified C2 latency must be less than or equal to
244 	 * 100 microseconds.
245 	 */
246 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
247 		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
248 				  acpi_gbl_FADT.c2_latency);
249 		/* invalidate C2 */
250 		pr->power.states[ACPI_STATE_C2].address = 0;
251 	}
252 
253 	/*
254 	 * FADT supplied C3 latency must be less than or equal to
255 	 * 1000 microseconds.
256 	 */
257 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
258 		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
259 				  acpi_gbl_FADT.c3_latency);
260 		/* invalidate C3 */
261 		pr->power.states[ACPI_STATE_C3].address = 0;
262 	}
263 
264 	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
265 			  pr->power.states[ACPI_STATE_C2].address,
266 			  pr->power.states[ACPI_STATE_C3].address);
267 
268 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
269 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
270 			 pr->power.states[ACPI_STATE_C2].address);
271 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
272 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
273 			 pr->power.states[ACPI_STATE_C3].address);
274 
275 	return 0;
276 }
277 
278 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
279 {
280 	if (!pr->power.states[ACPI_STATE_C1].valid) {
281 		/* set the first C-State to C1 */
282 		/* all processors need to support C1 */
283 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
284 		pr->power.states[ACPI_STATE_C1].valid = 1;
285 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
286 
287 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
288 			 ACPI_CX_DESC_LEN, "ACPI HLT");
289 	}
290 	/* the C0 state only exists as a filler in our array */
291 	pr->power.states[ACPI_STATE_C0].valid = 1;
292 	return 0;
293 }
294 
295 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
296 {
297 	int ret;
298 
299 	if (nocst)
300 		return -ENODEV;
301 
302 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
303 	if (ret)
304 		return ret;
305 
306 	if (!pr->power.count)
307 		return -EFAULT;
308 
309 	pr->flags.has_cst = 1;
310 	return 0;
311 }
312 
313 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
314 					   struct acpi_processor_cx *cx)
315 {
316 	static int bm_check_flag = -1;
317 	static int bm_control_flag = -1;
318 
319 
320 	if (!cx->address)
321 		return;
322 
323 	/*
324 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
325 	 * DMA transfers are used by any ISA device to avoid livelock.
326 	 * Note that we could disable Type-F DMA (as recommended by
327 	 * the erratum), but this is known to disrupt certain ISA
328 	 * devices thus we take the conservative approach.
329 	 */
330 	else if (errata.piix4.fdma) {
331 		acpi_handle_debug(pr->handle,
332 				  "C3 not supported on PIIX4 with Type-F DMA\n");
333 		return;
334 	}
335 
336 	/* All the logic here assumes flags.bm_check is same across all CPUs */
337 	if (bm_check_flag == -1) {
338 		/* Determine whether bm_check is needed based on CPU  */
339 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
340 		bm_check_flag = pr->flags.bm_check;
341 		bm_control_flag = pr->flags.bm_control;
342 	} else {
343 		pr->flags.bm_check = bm_check_flag;
344 		pr->flags.bm_control = bm_control_flag;
345 	}
346 
347 	if (pr->flags.bm_check) {
348 		if (!pr->flags.bm_control) {
349 			if (pr->flags.has_cst != 1) {
350 				/* bus mastering control is necessary */
351 				acpi_handle_debug(pr->handle,
352 						  "C3 support requires BM control\n");
353 				return;
354 			} else {
355 				/* Here we enter C3 without bus mastering */
356 				acpi_handle_debug(pr->handle,
357 						  "C3 support without BM control\n");
358 			}
359 		}
360 	} else {
361 		/*
362 		 * WBINVD should be set in fadt, for C3 state to be
363 		 * supported on when bm_check is not required.
364 		 */
365 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
366 			acpi_handle_debug(pr->handle,
367 					  "Cache invalidation should work properly"
368 					  " for C3 to be enabled on SMP systems\n");
369 			return;
370 		}
371 	}
372 
373 	/*
374 	 * Otherwise we've met all of our C3 requirements.
375 	 * Normalize the C3 latency to expidite policy.  Enable
376 	 * checking of bus mastering status (bm_check) so we can
377 	 * use this in our C3 policy
378 	 */
379 	cx->valid = 1;
380 
381 	/*
382 	 * On older chipsets, BM_RLD needs to be set
383 	 * in order for Bus Master activity to wake the
384 	 * system from C3.  Newer chipsets handle DMA
385 	 * during C3 automatically and BM_RLD is a NOP.
386 	 * In either case, the proper way to
387 	 * handle BM_RLD is to set it and leave it set.
388 	 */
389 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
390 
391 	return;
392 }
393 
394 static int acpi_cst_latency_cmp(const void *a, const void *b)
395 {
396 	const struct acpi_processor_cx *x = a, *y = b;
397 
398 	if (!(x->valid && y->valid))
399 		return 0;
400 	if (x->latency > y->latency)
401 		return 1;
402 	if (x->latency < y->latency)
403 		return -1;
404 	return 0;
405 }
406 static void acpi_cst_latency_swap(void *a, void *b, int n)
407 {
408 	struct acpi_processor_cx *x = a, *y = b;
409 
410 	if (!(x->valid && y->valid))
411 		return;
412 	swap(x->latency, y->latency);
413 }
414 
415 static int acpi_processor_power_verify(struct acpi_processor *pr)
416 {
417 	unsigned int i;
418 	unsigned int working = 0;
419 	unsigned int last_latency = 0;
420 	unsigned int last_type = 0;
421 	bool buggy_latency = false;
422 
423 	pr->power.timer_broadcast_on_state = INT_MAX;
424 
425 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
426 		struct acpi_processor_cx *cx = &pr->power.states[i];
427 
428 		switch (cx->type) {
429 		case ACPI_STATE_C1:
430 			cx->valid = 1;
431 			break;
432 
433 		case ACPI_STATE_C2:
434 			if (!cx->address)
435 				break;
436 			cx->valid = 1;
437 			break;
438 
439 		case ACPI_STATE_C3:
440 			acpi_processor_power_verify_c3(pr, cx);
441 			break;
442 		}
443 		if (!cx->valid)
444 			continue;
445 		if (cx->type >= last_type && cx->latency < last_latency)
446 			buggy_latency = true;
447 		last_latency = cx->latency;
448 		last_type = cx->type;
449 
450 		lapic_timer_check_state(i, pr, cx);
451 		tsc_check_state(cx->type);
452 		working++;
453 	}
454 
455 	if (buggy_latency) {
456 		pr_notice("FW issue: working around C-state latencies out of order\n");
457 		sort(&pr->power.states[1], max_cstate,
458 		     sizeof(struct acpi_processor_cx),
459 		     acpi_cst_latency_cmp,
460 		     acpi_cst_latency_swap);
461 	}
462 
463 	lapic_timer_propagate_broadcast(pr);
464 
465 	return (working);
466 }
467 
468 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
469 {
470 	unsigned int i;
471 	int result;
472 
473 
474 	/* NOTE: the idle thread may not be running while calling
475 	 * this function */
476 
477 	/* Zero initialize all the C-states info. */
478 	memset(pr->power.states, 0, sizeof(pr->power.states));
479 
480 	result = acpi_processor_get_power_info_cst(pr);
481 	if (result == -ENODEV)
482 		result = acpi_processor_get_power_info_fadt(pr);
483 
484 	if (result)
485 		return result;
486 
487 	acpi_processor_get_power_info_default(pr);
488 
489 	pr->power.count = acpi_processor_power_verify(pr);
490 
491 	/*
492 	 * if one state of type C2 or C3 is available, mark this
493 	 * CPU as being "idle manageable"
494 	 */
495 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
496 		if (pr->power.states[i].valid) {
497 			pr->power.count = i;
498 			pr->flags.power = 1;
499 		}
500 	}
501 
502 	return 0;
503 }
504 
505 /**
506  * acpi_idle_bm_check - checks if bus master activity was detected
507  */
508 static int acpi_idle_bm_check(void)
509 {
510 	u32 bm_status = 0;
511 
512 	if (bm_check_disable)
513 		return 0;
514 
515 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
516 	if (bm_status)
517 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
518 	/*
519 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
520 	 * the true state of bus mastering activity; forcing us to
521 	 * manually check the BMIDEA bit of each IDE channel.
522 	 */
523 	else if (errata.piix4.bmisx) {
524 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
525 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
526 			bm_status = 1;
527 	}
528 	return bm_status;
529 }
530 
531 static void wait_for_freeze(void)
532 {
533 #ifdef	CONFIG_X86
534 	/* No delay is needed if we are in guest */
535 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
536 		return;
537 #endif
538 	/* Dummy wait op - must do something useless after P_LVL2 read
539 	   because chipsets cannot guarantee that STPCLK# signal
540 	   gets asserted in time to freeze execution properly. */
541 	inl(acpi_gbl_FADT.xpm_timer_block.address);
542 }
543 
544 /**
545  * acpi_idle_do_entry - enter idle state using the appropriate method
546  * @cx: cstate data
547  *
548  * Caller disables interrupt before call and enables interrupt after return.
549  */
550 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
551 {
552 	if (cx->entry_method == ACPI_CSTATE_FFH) {
553 		/* Call into architectural FFH based C-state */
554 		acpi_processor_ffh_cstate_enter(cx);
555 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
556 		acpi_safe_halt();
557 	} else {
558 		/* IO port based C-state */
559 		inb(cx->address);
560 		wait_for_freeze();
561 	}
562 }
563 
564 /**
565  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
566  * @dev: the target CPU
567  * @index: the index of suggested state
568  */
569 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
570 {
571 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
572 
573 	ACPI_FLUSH_CPU_CACHE();
574 
575 	while (1) {
576 
577 		if (cx->entry_method == ACPI_CSTATE_HALT)
578 			safe_halt();
579 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
580 			inb(cx->address);
581 			wait_for_freeze();
582 		} else
583 			return -ENODEV;
584 
585 #if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
586 		cond_wakeup_cpu0();
587 #endif
588 	}
589 
590 	/* Never reached */
591 	return 0;
592 }
593 
594 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
595 {
596 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
597 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
598 }
599 
600 static int c3_cpu_count;
601 static DEFINE_RAW_SPINLOCK(c3_lock);
602 
603 /**
604  * acpi_idle_enter_bm - enters C3 with proper BM handling
605  * @drv: cpuidle driver
606  * @pr: Target processor
607  * @cx: Target state context
608  * @index: index of target state
609  */
610 static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
611 			       struct acpi_processor *pr,
612 			       struct acpi_processor_cx *cx,
613 			       int index)
614 {
615 	static struct acpi_processor_cx safe_cx = {
616 		.entry_method = ACPI_CSTATE_HALT,
617 	};
618 
619 	/*
620 	 * disable bus master
621 	 * bm_check implies we need ARB_DIS
622 	 * bm_control implies whether we can do ARB_DIS
623 	 *
624 	 * That leaves a case where bm_check is set and bm_control is not set.
625 	 * In that case we cannot do much, we enter C3 without doing anything.
626 	 */
627 	bool dis_bm = pr->flags.bm_control;
628 
629 	/* If we can skip BM, demote to a safe state. */
630 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
631 		dis_bm = false;
632 		index = drv->safe_state_index;
633 		if (index >= 0) {
634 			cx = this_cpu_read(acpi_cstate[index]);
635 		} else {
636 			cx = &safe_cx;
637 			index = -EBUSY;
638 		}
639 	}
640 
641 	if (dis_bm) {
642 		raw_spin_lock(&c3_lock);
643 		c3_cpu_count++;
644 		/* Disable bus master arbitration when all CPUs are in C3 */
645 		if (c3_cpu_count == num_online_cpus())
646 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
647 		raw_spin_unlock(&c3_lock);
648 	}
649 
650 	rcu_idle_enter();
651 
652 	acpi_idle_do_entry(cx);
653 
654 	rcu_idle_exit();
655 
656 	/* Re-enable bus master arbitration */
657 	if (dis_bm) {
658 		raw_spin_lock(&c3_lock);
659 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
660 		c3_cpu_count--;
661 		raw_spin_unlock(&c3_lock);
662 	}
663 
664 	return index;
665 }
666 
667 static int acpi_idle_enter(struct cpuidle_device *dev,
668 			   struct cpuidle_driver *drv, int index)
669 {
670 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
671 	struct acpi_processor *pr;
672 
673 	pr = __this_cpu_read(processors);
674 	if (unlikely(!pr))
675 		return -EINVAL;
676 
677 	if (cx->type != ACPI_STATE_C1) {
678 		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
679 			return acpi_idle_enter_bm(drv, pr, cx, index);
680 
681 		/* C2 to C1 demotion. */
682 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
683 			index = ACPI_IDLE_STATE_START;
684 			cx = per_cpu(acpi_cstate[index], dev->cpu);
685 		}
686 	}
687 
688 	if (cx->type == ACPI_STATE_C3)
689 		ACPI_FLUSH_CPU_CACHE();
690 
691 	acpi_idle_do_entry(cx);
692 
693 	return index;
694 }
695 
696 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
697 				  struct cpuidle_driver *drv, int index)
698 {
699 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
700 
701 	if (cx->type == ACPI_STATE_C3) {
702 		struct acpi_processor *pr = __this_cpu_read(processors);
703 
704 		if (unlikely(!pr))
705 			return 0;
706 
707 		if (pr->flags.bm_check) {
708 			u8 bm_sts_skip = cx->bm_sts_skip;
709 
710 			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
711 			cx->bm_sts_skip = 1;
712 			acpi_idle_enter_bm(drv, pr, cx, index);
713 			cx->bm_sts_skip = bm_sts_skip;
714 
715 			return 0;
716 		} else {
717 			ACPI_FLUSH_CPU_CACHE();
718 		}
719 	}
720 	acpi_idle_do_entry(cx);
721 
722 	return 0;
723 }
724 
725 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
726 					   struct cpuidle_device *dev)
727 {
728 	int i, count = ACPI_IDLE_STATE_START;
729 	struct acpi_processor_cx *cx;
730 	struct cpuidle_state *state;
731 
732 	if (max_cstate == 0)
733 		max_cstate = 1;
734 
735 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
736 		state = &acpi_idle_driver.states[count];
737 		cx = &pr->power.states[i];
738 
739 		if (!cx->valid)
740 			continue;
741 
742 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
743 
744 		if (lapic_timer_needs_broadcast(pr, cx))
745 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
746 
747 		if (cx->type == ACPI_STATE_C3) {
748 			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
749 			if (pr->flags.bm_check)
750 				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
751 		}
752 
753 		count++;
754 		if (count == CPUIDLE_STATE_MAX)
755 			break;
756 	}
757 
758 	if (!count)
759 		return -EINVAL;
760 
761 	return 0;
762 }
763 
764 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
765 {
766 	int i, count;
767 	struct acpi_processor_cx *cx;
768 	struct cpuidle_state *state;
769 	struct cpuidle_driver *drv = &acpi_idle_driver;
770 
771 	if (max_cstate == 0)
772 		max_cstate = 1;
773 
774 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
775 		cpuidle_poll_state_init(drv);
776 		count = 1;
777 	} else {
778 		count = 0;
779 	}
780 
781 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
782 		cx = &pr->power.states[i];
783 
784 		if (!cx->valid)
785 			continue;
786 
787 		state = &drv->states[count];
788 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
789 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
790 		state->exit_latency = cx->latency;
791 		state->target_residency = cx->latency * latency_factor;
792 		state->enter = acpi_idle_enter;
793 
794 		state->flags = 0;
795 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
796 		    cx->type == ACPI_STATE_C3) {
797 			state->enter_dead = acpi_idle_play_dead;
798 			drv->safe_state_index = count;
799 		}
800 		/*
801 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
802 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
803 		 * particularly interesting from the suspend-to-idle angle, so
804 		 * avoid C1 and the situations in which we may need to fall back
805 		 * to it altogether.
806 		 */
807 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
808 			state->enter_s2idle = acpi_idle_enter_s2idle;
809 
810 		count++;
811 		if (count == CPUIDLE_STATE_MAX)
812 			break;
813 	}
814 
815 	drv->state_count = count;
816 
817 	if (!count)
818 		return -EINVAL;
819 
820 	return 0;
821 }
822 
823 static inline void acpi_processor_cstate_first_run_checks(void)
824 {
825 	static int first_run;
826 
827 	if (first_run)
828 		return;
829 	dmi_check_system(processor_power_dmi_table);
830 	max_cstate = acpi_processor_cstate_check(max_cstate);
831 	if (max_cstate < ACPI_C_STATES_MAX)
832 		pr_notice("processor limited to max C-state %d\n", max_cstate);
833 
834 	first_run++;
835 
836 	if (nocst)
837 		return;
838 
839 	acpi_processor_claim_cst_control();
840 }
841 #else
842 
843 static inline int disabled_by_idle_boot_param(void) { return 0; }
844 static inline void acpi_processor_cstate_first_run_checks(void) { }
845 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
846 {
847 	return -ENODEV;
848 }
849 
850 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
851 					   struct cpuidle_device *dev)
852 {
853 	return -EINVAL;
854 }
855 
856 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
857 {
858 	return -EINVAL;
859 }
860 
861 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
862 
863 struct acpi_lpi_states_array {
864 	unsigned int size;
865 	unsigned int composite_states_size;
866 	struct acpi_lpi_state *entries;
867 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
868 };
869 
870 static int obj_get_integer(union acpi_object *obj, u32 *value)
871 {
872 	if (obj->type != ACPI_TYPE_INTEGER)
873 		return -EINVAL;
874 
875 	*value = obj->integer.value;
876 	return 0;
877 }
878 
879 static int acpi_processor_evaluate_lpi(acpi_handle handle,
880 				       struct acpi_lpi_states_array *info)
881 {
882 	acpi_status status;
883 	int ret = 0;
884 	int pkg_count, state_idx = 1, loop;
885 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
886 	union acpi_object *lpi_data;
887 	struct acpi_lpi_state *lpi_state;
888 
889 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
890 	if (ACPI_FAILURE(status)) {
891 		acpi_handle_debug(handle, "No _LPI, giving up\n");
892 		return -ENODEV;
893 	}
894 
895 	lpi_data = buffer.pointer;
896 
897 	/* There must be at least 4 elements = 3 elements + 1 package */
898 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
899 	    lpi_data->package.count < 4) {
900 		pr_debug("not enough elements in _LPI\n");
901 		ret = -ENODATA;
902 		goto end;
903 	}
904 
905 	pkg_count = lpi_data->package.elements[2].integer.value;
906 
907 	/* Validate number of power states. */
908 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
909 		pr_debug("count given by _LPI is not valid\n");
910 		ret = -ENODATA;
911 		goto end;
912 	}
913 
914 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
915 	if (!lpi_state) {
916 		ret = -ENOMEM;
917 		goto end;
918 	}
919 
920 	info->size = pkg_count;
921 	info->entries = lpi_state;
922 
923 	/* LPI States start at index 3 */
924 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
925 		union acpi_object *element, *pkg_elem, *obj;
926 
927 		element = &lpi_data->package.elements[loop];
928 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
929 			continue;
930 
931 		pkg_elem = element->package.elements;
932 
933 		obj = pkg_elem + 6;
934 		if (obj->type == ACPI_TYPE_BUFFER) {
935 			struct acpi_power_register *reg;
936 
937 			reg = (struct acpi_power_register *)obj->buffer.pointer;
938 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
939 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
940 				continue;
941 
942 			lpi_state->address = reg->address;
943 			lpi_state->entry_method =
944 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
945 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
946 		} else if (obj->type == ACPI_TYPE_INTEGER) {
947 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
948 			lpi_state->address = obj->integer.value;
949 		} else {
950 			continue;
951 		}
952 
953 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
954 
955 		obj = pkg_elem + 9;
956 		if (obj->type == ACPI_TYPE_STRING)
957 			strlcpy(lpi_state->desc, obj->string.pointer,
958 				ACPI_CX_DESC_LEN);
959 
960 		lpi_state->index = state_idx;
961 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
962 			pr_debug("No min. residency found, assuming 10 us\n");
963 			lpi_state->min_residency = 10;
964 		}
965 
966 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
967 			pr_debug("No wakeup residency found, assuming 10 us\n");
968 			lpi_state->wake_latency = 10;
969 		}
970 
971 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
972 			lpi_state->flags = 0;
973 
974 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
975 			lpi_state->arch_flags = 0;
976 
977 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
978 			lpi_state->res_cnt_freq = 1;
979 
980 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
981 			lpi_state->enable_parent_state = 0;
982 	}
983 
984 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
985 end:
986 	kfree(buffer.pointer);
987 	return ret;
988 }
989 
990 /*
991  * flat_state_cnt - the number of composite LPI states after the process of flattening
992  */
993 static int flat_state_cnt;
994 
995 /**
996  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
997  *
998  * @local: local LPI state
999  * @parent: parent LPI state
1000  * @result: composite LPI state
1001  */
1002 static bool combine_lpi_states(struct acpi_lpi_state *local,
1003 			       struct acpi_lpi_state *parent,
1004 			       struct acpi_lpi_state *result)
1005 {
1006 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1007 		if (!parent->address) /* 0 means autopromotable */
1008 			return false;
1009 		result->address = local->address + parent->address;
1010 	} else {
1011 		result->address = parent->address;
1012 	}
1013 
1014 	result->min_residency = max(local->min_residency, parent->min_residency);
1015 	result->wake_latency = local->wake_latency + parent->wake_latency;
1016 	result->enable_parent_state = parent->enable_parent_state;
1017 	result->entry_method = local->entry_method;
1018 
1019 	result->flags = parent->flags;
1020 	result->arch_flags = parent->arch_flags;
1021 	result->index = parent->index;
1022 
1023 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1024 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1025 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1026 	return true;
1027 }
1028 
1029 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1030 
1031 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1032 				  struct acpi_lpi_state *t)
1033 {
1034 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1035 }
1036 
1037 static int flatten_lpi_states(struct acpi_processor *pr,
1038 			      struct acpi_lpi_states_array *curr_level,
1039 			      struct acpi_lpi_states_array *prev_level)
1040 {
1041 	int i, j, state_count = curr_level->size;
1042 	struct acpi_lpi_state *p, *t = curr_level->entries;
1043 
1044 	curr_level->composite_states_size = 0;
1045 	for (j = 0; j < state_count; j++, t++) {
1046 		struct acpi_lpi_state *flpi;
1047 
1048 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1049 			continue;
1050 
1051 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1052 			pr_warn("Limiting number of LPI states to max (%d)\n",
1053 				ACPI_PROCESSOR_MAX_POWER);
1054 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1055 			break;
1056 		}
1057 
1058 		flpi = &pr->power.lpi_states[flat_state_cnt];
1059 
1060 		if (!prev_level) { /* leaf/processor node */
1061 			memcpy(flpi, t, sizeof(*t));
1062 			stash_composite_state(curr_level, flpi);
1063 			flat_state_cnt++;
1064 			continue;
1065 		}
1066 
1067 		for (i = 0; i < prev_level->composite_states_size; i++) {
1068 			p = prev_level->composite_states[i];
1069 			if (t->index <= p->enable_parent_state &&
1070 			    combine_lpi_states(p, t, flpi)) {
1071 				stash_composite_state(curr_level, flpi);
1072 				flat_state_cnt++;
1073 				flpi++;
1074 			}
1075 		}
1076 	}
1077 
1078 	kfree(curr_level->entries);
1079 	return 0;
1080 }
1081 
1082 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1083 {
1084 	return -EOPNOTSUPP;
1085 }
1086 
1087 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1088 {
1089 	int ret, i;
1090 	acpi_status status;
1091 	acpi_handle handle = pr->handle, pr_ahandle;
1092 	struct acpi_device *d = NULL;
1093 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1094 
1095 	/* make sure our architecture has support */
1096 	ret = acpi_processor_ffh_lpi_probe(pr->id);
1097 	if (ret == -EOPNOTSUPP)
1098 		return ret;
1099 
1100 	if (!osc_pc_lpi_support_confirmed)
1101 		return -EOPNOTSUPP;
1102 
1103 	if (!acpi_has_method(handle, "_LPI"))
1104 		return -EINVAL;
1105 
1106 	flat_state_cnt = 0;
1107 	prev = &info[0];
1108 	curr = &info[1];
1109 	handle = pr->handle;
1110 	ret = acpi_processor_evaluate_lpi(handle, prev);
1111 	if (ret)
1112 		return ret;
1113 	flatten_lpi_states(pr, prev, NULL);
1114 
1115 	status = acpi_get_parent(handle, &pr_ahandle);
1116 	while (ACPI_SUCCESS(status)) {
1117 		d = acpi_fetch_acpi_dev(pr_ahandle);
1118 		handle = pr_ahandle;
1119 
1120 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1121 			break;
1122 
1123 		/* can be optional ? */
1124 		if (!acpi_has_method(handle, "_LPI"))
1125 			break;
1126 
1127 		ret = acpi_processor_evaluate_lpi(handle, curr);
1128 		if (ret)
1129 			break;
1130 
1131 		/* flatten all the LPI states in this level of hierarchy */
1132 		flatten_lpi_states(pr, curr, prev);
1133 
1134 		tmp = prev, prev = curr, curr = tmp;
1135 
1136 		status = acpi_get_parent(handle, &pr_ahandle);
1137 	}
1138 
1139 	pr->power.count = flat_state_cnt;
1140 	/* reset the index after flattening */
1141 	for (i = 0; i < pr->power.count; i++)
1142 		pr->power.lpi_states[i].index = i;
1143 
1144 	/* Tell driver that _LPI is supported. */
1145 	pr->flags.has_lpi = 1;
1146 	pr->flags.power = 1;
1147 
1148 	return 0;
1149 }
1150 
1151 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1152 {
1153 	return -ENODEV;
1154 }
1155 
1156 /**
1157  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1158  * @dev: the target CPU
1159  * @drv: cpuidle driver containing cpuidle state info
1160  * @index: index of target state
1161  *
1162  * Return: 0 for success or negative value for error
1163  */
1164 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1165 			       struct cpuidle_driver *drv, int index)
1166 {
1167 	struct acpi_processor *pr;
1168 	struct acpi_lpi_state *lpi;
1169 
1170 	pr = __this_cpu_read(processors);
1171 
1172 	if (unlikely(!pr))
1173 		return -EINVAL;
1174 
1175 	lpi = &pr->power.lpi_states[index];
1176 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1177 		return acpi_processor_ffh_lpi_enter(lpi);
1178 
1179 	return -EINVAL;
1180 }
1181 
1182 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1183 {
1184 	int i;
1185 	struct acpi_lpi_state *lpi;
1186 	struct cpuidle_state *state;
1187 	struct cpuidle_driver *drv = &acpi_idle_driver;
1188 
1189 	if (!pr->flags.has_lpi)
1190 		return -EOPNOTSUPP;
1191 
1192 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1193 		lpi = &pr->power.lpi_states[i];
1194 
1195 		state = &drv->states[i];
1196 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1197 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1198 		state->exit_latency = lpi->wake_latency;
1199 		state->target_residency = lpi->min_residency;
1200 		if (lpi->arch_flags)
1201 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1202 		state->enter = acpi_idle_lpi_enter;
1203 		drv->safe_state_index = i;
1204 	}
1205 
1206 	drv->state_count = i;
1207 
1208 	return 0;
1209 }
1210 
1211 /**
1212  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1213  * global state data i.e. idle routines
1214  *
1215  * @pr: the ACPI processor
1216  */
1217 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1218 {
1219 	int i;
1220 	struct cpuidle_driver *drv = &acpi_idle_driver;
1221 
1222 	if (!pr->flags.power_setup_done || !pr->flags.power)
1223 		return -EINVAL;
1224 
1225 	drv->safe_state_index = -1;
1226 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1227 		drv->states[i].name[0] = '\0';
1228 		drv->states[i].desc[0] = '\0';
1229 	}
1230 
1231 	if (pr->flags.has_lpi)
1232 		return acpi_processor_setup_lpi_states(pr);
1233 
1234 	return acpi_processor_setup_cstates(pr);
1235 }
1236 
1237 /**
1238  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1239  * device i.e. per-cpu data
1240  *
1241  * @pr: the ACPI processor
1242  * @dev : the cpuidle device
1243  */
1244 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1245 					    struct cpuidle_device *dev)
1246 {
1247 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1248 		return -EINVAL;
1249 
1250 	dev->cpu = pr->id;
1251 	if (pr->flags.has_lpi)
1252 		return acpi_processor_ffh_lpi_probe(pr->id);
1253 
1254 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1255 }
1256 
1257 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1258 {
1259 	int ret;
1260 
1261 	ret = acpi_processor_get_lpi_info(pr);
1262 	if (ret)
1263 		ret = acpi_processor_get_cstate_info(pr);
1264 
1265 	return ret;
1266 }
1267 
1268 int acpi_processor_hotplug(struct acpi_processor *pr)
1269 {
1270 	int ret = 0;
1271 	struct cpuidle_device *dev;
1272 
1273 	if (disabled_by_idle_boot_param())
1274 		return 0;
1275 
1276 	if (!pr->flags.power_setup_done)
1277 		return -ENODEV;
1278 
1279 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1280 	cpuidle_pause_and_lock();
1281 	cpuidle_disable_device(dev);
1282 	ret = acpi_processor_get_power_info(pr);
1283 	if (!ret && pr->flags.power) {
1284 		acpi_processor_setup_cpuidle_dev(pr, dev);
1285 		ret = cpuidle_enable_device(dev);
1286 	}
1287 	cpuidle_resume_and_unlock();
1288 
1289 	return ret;
1290 }
1291 
1292 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1293 {
1294 	int cpu;
1295 	struct acpi_processor *_pr;
1296 	struct cpuidle_device *dev;
1297 
1298 	if (disabled_by_idle_boot_param())
1299 		return 0;
1300 
1301 	if (!pr->flags.power_setup_done)
1302 		return -ENODEV;
1303 
1304 	/*
1305 	 * FIXME:  Design the ACPI notification to make it once per
1306 	 * system instead of once per-cpu.  This condition is a hack
1307 	 * to make the code that updates C-States be called once.
1308 	 */
1309 
1310 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1311 
1312 		/* Protect against cpu-hotplug */
1313 		cpus_read_lock();
1314 		cpuidle_pause_and_lock();
1315 
1316 		/* Disable all cpuidle devices */
1317 		for_each_online_cpu(cpu) {
1318 			_pr = per_cpu(processors, cpu);
1319 			if (!_pr || !_pr->flags.power_setup_done)
1320 				continue;
1321 			dev = per_cpu(acpi_cpuidle_device, cpu);
1322 			cpuidle_disable_device(dev);
1323 		}
1324 
1325 		/* Populate Updated C-state information */
1326 		acpi_processor_get_power_info(pr);
1327 		acpi_processor_setup_cpuidle_states(pr);
1328 
1329 		/* Enable all cpuidle devices */
1330 		for_each_online_cpu(cpu) {
1331 			_pr = per_cpu(processors, cpu);
1332 			if (!_pr || !_pr->flags.power_setup_done)
1333 				continue;
1334 			acpi_processor_get_power_info(_pr);
1335 			if (_pr->flags.power) {
1336 				dev = per_cpu(acpi_cpuidle_device, cpu);
1337 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1338 				cpuidle_enable_device(dev);
1339 			}
1340 		}
1341 		cpuidle_resume_and_unlock();
1342 		cpus_read_unlock();
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 static int acpi_processor_registered;
1349 
1350 int acpi_processor_power_init(struct acpi_processor *pr)
1351 {
1352 	int retval;
1353 	struct cpuidle_device *dev;
1354 
1355 	if (disabled_by_idle_boot_param())
1356 		return 0;
1357 
1358 	acpi_processor_cstate_first_run_checks();
1359 
1360 	if (!acpi_processor_get_power_info(pr))
1361 		pr->flags.power_setup_done = 1;
1362 
1363 	/*
1364 	 * Install the idle handler if processor power management is supported.
1365 	 * Note that we use previously set idle handler will be used on
1366 	 * platforms that only support C1.
1367 	 */
1368 	if (pr->flags.power) {
1369 		/* Register acpi_idle_driver if not already registered */
1370 		if (!acpi_processor_registered) {
1371 			acpi_processor_setup_cpuidle_states(pr);
1372 			retval = cpuidle_register_driver(&acpi_idle_driver);
1373 			if (retval)
1374 				return retval;
1375 			pr_debug("%s registered with cpuidle\n",
1376 				 acpi_idle_driver.name);
1377 		}
1378 
1379 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1380 		if (!dev)
1381 			return -ENOMEM;
1382 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1383 
1384 		acpi_processor_setup_cpuidle_dev(pr, dev);
1385 
1386 		/* Register per-cpu cpuidle_device. Cpuidle driver
1387 		 * must already be registered before registering device
1388 		 */
1389 		retval = cpuidle_register_device(dev);
1390 		if (retval) {
1391 			if (acpi_processor_registered == 0)
1392 				cpuidle_unregister_driver(&acpi_idle_driver);
1393 			return retval;
1394 		}
1395 		acpi_processor_registered++;
1396 	}
1397 	return 0;
1398 }
1399 
1400 int acpi_processor_power_exit(struct acpi_processor *pr)
1401 {
1402 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1403 
1404 	if (disabled_by_idle_boot_param())
1405 		return 0;
1406 
1407 	if (pr->flags.power) {
1408 		cpuidle_unregister_device(dev);
1409 		acpi_processor_registered--;
1410 		if (acpi_processor_registered == 0)
1411 			cpuidle_unregister_driver(&acpi_idle_driver);
1412 	}
1413 
1414 	pr->flags.power_setup_done = 0;
1415 	return 0;
1416 }
1417