xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
23 
24 /*
25  * Include the apic definitions for x86 to have the APIC timer related defines
26  * available also for UP (on SMP it gets magically included via linux/smp.h).
27  * asm/acpi.h is not an option, as it would require more include magic. Also
28  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29  */
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
33 
34 #define ACPI_PROCESSOR_CLASS            "processor"
35 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
37 
38 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39 
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
46 
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49 
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51 
52 struct cpuidle_driver acpi_idle_driver = {
53 	.name =		"acpi_idle",
54 	.owner =	THIS_MODULE,
55 };
56 
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60 
61 static int disabled_by_idle_boot_param(void)
62 {
63 	return boot_option_idle_override == IDLE_POLL ||
64 		boot_option_idle_override == IDLE_HALT;
65 }
66 
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 		return 0;
77 
78 	pr_notice("%s detected - limiting to C%ld max_cstate."
79 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81 
82 	max_cstate = (long)id->driver_data;
83 
84 	return 0;
85 }
86 
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 	{ set_max_cstate, "Clevo 5600D", {
89 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 	 (void *)2},
92 	{ set_max_cstate, "Pavilion zv5000", {
93 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 	 (void *)1},
96 	{ set_max_cstate, "Asus L8400B", {
97 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 	 (void *)1},
100 	{},
101 };
102 
103 
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110 	if (!tif_need_resched()) {
111 		safe_halt();
112 		local_irq_disable();
113 	}
114 }
115 
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117 
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 				   struct acpi_processor_cx *cx)
126 {
127 	struct acpi_processor_power *pwr = &pr->power;
128 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129 
130 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 		return;
132 
133 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 		type = ACPI_STATE_C1;
135 
136 	/*
137 	 * Check, if one of the previous states already marked the lapic
138 	 * unstable
139 	 */
140 	if (pwr->timer_broadcast_on_state < state)
141 		return;
142 
143 	if (cx->type >= type)
144 		pr->power.timer_broadcast_on_state = state;
145 }
146 
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149 	struct acpi_processor *pr = (struct acpi_processor *) arg;
150 
151 	if (pr->power.timer_broadcast_on_state < INT_MAX)
152 		tick_broadcast_enable();
153 	else
154 		tick_broadcast_disable();
155 }
156 
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 				 (void *)pr, 1);
161 }
162 
163 /* Power(C) State timer broadcast control */
164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165 				       struct acpi_processor_cx *cx,
166 				       int broadcast)
167 {
168 	int state = cx - pr->power.states;
169 
170 	if (state >= pr->power.timer_broadcast_on_state) {
171 		if (broadcast)
172 			tick_broadcast_enter();
173 		else
174 			tick_broadcast_exit();
175 	}
176 }
177 
178 #else
179 
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181 				   struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184 				       struct acpi_processor_cx *cx,
185 				       int broadcast)
186 {
187 }
188 
189 #endif
190 
191 #if defined(CONFIG_X86)
192 static void tsc_check_state(int state)
193 {
194 	switch (boot_cpu_data.x86_vendor) {
195 	case X86_VENDOR_HYGON:
196 	case X86_VENDOR_AMD:
197 	case X86_VENDOR_INTEL:
198 	case X86_VENDOR_CENTAUR:
199 	case X86_VENDOR_ZHAOXIN:
200 		/*
201 		 * AMD Fam10h TSC will tick in all
202 		 * C/P/S0/S1 states when this bit is set.
203 		 */
204 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205 			return;
206 		fallthrough;
207 	default:
208 		/* TSC could halt in idle, so notify users */
209 		if (state > ACPI_STATE_C1)
210 			mark_tsc_unstable("TSC halts in idle");
211 	}
212 }
213 #else
214 static void tsc_check_state(int state) { return; }
215 #endif
216 
217 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
218 {
219 
220 	if (!pr->pblk)
221 		return -ENODEV;
222 
223 	/* if info is obtained from pblk/fadt, type equals state */
224 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
225 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
226 
227 #ifndef CONFIG_HOTPLUG_CPU
228 	/*
229 	 * Check for P_LVL2_UP flag before entering C2 and above on
230 	 * an SMP system.
231 	 */
232 	if ((num_online_cpus() > 1) &&
233 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
234 		return -ENODEV;
235 #endif
236 
237 	/* determine C2 and C3 address from pblk */
238 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
239 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
240 
241 	/* determine latencies from FADT */
242 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
243 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
244 
245 	/*
246 	 * FADT specified C2 latency must be less than or equal to
247 	 * 100 microseconds.
248 	 */
249 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
250 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
251 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
252 		/* invalidate C2 */
253 		pr->power.states[ACPI_STATE_C2].address = 0;
254 	}
255 
256 	/*
257 	 * FADT supplied C3 latency must be less than or equal to
258 	 * 1000 microseconds.
259 	 */
260 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
261 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
262 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
263 		/* invalidate C3 */
264 		pr->power.states[ACPI_STATE_C3].address = 0;
265 	}
266 
267 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
269 			  pr->power.states[ACPI_STATE_C2].address,
270 			  pr->power.states[ACPI_STATE_C3].address));
271 
272 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
273 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
274 			 pr->power.states[ACPI_STATE_C2].address);
275 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
276 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
277 			 pr->power.states[ACPI_STATE_C3].address);
278 
279 	return 0;
280 }
281 
282 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
283 {
284 	if (!pr->power.states[ACPI_STATE_C1].valid) {
285 		/* set the first C-State to C1 */
286 		/* all processors need to support C1 */
287 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
288 		pr->power.states[ACPI_STATE_C1].valid = 1;
289 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
290 
291 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
292 			 ACPI_CX_DESC_LEN, "ACPI HLT");
293 	}
294 	/* the C0 state only exists as a filler in our array */
295 	pr->power.states[ACPI_STATE_C0].valid = 1;
296 	return 0;
297 }
298 
299 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
300 {
301 	int ret;
302 
303 	if (nocst)
304 		return -ENODEV;
305 
306 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
307 	if (ret)
308 		return ret;
309 
310 	if (!pr->power.count)
311 		return -EFAULT;
312 
313 	pr->flags.has_cst = 1;
314 	return 0;
315 }
316 
317 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
318 					   struct acpi_processor_cx *cx)
319 {
320 	static int bm_check_flag = -1;
321 	static int bm_control_flag = -1;
322 
323 
324 	if (!cx->address)
325 		return;
326 
327 	/*
328 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
329 	 * DMA transfers are used by any ISA device to avoid livelock.
330 	 * Note that we could disable Type-F DMA (as recommended by
331 	 * the erratum), but this is known to disrupt certain ISA
332 	 * devices thus we take the conservative approach.
333 	 */
334 	else if (errata.piix4.fdma) {
335 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
336 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
337 		return;
338 	}
339 
340 	/* All the logic here assumes flags.bm_check is same across all CPUs */
341 	if (bm_check_flag == -1) {
342 		/* Determine whether bm_check is needed based on CPU  */
343 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
344 		bm_check_flag = pr->flags.bm_check;
345 		bm_control_flag = pr->flags.bm_control;
346 	} else {
347 		pr->flags.bm_check = bm_check_flag;
348 		pr->flags.bm_control = bm_control_flag;
349 	}
350 
351 	if (pr->flags.bm_check) {
352 		if (!pr->flags.bm_control) {
353 			if (pr->flags.has_cst != 1) {
354 				/* bus mastering control is necessary */
355 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
356 					"C3 support requires BM control\n"));
357 				return;
358 			} else {
359 				/* Here we enter C3 without bus mastering */
360 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
361 					"C3 support without BM control\n"));
362 			}
363 		}
364 	} else {
365 		/*
366 		 * WBINVD should be set in fadt, for C3 state to be
367 		 * supported on when bm_check is not required.
368 		 */
369 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
370 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
371 					  "Cache invalidation should work properly"
372 					  " for C3 to be enabled on SMP systems\n"));
373 			return;
374 		}
375 	}
376 
377 	/*
378 	 * Otherwise we've met all of our C3 requirements.
379 	 * Normalize the C3 latency to expidite policy.  Enable
380 	 * checking of bus mastering status (bm_check) so we can
381 	 * use this in our C3 policy
382 	 */
383 	cx->valid = 1;
384 
385 	/*
386 	 * On older chipsets, BM_RLD needs to be set
387 	 * in order for Bus Master activity to wake the
388 	 * system from C3.  Newer chipsets handle DMA
389 	 * during C3 automatically and BM_RLD is a NOP.
390 	 * In either case, the proper way to
391 	 * handle BM_RLD is to set it and leave it set.
392 	 */
393 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
394 
395 	return;
396 }
397 
398 static int acpi_processor_power_verify(struct acpi_processor *pr)
399 {
400 	unsigned int i;
401 	unsigned int working = 0;
402 
403 	pr->power.timer_broadcast_on_state = INT_MAX;
404 
405 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
406 		struct acpi_processor_cx *cx = &pr->power.states[i];
407 
408 		switch (cx->type) {
409 		case ACPI_STATE_C1:
410 			cx->valid = 1;
411 			break;
412 
413 		case ACPI_STATE_C2:
414 			if (!cx->address)
415 				break;
416 			cx->valid = 1;
417 			break;
418 
419 		case ACPI_STATE_C3:
420 			acpi_processor_power_verify_c3(pr, cx);
421 			break;
422 		}
423 		if (!cx->valid)
424 			continue;
425 
426 		lapic_timer_check_state(i, pr, cx);
427 		tsc_check_state(cx->type);
428 		working++;
429 	}
430 
431 	lapic_timer_propagate_broadcast(pr);
432 
433 	return (working);
434 }
435 
436 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
437 {
438 	unsigned int i;
439 	int result;
440 
441 
442 	/* NOTE: the idle thread may not be running while calling
443 	 * this function */
444 
445 	/* Zero initialize all the C-states info. */
446 	memset(pr->power.states, 0, sizeof(pr->power.states));
447 
448 	result = acpi_processor_get_power_info_cst(pr);
449 	if (result == -ENODEV)
450 		result = acpi_processor_get_power_info_fadt(pr);
451 
452 	if (result)
453 		return result;
454 
455 	acpi_processor_get_power_info_default(pr);
456 
457 	pr->power.count = acpi_processor_power_verify(pr);
458 
459 	/*
460 	 * if one state of type C2 or C3 is available, mark this
461 	 * CPU as being "idle manageable"
462 	 */
463 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
464 		if (pr->power.states[i].valid) {
465 			pr->power.count = i;
466 			pr->flags.power = 1;
467 		}
468 	}
469 
470 	return 0;
471 }
472 
473 /**
474  * acpi_idle_bm_check - checks if bus master activity was detected
475  */
476 static int acpi_idle_bm_check(void)
477 {
478 	u32 bm_status = 0;
479 
480 	if (bm_check_disable)
481 		return 0;
482 
483 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
484 	if (bm_status)
485 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
486 	/*
487 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
488 	 * the true state of bus mastering activity; forcing us to
489 	 * manually check the BMIDEA bit of each IDE channel.
490 	 */
491 	else if (errata.piix4.bmisx) {
492 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
493 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
494 			bm_status = 1;
495 	}
496 	return bm_status;
497 }
498 
499 static void wait_for_freeze(void)
500 {
501 #ifdef	CONFIG_X86
502 	/* No delay is needed if we are in guest */
503 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
504 		return;
505 #endif
506 	/* Dummy wait op - must do something useless after P_LVL2 read
507 	   because chipsets cannot guarantee that STPCLK# signal
508 	   gets asserted in time to freeze execution properly. */
509 	inl(acpi_gbl_FADT.xpm_timer_block.address);
510 }
511 
512 /**
513  * acpi_idle_do_entry - enter idle state using the appropriate method
514  * @cx: cstate data
515  *
516  * Caller disables interrupt before call and enables interrupt after return.
517  */
518 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
519 {
520 	if (cx->entry_method == ACPI_CSTATE_FFH) {
521 		/* Call into architectural FFH based C-state */
522 		acpi_processor_ffh_cstate_enter(cx);
523 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
524 		acpi_safe_halt();
525 	} else {
526 		/* IO port based C-state */
527 		inb(cx->address);
528 		wait_for_freeze();
529 	}
530 }
531 
532 /**
533  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
534  * @dev: the target CPU
535  * @index: the index of suggested state
536  */
537 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
538 {
539 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
540 
541 	ACPI_FLUSH_CPU_CACHE();
542 
543 	while (1) {
544 
545 		if (cx->entry_method == ACPI_CSTATE_HALT)
546 			safe_halt();
547 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
548 			inb(cx->address);
549 			wait_for_freeze();
550 		} else
551 			return -ENODEV;
552 	}
553 
554 	/* Never reached */
555 	return 0;
556 }
557 
558 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
559 {
560 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
561 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
562 }
563 
564 static int c3_cpu_count;
565 static DEFINE_RAW_SPINLOCK(c3_lock);
566 
567 /**
568  * acpi_idle_enter_bm - enters C3 with proper BM handling
569  * @pr: Target processor
570  * @cx: Target state context
571  * @timer_bc: Whether or not to change timer mode to broadcast
572  */
573 static void acpi_idle_enter_bm(struct acpi_processor *pr,
574 			       struct acpi_processor_cx *cx, bool timer_bc)
575 {
576 	acpi_unlazy_tlb(smp_processor_id());
577 
578 	/*
579 	 * Must be done before busmaster disable as we might need to
580 	 * access HPET !
581 	 */
582 	if (timer_bc)
583 		lapic_timer_state_broadcast(pr, cx, 1);
584 
585 	/*
586 	 * disable bus master
587 	 * bm_check implies we need ARB_DIS
588 	 * bm_control implies whether we can do ARB_DIS
589 	 *
590 	 * That leaves a case where bm_check is set and bm_control is
591 	 * not set. In that case we cannot do much, we enter C3
592 	 * without doing anything.
593 	 */
594 	if (pr->flags.bm_control) {
595 		raw_spin_lock(&c3_lock);
596 		c3_cpu_count++;
597 		/* Disable bus master arbitration when all CPUs are in C3 */
598 		if (c3_cpu_count == num_online_cpus())
599 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
600 		raw_spin_unlock(&c3_lock);
601 	}
602 
603 	acpi_idle_do_entry(cx);
604 
605 	/* Re-enable bus master arbitration */
606 	if (pr->flags.bm_control) {
607 		raw_spin_lock(&c3_lock);
608 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
609 		c3_cpu_count--;
610 		raw_spin_unlock(&c3_lock);
611 	}
612 
613 	if (timer_bc)
614 		lapic_timer_state_broadcast(pr, cx, 0);
615 }
616 
617 static int acpi_idle_enter(struct cpuidle_device *dev,
618 			   struct cpuidle_driver *drv, int index)
619 {
620 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
621 	struct acpi_processor *pr;
622 
623 	pr = __this_cpu_read(processors);
624 	if (unlikely(!pr))
625 		return -EINVAL;
626 
627 	if (cx->type != ACPI_STATE_C1) {
628 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
629 			index = ACPI_IDLE_STATE_START;
630 			cx = per_cpu(acpi_cstate[index], dev->cpu);
631 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
632 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
633 				acpi_idle_enter_bm(pr, cx, true);
634 				return index;
635 			} else if (drv->safe_state_index >= 0) {
636 				index = drv->safe_state_index;
637 				cx = per_cpu(acpi_cstate[index], dev->cpu);
638 			} else {
639 				acpi_safe_halt();
640 				return -EBUSY;
641 			}
642 		}
643 	}
644 
645 	lapic_timer_state_broadcast(pr, cx, 1);
646 
647 	if (cx->type == ACPI_STATE_C3)
648 		ACPI_FLUSH_CPU_CACHE();
649 
650 	acpi_idle_do_entry(cx);
651 
652 	lapic_timer_state_broadcast(pr, cx, 0);
653 
654 	return index;
655 }
656 
657 static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
658 				  struct cpuidle_driver *drv, int index)
659 {
660 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
661 
662 	if (cx->type == ACPI_STATE_C3) {
663 		struct acpi_processor *pr = __this_cpu_read(processors);
664 
665 		if (unlikely(!pr))
666 			return 0;
667 
668 		if (pr->flags.bm_check) {
669 			acpi_idle_enter_bm(pr, cx, false);
670 			return 0;
671 		} else {
672 			ACPI_FLUSH_CPU_CACHE();
673 		}
674 	}
675 	acpi_idle_do_entry(cx);
676 
677 	return 0;
678 }
679 
680 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
681 					   struct cpuidle_device *dev)
682 {
683 	int i, count = ACPI_IDLE_STATE_START;
684 	struct acpi_processor_cx *cx;
685 
686 	if (max_cstate == 0)
687 		max_cstate = 1;
688 
689 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
690 		cx = &pr->power.states[i];
691 
692 		if (!cx->valid)
693 			continue;
694 
695 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
696 
697 		count++;
698 		if (count == CPUIDLE_STATE_MAX)
699 			break;
700 	}
701 
702 	if (!count)
703 		return -EINVAL;
704 
705 	return 0;
706 }
707 
708 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
709 {
710 	int i, count;
711 	struct acpi_processor_cx *cx;
712 	struct cpuidle_state *state;
713 	struct cpuidle_driver *drv = &acpi_idle_driver;
714 
715 	if (max_cstate == 0)
716 		max_cstate = 1;
717 
718 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
719 		cpuidle_poll_state_init(drv);
720 		count = 1;
721 	} else {
722 		count = 0;
723 	}
724 
725 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
726 		cx = &pr->power.states[i];
727 
728 		if (!cx->valid)
729 			continue;
730 
731 		state = &drv->states[count];
732 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
733 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
734 		state->exit_latency = cx->latency;
735 		state->target_residency = cx->latency * latency_factor;
736 		state->enter = acpi_idle_enter;
737 
738 		state->flags = 0;
739 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
740 			state->enter_dead = acpi_idle_play_dead;
741 			drv->safe_state_index = count;
742 		}
743 		/*
744 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
745 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
746 		 * particularly interesting from the suspend-to-idle angle, so
747 		 * avoid C1 and the situations in which we may need to fall back
748 		 * to it altogether.
749 		 */
750 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
751 			state->enter_s2idle = acpi_idle_enter_s2idle;
752 
753 		count++;
754 		if (count == CPUIDLE_STATE_MAX)
755 			break;
756 	}
757 
758 	drv->state_count = count;
759 
760 	if (!count)
761 		return -EINVAL;
762 
763 	return 0;
764 }
765 
766 static inline void acpi_processor_cstate_first_run_checks(void)
767 {
768 	static int first_run;
769 
770 	if (first_run)
771 		return;
772 	dmi_check_system(processor_power_dmi_table);
773 	max_cstate = acpi_processor_cstate_check(max_cstate);
774 	if (max_cstate < ACPI_C_STATES_MAX)
775 		pr_notice("ACPI: processor limited to max C-state %d\n",
776 			  max_cstate);
777 	first_run++;
778 
779 	if (nocst)
780 		return;
781 
782 	acpi_processor_claim_cst_control();
783 }
784 #else
785 
786 static inline int disabled_by_idle_boot_param(void) { return 0; }
787 static inline void acpi_processor_cstate_first_run_checks(void) { }
788 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
789 {
790 	return -ENODEV;
791 }
792 
793 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
794 					   struct cpuidle_device *dev)
795 {
796 	return -EINVAL;
797 }
798 
799 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
800 {
801 	return -EINVAL;
802 }
803 
804 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
805 
806 struct acpi_lpi_states_array {
807 	unsigned int size;
808 	unsigned int composite_states_size;
809 	struct acpi_lpi_state *entries;
810 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
811 };
812 
813 static int obj_get_integer(union acpi_object *obj, u32 *value)
814 {
815 	if (obj->type != ACPI_TYPE_INTEGER)
816 		return -EINVAL;
817 
818 	*value = obj->integer.value;
819 	return 0;
820 }
821 
822 static int acpi_processor_evaluate_lpi(acpi_handle handle,
823 				       struct acpi_lpi_states_array *info)
824 {
825 	acpi_status status;
826 	int ret = 0;
827 	int pkg_count, state_idx = 1, loop;
828 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
829 	union acpi_object *lpi_data;
830 	struct acpi_lpi_state *lpi_state;
831 
832 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
833 	if (ACPI_FAILURE(status)) {
834 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
835 		return -ENODEV;
836 	}
837 
838 	lpi_data = buffer.pointer;
839 
840 	/* There must be at least 4 elements = 3 elements + 1 package */
841 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
842 	    lpi_data->package.count < 4) {
843 		pr_debug("not enough elements in _LPI\n");
844 		ret = -ENODATA;
845 		goto end;
846 	}
847 
848 	pkg_count = lpi_data->package.elements[2].integer.value;
849 
850 	/* Validate number of power states. */
851 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
852 		pr_debug("count given by _LPI is not valid\n");
853 		ret = -ENODATA;
854 		goto end;
855 	}
856 
857 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
858 	if (!lpi_state) {
859 		ret = -ENOMEM;
860 		goto end;
861 	}
862 
863 	info->size = pkg_count;
864 	info->entries = lpi_state;
865 
866 	/* LPI States start at index 3 */
867 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
868 		union acpi_object *element, *pkg_elem, *obj;
869 
870 		element = &lpi_data->package.elements[loop];
871 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
872 			continue;
873 
874 		pkg_elem = element->package.elements;
875 
876 		obj = pkg_elem + 6;
877 		if (obj->type == ACPI_TYPE_BUFFER) {
878 			struct acpi_power_register *reg;
879 
880 			reg = (struct acpi_power_register *)obj->buffer.pointer;
881 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
882 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
883 				continue;
884 
885 			lpi_state->address = reg->address;
886 			lpi_state->entry_method =
887 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
888 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
889 		} else if (obj->type == ACPI_TYPE_INTEGER) {
890 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
891 			lpi_state->address = obj->integer.value;
892 		} else {
893 			continue;
894 		}
895 
896 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
897 
898 		obj = pkg_elem + 9;
899 		if (obj->type == ACPI_TYPE_STRING)
900 			strlcpy(lpi_state->desc, obj->string.pointer,
901 				ACPI_CX_DESC_LEN);
902 
903 		lpi_state->index = state_idx;
904 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
905 			pr_debug("No min. residency found, assuming 10 us\n");
906 			lpi_state->min_residency = 10;
907 		}
908 
909 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
910 			pr_debug("No wakeup residency found, assuming 10 us\n");
911 			lpi_state->wake_latency = 10;
912 		}
913 
914 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
915 			lpi_state->flags = 0;
916 
917 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
918 			lpi_state->arch_flags = 0;
919 
920 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
921 			lpi_state->res_cnt_freq = 1;
922 
923 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
924 			lpi_state->enable_parent_state = 0;
925 	}
926 
927 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
928 end:
929 	kfree(buffer.pointer);
930 	return ret;
931 }
932 
933 /*
934  * flat_state_cnt - the number of composite LPI states after the process of flattening
935  */
936 static int flat_state_cnt;
937 
938 /**
939  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
940  *
941  * @local: local LPI state
942  * @parent: parent LPI state
943  * @result: composite LPI state
944  */
945 static bool combine_lpi_states(struct acpi_lpi_state *local,
946 			       struct acpi_lpi_state *parent,
947 			       struct acpi_lpi_state *result)
948 {
949 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
950 		if (!parent->address) /* 0 means autopromotable */
951 			return false;
952 		result->address = local->address + parent->address;
953 	} else {
954 		result->address = parent->address;
955 	}
956 
957 	result->min_residency = max(local->min_residency, parent->min_residency);
958 	result->wake_latency = local->wake_latency + parent->wake_latency;
959 	result->enable_parent_state = parent->enable_parent_state;
960 	result->entry_method = local->entry_method;
961 
962 	result->flags = parent->flags;
963 	result->arch_flags = parent->arch_flags;
964 	result->index = parent->index;
965 
966 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
967 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
968 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
969 	return true;
970 }
971 
972 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
973 
974 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
975 				  struct acpi_lpi_state *t)
976 {
977 	curr_level->composite_states[curr_level->composite_states_size++] = t;
978 }
979 
980 static int flatten_lpi_states(struct acpi_processor *pr,
981 			      struct acpi_lpi_states_array *curr_level,
982 			      struct acpi_lpi_states_array *prev_level)
983 {
984 	int i, j, state_count = curr_level->size;
985 	struct acpi_lpi_state *p, *t = curr_level->entries;
986 
987 	curr_level->composite_states_size = 0;
988 	for (j = 0; j < state_count; j++, t++) {
989 		struct acpi_lpi_state *flpi;
990 
991 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
992 			continue;
993 
994 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
995 			pr_warn("Limiting number of LPI states to max (%d)\n",
996 				ACPI_PROCESSOR_MAX_POWER);
997 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
998 			break;
999 		}
1000 
1001 		flpi = &pr->power.lpi_states[flat_state_cnt];
1002 
1003 		if (!prev_level) { /* leaf/processor node */
1004 			memcpy(flpi, t, sizeof(*t));
1005 			stash_composite_state(curr_level, flpi);
1006 			flat_state_cnt++;
1007 			continue;
1008 		}
1009 
1010 		for (i = 0; i < prev_level->composite_states_size; i++) {
1011 			p = prev_level->composite_states[i];
1012 			if (t->index <= p->enable_parent_state &&
1013 			    combine_lpi_states(p, t, flpi)) {
1014 				stash_composite_state(curr_level, flpi);
1015 				flat_state_cnt++;
1016 				flpi++;
1017 			}
1018 		}
1019 	}
1020 
1021 	kfree(curr_level->entries);
1022 	return 0;
1023 }
1024 
1025 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1026 {
1027 	int ret, i;
1028 	acpi_status status;
1029 	acpi_handle handle = pr->handle, pr_ahandle;
1030 	struct acpi_device *d = NULL;
1031 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1032 
1033 	if (!osc_pc_lpi_support_confirmed)
1034 		return -EOPNOTSUPP;
1035 
1036 	if (!acpi_has_method(handle, "_LPI"))
1037 		return -EINVAL;
1038 
1039 	flat_state_cnt = 0;
1040 	prev = &info[0];
1041 	curr = &info[1];
1042 	handle = pr->handle;
1043 	ret = acpi_processor_evaluate_lpi(handle, prev);
1044 	if (ret)
1045 		return ret;
1046 	flatten_lpi_states(pr, prev, NULL);
1047 
1048 	status = acpi_get_parent(handle, &pr_ahandle);
1049 	while (ACPI_SUCCESS(status)) {
1050 		acpi_bus_get_device(pr_ahandle, &d);
1051 		handle = pr_ahandle;
1052 
1053 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1054 			break;
1055 
1056 		/* can be optional ? */
1057 		if (!acpi_has_method(handle, "_LPI"))
1058 			break;
1059 
1060 		ret = acpi_processor_evaluate_lpi(handle, curr);
1061 		if (ret)
1062 			break;
1063 
1064 		/* flatten all the LPI states in this level of hierarchy */
1065 		flatten_lpi_states(pr, curr, prev);
1066 
1067 		tmp = prev, prev = curr, curr = tmp;
1068 
1069 		status = acpi_get_parent(handle, &pr_ahandle);
1070 	}
1071 
1072 	pr->power.count = flat_state_cnt;
1073 	/* reset the index after flattening */
1074 	for (i = 0; i < pr->power.count; i++)
1075 		pr->power.lpi_states[i].index = i;
1076 
1077 	/* Tell driver that _LPI is supported. */
1078 	pr->flags.has_lpi = 1;
1079 	pr->flags.power = 1;
1080 
1081 	return 0;
1082 }
1083 
1084 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1085 {
1086 	return -ENODEV;
1087 }
1088 
1089 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1090 {
1091 	return -ENODEV;
1092 }
1093 
1094 /**
1095  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1096  * @dev: the target CPU
1097  * @drv: cpuidle driver containing cpuidle state info
1098  * @index: index of target state
1099  *
1100  * Return: 0 for success or negative value for error
1101  */
1102 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1103 			       struct cpuidle_driver *drv, int index)
1104 {
1105 	struct acpi_processor *pr;
1106 	struct acpi_lpi_state *lpi;
1107 
1108 	pr = __this_cpu_read(processors);
1109 
1110 	if (unlikely(!pr))
1111 		return -EINVAL;
1112 
1113 	lpi = &pr->power.lpi_states[index];
1114 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1115 		return acpi_processor_ffh_lpi_enter(lpi);
1116 
1117 	return -EINVAL;
1118 }
1119 
1120 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1121 {
1122 	int i;
1123 	struct acpi_lpi_state *lpi;
1124 	struct cpuidle_state *state;
1125 	struct cpuidle_driver *drv = &acpi_idle_driver;
1126 
1127 	if (!pr->flags.has_lpi)
1128 		return -EOPNOTSUPP;
1129 
1130 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1131 		lpi = &pr->power.lpi_states[i];
1132 
1133 		state = &drv->states[i];
1134 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1135 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1136 		state->exit_latency = lpi->wake_latency;
1137 		state->target_residency = lpi->min_residency;
1138 		if (lpi->arch_flags)
1139 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1140 		state->enter = acpi_idle_lpi_enter;
1141 		drv->safe_state_index = i;
1142 	}
1143 
1144 	drv->state_count = i;
1145 
1146 	return 0;
1147 }
1148 
1149 /**
1150  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1151  * global state data i.e. idle routines
1152  *
1153  * @pr: the ACPI processor
1154  */
1155 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1156 {
1157 	int i;
1158 	struct cpuidle_driver *drv = &acpi_idle_driver;
1159 
1160 	if (!pr->flags.power_setup_done || !pr->flags.power)
1161 		return -EINVAL;
1162 
1163 	drv->safe_state_index = -1;
1164 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1165 		drv->states[i].name[0] = '\0';
1166 		drv->states[i].desc[0] = '\0';
1167 	}
1168 
1169 	if (pr->flags.has_lpi)
1170 		return acpi_processor_setup_lpi_states(pr);
1171 
1172 	return acpi_processor_setup_cstates(pr);
1173 }
1174 
1175 /**
1176  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1177  * device i.e. per-cpu data
1178  *
1179  * @pr: the ACPI processor
1180  * @dev : the cpuidle device
1181  */
1182 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1183 					    struct cpuidle_device *dev)
1184 {
1185 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1186 		return -EINVAL;
1187 
1188 	dev->cpu = pr->id;
1189 	if (pr->flags.has_lpi)
1190 		return acpi_processor_ffh_lpi_probe(pr->id);
1191 
1192 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1193 }
1194 
1195 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1196 {
1197 	int ret;
1198 
1199 	ret = acpi_processor_get_lpi_info(pr);
1200 	if (ret)
1201 		ret = acpi_processor_get_cstate_info(pr);
1202 
1203 	return ret;
1204 }
1205 
1206 int acpi_processor_hotplug(struct acpi_processor *pr)
1207 {
1208 	int ret = 0;
1209 	struct cpuidle_device *dev;
1210 
1211 	if (disabled_by_idle_boot_param())
1212 		return 0;
1213 
1214 	if (!pr->flags.power_setup_done)
1215 		return -ENODEV;
1216 
1217 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1218 	cpuidle_pause_and_lock();
1219 	cpuidle_disable_device(dev);
1220 	ret = acpi_processor_get_power_info(pr);
1221 	if (!ret && pr->flags.power) {
1222 		acpi_processor_setup_cpuidle_dev(pr, dev);
1223 		ret = cpuidle_enable_device(dev);
1224 	}
1225 	cpuidle_resume_and_unlock();
1226 
1227 	return ret;
1228 }
1229 
1230 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1231 {
1232 	int cpu;
1233 	struct acpi_processor *_pr;
1234 	struct cpuidle_device *dev;
1235 
1236 	if (disabled_by_idle_boot_param())
1237 		return 0;
1238 
1239 	if (!pr->flags.power_setup_done)
1240 		return -ENODEV;
1241 
1242 	/*
1243 	 * FIXME:  Design the ACPI notification to make it once per
1244 	 * system instead of once per-cpu.  This condition is a hack
1245 	 * to make the code that updates C-States be called once.
1246 	 */
1247 
1248 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1249 
1250 		/* Protect against cpu-hotplug */
1251 		get_online_cpus();
1252 		cpuidle_pause_and_lock();
1253 
1254 		/* Disable all cpuidle devices */
1255 		for_each_online_cpu(cpu) {
1256 			_pr = per_cpu(processors, cpu);
1257 			if (!_pr || !_pr->flags.power_setup_done)
1258 				continue;
1259 			dev = per_cpu(acpi_cpuidle_device, cpu);
1260 			cpuidle_disable_device(dev);
1261 		}
1262 
1263 		/* Populate Updated C-state information */
1264 		acpi_processor_get_power_info(pr);
1265 		acpi_processor_setup_cpuidle_states(pr);
1266 
1267 		/* Enable all cpuidle devices */
1268 		for_each_online_cpu(cpu) {
1269 			_pr = per_cpu(processors, cpu);
1270 			if (!_pr || !_pr->flags.power_setup_done)
1271 				continue;
1272 			acpi_processor_get_power_info(_pr);
1273 			if (_pr->flags.power) {
1274 				dev = per_cpu(acpi_cpuidle_device, cpu);
1275 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1276 				cpuidle_enable_device(dev);
1277 			}
1278 		}
1279 		cpuidle_resume_and_unlock();
1280 		put_online_cpus();
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static int acpi_processor_registered;
1287 
1288 int acpi_processor_power_init(struct acpi_processor *pr)
1289 {
1290 	int retval;
1291 	struct cpuidle_device *dev;
1292 
1293 	if (disabled_by_idle_boot_param())
1294 		return 0;
1295 
1296 	acpi_processor_cstate_first_run_checks();
1297 
1298 	if (!acpi_processor_get_power_info(pr))
1299 		pr->flags.power_setup_done = 1;
1300 
1301 	/*
1302 	 * Install the idle handler if processor power management is supported.
1303 	 * Note that we use previously set idle handler will be used on
1304 	 * platforms that only support C1.
1305 	 */
1306 	if (pr->flags.power) {
1307 		/* Register acpi_idle_driver if not already registered */
1308 		if (!acpi_processor_registered) {
1309 			acpi_processor_setup_cpuidle_states(pr);
1310 			retval = cpuidle_register_driver(&acpi_idle_driver);
1311 			if (retval)
1312 				return retval;
1313 			pr_debug("%s registered with cpuidle\n",
1314 				 acpi_idle_driver.name);
1315 		}
1316 
1317 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1318 		if (!dev)
1319 			return -ENOMEM;
1320 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1321 
1322 		acpi_processor_setup_cpuidle_dev(pr, dev);
1323 
1324 		/* Register per-cpu cpuidle_device. Cpuidle driver
1325 		 * must already be registered before registering device
1326 		 */
1327 		retval = cpuidle_register_device(dev);
1328 		if (retval) {
1329 			if (acpi_processor_registered == 0)
1330 				cpuidle_unregister_driver(&acpi_idle_driver);
1331 			return retval;
1332 		}
1333 		acpi_processor_registered++;
1334 	}
1335 	return 0;
1336 }
1337 
1338 int acpi_processor_power_exit(struct acpi_processor *pr)
1339 {
1340 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1341 
1342 	if (disabled_by_idle_boot_param())
1343 		return 0;
1344 
1345 	if (pr->flags.power) {
1346 		cpuidle_unregister_device(dev);
1347 		acpi_processor_registered--;
1348 		if (acpi_processor_registered == 0)
1349 			cpuidle_unregister_driver(&acpi_idle_driver);
1350 	}
1351 
1352 	pr->flags.power_setup_done = 0;
1353 	return 0;
1354 }
1355