xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision 05bcf503)
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *  			- Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *  			- Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/acpi.h>
37 #include <linux/dmi.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>	/* need_resched() */
40 #include <linux/pm_qos.h>
41 #include <linux/clockchips.h>
42 #include <linux/cpuidle.h>
43 #include <linux/irqflags.h>
44 
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54 
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57 
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60 #include <asm/processor.h>
61 
62 #define PREFIX "ACPI: "
63 
64 #define ACPI_PROCESSOR_CLASS            "processor"
65 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
66 ACPI_MODULE_NAME("processor_idle");
67 #define PM_TIMER_TICK_NS		(1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD			1	/* 1us */
69 #define C3_OVERHEAD			1	/* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)		(((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71 
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76 static int bm_check_disable __read_mostly;
77 module_param(bm_check_disable, uint, 0000);
78 
79 static unsigned int latency_factor __read_mostly = 2;
80 module_param(latency_factor, uint, 0644);
81 
82 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
83 
84 static int disabled_by_idle_boot_param(void)
85 {
86 	return boot_option_idle_override == IDLE_POLL ||
87 		boot_option_idle_override == IDLE_FORCE_MWAIT ||
88 		boot_option_idle_override == IDLE_HALT;
89 }
90 
91 /*
92  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
93  * For now disable this. Probably a bug somewhere else.
94  *
95  * To skip this limit, boot/load with a large max_cstate limit.
96  */
97 static int set_max_cstate(const struct dmi_system_id *id)
98 {
99 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
100 		return 0;
101 
102 	printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
103 	       " Override with \"processor.max_cstate=%d\"\n", id->ident,
104 	       (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
105 
106 	max_cstate = (long)id->driver_data;
107 
108 	return 0;
109 }
110 
111 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
112    callers to only run once -AK */
113 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
114 	{ set_max_cstate, "Clevo 5600D", {
115 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
116 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
117 	 (void *)2},
118 	{ set_max_cstate, "Pavilion zv5000", {
119 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
120 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
121 	 (void *)1},
122 	{ set_max_cstate, "Asus L8400B", {
123 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
124 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
125 	 (void *)1},
126 	{},
127 };
128 
129 
130 /*
131  * Callers should disable interrupts before the call and enable
132  * interrupts after return.
133  */
134 static void acpi_safe_halt(void)
135 {
136 	current_thread_info()->status &= ~TS_POLLING;
137 	/*
138 	 * TS_POLLING-cleared state must be visible before we
139 	 * test NEED_RESCHED:
140 	 */
141 	smp_mb();
142 	if (!need_resched()) {
143 		safe_halt();
144 		local_irq_disable();
145 	}
146 	current_thread_info()->status |= TS_POLLING;
147 }
148 
149 #ifdef ARCH_APICTIMER_STOPS_ON_C3
150 
151 /*
152  * Some BIOS implementations switch to C3 in the published C2 state.
153  * This seems to be a common problem on AMD boxen, but other vendors
154  * are affected too. We pick the most conservative approach: we assume
155  * that the local APIC stops in both C2 and C3.
156  */
157 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
158 				   struct acpi_processor_cx *cx)
159 {
160 	struct acpi_processor_power *pwr = &pr->power;
161 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
162 
163 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
164 		return;
165 
166 	if (amd_e400_c1e_detected)
167 		type = ACPI_STATE_C1;
168 
169 	/*
170 	 * Check, if one of the previous states already marked the lapic
171 	 * unstable
172 	 */
173 	if (pwr->timer_broadcast_on_state < state)
174 		return;
175 
176 	if (cx->type >= type)
177 		pr->power.timer_broadcast_on_state = state;
178 }
179 
180 static void __lapic_timer_propagate_broadcast(void *arg)
181 {
182 	struct acpi_processor *pr = (struct acpi_processor *) arg;
183 	unsigned long reason;
184 
185 	reason = pr->power.timer_broadcast_on_state < INT_MAX ?
186 		CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
187 
188 	clockevents_notify(reason, &pr->id);
189 }
190 
191 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
192 {
193 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
194 				 (void *)pr, 1);
195 }
196 
197 /* Power(C) State timer broadcast control */
198 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
199 				       struct acpi_processor_cx *cx,
200 				       int broadcast)
201 {
202 	int state = cx - pr->power.states;
203 
204 	if (state >= pr->power.timer_broadcast_on_state) {
205 		unsigned long reason;
206 
207 		reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
208 			CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
209 		clockevents_notify(reason, &pr->id);
210 	}
211 }
212 
213 #else
214 
215 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
216 				   struct acpi_processor_cx *cstate) { }
217 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
218 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
219 				       struct acpi_processor_cx *cx,
220 				       int broadcast)
221 {
222 }
223 
224 #endif
225 
226 static u32 saved_bm_rld;
227 
228 static void acpi_idle_bm_rld_save(void)
229 {
230 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
231 }
232 static void acpi_idle_bm_rld_restore(void)
233 {
234 	u32 resumed_bm_rld;
235 
236 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
237 
238 	if (resumed_bm_rld != saved_bm_rld)
239 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
240 }
241 
242 int acpi_processor_suspend(struct device *dev)
243 {
244 	acpi_idle_bm_rld_save();
245 	return 0;
246 }
247 
248 int acpi_processor_resume(struct device *dev)
249 {
250 	acpi_idle_bm_rld_restore();
251 	return 0;
252 }
253 
254 #if defined(CONFIG_X86)
255 static void tsc_check_state(int state)
256 {
257 	switch (boot_cpu_data.x86_vendor) {
258 	case X86_VENDOR_AMD:
259 	case X86_VENDOR_INTEL:
260 		/*
261 		 * AMD Fam10h TSC will tick in all
262 		 * C/P/S0/S1 states when this bit is set.
263 		 */
264 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
265 			return;
266 
267 		/*FALL THROUGH*/
268 	default:
269 		/* TSC could halt in idle, so notify users */
270 		if (state > ACPI_STATE_C1)
271 			mark_tsc_unstable("TSC halts in idle");
272 	}
273 }
274 #else
275 static void tsc_check_state(int state) { return; }
276 #endif
277 
278 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
279 {
280 
281 	if (!pr)
282 		return -EINVAL;
283 
284 	if (!pr->pblk)
285 		return -ENODEV;
286 
287 	/* if info is obtained from pblk/fadt, type equals state */
288 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
289 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
290 
291 #ifndef CONFIG_HOTPLUG_CPU
292 	/*
293 	 * Check for P_LVL2_UP flag before entering C2 and above on
294 	 * an SMP system.
295 	 */
296 	if ((num_online_cpus() > 1) &&
297 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
298 		return -ENODEV;
299 #endif
300 
301 	/* determine C2 and C3 address from pblk */
302 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
303 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
304 
305 	/* determine latencies from FADT */
306 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
307 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
308 
309 	/*
310 	 * FADT specified C2 latency must be less than or equal to
311 	 * 100 microseconds.
312 	 */
313 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
314 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
315 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
316 		/* invalidate C2 */
317 		pr->power.states[ACPI_STATE_C2].address = 0;
318 	}
319 
320 	/*
321 	 * FADT supplied C3 latency must be less than or equal to
322 	 * 1000 microseconds.
323 	 */
324 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
325 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
326 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
327 		/* invalidate C3 */
328 		pr->power.states[ACPI_STATE_C3].address = 0;
329 	}
330 
331 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
332 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
333 			  pr->power.states[ACPI_STATE_C2].address,
334 			  pr->power.states[ACPI_STATE_C3].address));
335 
336 	return 0;
337 }
338 
339 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
340 {
341 	if (!pr->power.states[ACPI_STATE_C1].valid) {
342 		/* set the first C-State to C1 */
343 		/* all processors need to support C1 */
344 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
345 		pr->power.states[ACPI_STATE_C1].valid = 1;
346 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
347 	}
348 	/* the C0 state only exists as a filler in our array */
349 	pr->power.states[ACPI_STATE_C0].valid = 1;
350 	return 0;
351 }
352 
353 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
354 {
355 	acpi_status status = 0;
356 	u64 count;
357 	int current_count;
358 	int i;
359 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
360 	union acpi_object *cst;
361 
362 
363 	if (nocst)
364 		return -ENODEV;
365 
366 	current_count = 0;
367 
368 	status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
369 	if (ACPI_FAILURE(status)) {
370 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
371 		return -ENODEV;
372 	}
373 
374 	cst = buffer.pointer;
375 
376 	/* There must be at least 2 elements */
377 	if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
378 		printk(KERN_ERR PREFIX "not enough elements in _CST\n");
379 		status = -EFAULT;
380 		goto end;
381 	}
382 
383 	count = cst->package.elements[0].integer.value;
384 
385 	/* Validate number of power states. */
386 	if (count < 1 || count != cst->package.count - 1) {
387 		printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
388 		status = -EFAULT;
389 		goto end;
390 	}
391 
392 	/* Tell driver that at least _CST is supported. */
393 	pr->flags.has_cst = 1;
394 
395 	for (i = 1; i <= count; i++) {
396 		union acpi_object *element;
397 		union acpi_object *obj;
398 		struct acpi_power_register *reg;
399 		struct acpi_processor_cx cx;
400 
401 		memset(&cx, 0, sizeof(cx));
402 
403 		element = &(cst->package.elements[i]);
404 		if (element->type != ACPI_TYPE_PACKAGE)
405 			continue;
406 
407 		if (element->package.count != 4)
408 			continue;
409 
410 		obj = &(element->package.elements[0]);
411 
412 		if (obj->type != ACPI_TYPE_BUFFER)
413 			continue;
414 
415 		reg = (struct acpi_power_register *)obj->buffer.pointer;
416 
417 		if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
418 		    (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
419 			continue;
420 
421 		/* There should be an easy way to extract an integer... */
422 		obj = &(element->package.elements[1]);
423 		if (obj->type != ACPI_TYPE_INTEGER)
424 			continue;
425 
426 		cx.type = obj->integer.value;
427 		/*
428 		 * Some buggy BIOSes won't list C1 in _CST -
429 		 * Let acpi_processor_get_power_info_default() handle them later
430 		 */
431 		if (i == 1 && cx.type != ACPI_STATE_C1)
432 			current_count++;
433 
434 		cx.address = reg->address;
435 		cx.index = current_count + 1;
436 
437 		cx.entry_method = ACPI_CSTATE_SYSTEMIO;
438 		if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
439 			if (acpi_processor_ffh_cstate_probe
440 					(pr->id, &cx, reg) == 0) {
441 				cx.entry_method = ACPI_CSTATE_FFH;
442 			} else if (cx.type == ACPI_STATE_C1) {
443 				/*
444 				 * C1 is a special case where FIXED_HARDWARE
445 				 * can be handled in non-MWAIT way as well.
446 				 * In that case, save this _CST entry info.
447 				 * Otherwise, ignore this info and continue.
448 				 */
449 				cx.entry_method = ACPI_CSTATE_HALT;
450 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
451 			} else {
452 				continue;
453 			}
454 			if (cx.type == ACPI_STATE_C1 &&
455 			    (boot_option_idle_override == IDLE_NOMWAIT)) {
456 				/*
457 				 * In most cases the C1 space_id obtained from
458 				 * _CST object is FIXED_HARDWARE access mode.
459 				 * But when the option of idle=halt is added,
460 				 * the entry_method type should be changed from
461 				 * CSTATE_FFH to CSTATE_HALT.
462 				 * When the option of idle=nomwait is added,
463 				 * the C1 entry_method type should be
464 				 * CSTATE_HALT.
465 				 */
466 				cx.entry_method = ACPI_CSTATE_HALT;
467 				snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
468 			}
469 		} else {
470 			snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
471 				 cx.address);
472 		}
473 
474 		if (cx.type == ACPI_STATE_C1) {
475 			cx.valid = 1;
476 		}
477 
478 		obj = &(element->package.elements[2]);
479 		if (obj->type != ACPI_TYPE_INTEGER)
480 			continue;
481 
482 		cx.latency = obj->integer.value;
483 
484 		obj = &(element->package.elements[3]);
485 		if (obj->type != ACPI_TYPE_INTEGER)
486 			continue;
487 
488 		current_count++;
489 		memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
490 
491 		/*
492 		 * We support total ACPI_PROCESSOR_MAX_POWER - 1
493 		 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
494 		 */
495 		if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
496 			printk(KERN_WARNING
497 			       "Limiting number of power states to max (%d)\n",
498 			       ACPI_PROCESSOR_MAX_POWER);
499 			printk(KERN_WARNING
500 			       "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
501 			break;
502 		}
503 	}
504 
505 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
506 			  current_count));
507 
508 	/* Validate number of power states discovered */
509 	if (current_count < 2)
510 		status = -EFAULT;
511 
512       end:
513 	kfree(buffer.pointer);
514 
515 	return status;
516 }
517 
518 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
519 					   struct acpi_processor_cx *cx)
520 {
521 	static int bm_check_flag = -1;
522 	static int bm_control_flag = -1;
523 
524 
525 	if (!cx->address)
526 		return;
527 
528 	/*
529 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
530 	 * DMA transfers are used by any ISA device to avoid livelock.
531 	 * Note that we could disable Type-F DMA (as recommended by
532 	 * the erratum), but this is known to disrupt certain ISA
533 	 * devices thus we take the conservative approach.
534 	 */
535 	else if (errata.piix4.fdma) {
536 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
537 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
538 		return;
539 	}
540 
541 	/* All the logic here assumes flags.bm_check is same across all CPUs */
542 	if (bm_check_flag == -1) {
543 		/* Determine whether bm_check is needed based on CPU  */
544 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
545 		bm_check_flag = pr->flags.bm_check;
546 		bm_control_flag = pr->flags.bm_control;
547 	} else {
548 		pr->flags.bm_check = bm_check_flag;
549 		pr->flags.bm_control = bm_control_flag;
550 	}
551 
552 	if (pr->flags.bm_check) {
553 		if (!pr->flags.bm_control) {
554 			if (pr->flags.has_cst != 1) {
555 				/* bus mastering control is necessary */
556 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
557 					"C3 support requires BM control\n"));
558 				return;
559 			} else {
560 				/* Here we enter C3 without bus mastering */
561 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
562 					"C3 support without BM control\n"));
563 			}
564 		}
565 	} else {
566 		/*
567 		 * WBINVD should be set in fadt, for C3 state to be
568 		 * supported on when bm_check is not required.
569 		 */
570 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
571 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
572 					  "Cache invalidation should work properly"
573 					  " for C3 to be enabled on SMP systems\n"));
574 			return;
575 		}
576 	}
577 
578 	/*
579 	 * Otherwise we've met all of our C3 requirements.
580 	 * Normalize the C3 latency to expidite policy.  Enable
581 	 * checking of bus mastering status (bm_check) so we can
582 	 * use this in our C3 policy
583 	 */
584 	cx->valid = 1;
585 
586 	/*
587 	 * On older chipsets, BM_RLD needs to be set
588 	 * in order for Bus Master activity to wake the
589 	 * system from C3.  Newer chipsets handle DMA
590 	 * during C3 automatically and BM_RLD is a NOP.
591 	 * In either case, the proper way to
592 	 * handle BM_RLD is to set it and leave it set.
593 	 */
594 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
595 
596 	return;
597 }
598 
599 static int acpi_processor_power_verify(struct acpi_processor *pr)
600 {
601 	unsigned int i;
602 	unsigned int working = 0;
603 
604 	pr->power.timer_broadcast_on_state = INT_MAX;
605 
606 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
607 		struct acpi_processor_cx *cx = &pr->power.states[i];
608 
609 		switch (cx->type) {
610 		case ACPI_STATE_C1:
611 			cx->valid = 1;
612 			break;
613 
614 		case ACPI_STATE_C2:
615 			if (!cx->address)
616 				break;
617 			cx->valid = 1;
618 			break;
619 
620 		case ACPI_STATE_C3:
621 			acpi_processor_power_verify_c3(pr, cx);
622 			break;
623 		}
624 		if (!cx->valid)
625 			continue;
626 
627 		lapic_timer_check_state(i, pr, cx);
628 		tsc_check_state(cx->type);
629 		working++;
630 	}
631 
632 	lapic_timer_propagate_broadcast(pr);
633 
634 	return (working);
635 }
636 
637 static int acpi_processor_get_power_info(struct acpi_processor *pr)
638 {
639 	unsigned int i;
640 	int result;
641 
642 
643 	/* NOTE: the idle thread may not be running while calling
644 	 * this function */
645 
646 	/* Zero initialize all the C-states info. */
647 	memset(pr->power.states, 0, sizeof(pr->power.states));
648 
649 	result = acpi_processor_get_power_info_cst(pr);
650 	if (result == -ENODEV)
651 		result = acpi_processor_get_power_info_fadt(pr);
652 
653 	if (result)
654 		return result;
655 
656 	acpi_processor_get_power_info_default(pr);
657 
658 	pr->power.count = acpi_processor_power_verify(pr);
659 
660 	/*
661 	 * if one state of type C2 or C3 is available, mark this
662 	 * CPU as being "idle manageable"
663 	 */
664 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
665 		if (pr->power.states[i].valid) {
666 			pr->power.count = i;
667 			if (pr->power.states[i].type >= ACPI_STATE_C2)
668 				pr->flags.power = 1;
669 		}
670 	}
671 
672 	return 0;
673 }
674 
675 /**
676  * acpi_idle_bm_check - checks if bus master activity was detected
677  */
678 static int acpi_idle_bm_check(void)
679 {
680 	u32 bm_status = 0;
681 
682 	if (bm_check_disable)
683 		return 0;
684 
685 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
686 	if (bm_status)
687 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
688 	/*
689 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
690 	 * the true state of bus mastering activity; forcing us to
691 	 * manually check the BMIDEA bit of each IDE channel.
692 	 */
693 	else if (errata.piix4.bmisx) {
694 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
695 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
696 			bm_status = 1;
697 	}
698 	return bm_status;
699 }
700 
701 /**
702  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
703  * @cx: cstate data
704  *
705  * Caller disables interrupt before call and enables interrupt after return.
706  */
707 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
708 {
709 	/* Don't trace irqs off for idle */
710 	stop_critical_timings();
711 	if (cx->entry_method == ACPI_CSTATE_FFH) {
712 		/* Call into architectural FFH based C-state */
713 		acpi_processor_ffh_cstate_enter(cx);
714 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
715 		acpi_safe_halt();
716 	} else {
717 		/* IO port based C-state */
718 		inb(cx->address);
719 		/* Dummy wait op - must do something useless after P_LVL2 read
720 		   because chipsets cannot guarantee that STPCLK# signal
721 		   gets asserted in time to freeze execution properly. */
722 		inl(acpi_gbl_FADT.xpm_timer_block.address);
723 	}
724 	start_critical_timings();
725 }
726 
727 /**
728  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
729  * @dev: the target CPU
730  * @drv: cpuidle driver containing cpuidle state info
731  * @index: index of target state
732  *
733  * This is equivalent to the HALT instruction.
734  */
735 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
736 		struct cpuidle_driver *drv, int index)
737 {
738 	ktime_t  kt1, kt2;
739 	s64 idle_time;
740 	struct acpi_processor *pr;
741 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
742 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
743 
744 	pr = __this_cpu_read(processors);
745 	dev->last_residency = 0;
746 
747 	if (unlikely(!pr))
748 		return -EINVAL;
749 
750 	local_irq_disable();
751 
752 
753 	lapic_timer_state_broadcast(pr, cx, 1);
754 	kt1 = ktime_get_real();
755 	acpi_idle_do_entry(cx);
756 	kt2 = ktime_get_real();
757 	idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
758 
759 	/* Update device last_residency*/
760 	dev->last_residency = (int)idle_time;
761 
762 	local_irq_enable();
763 	lapic_timer_state_broadcast(pr, cx, 0);
764 
765 	return index;
766 }
767 
768 
769 /**
770  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
771  * @dev: the target CPU
772  * @index: the index of suggested state
773  */
774 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
775 {
776 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
777 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
778 
779 	ACPI_FLUSH_CPU_CACHE();
780 
781 	while (1) {
782 
783 		if (cx->entry_method == ACPI_CSTATE_HALT)
784 			safe_halt();
785 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
786 			inb(cx->address);
787 			/* See comment in acpi_idle_do_entry() */
788 			inl(acpi_gbl_FADT.xpm_timer_block.address);
789 		} else
790 			return -ENODEV;
791 	}
792 
793 	/* Never reached */
794 	return 0;
795 }
796 
797 /**
798  * acpi_idle_enter_simple - enters an ACPI state without BM handling
799  * @dev: the target CPU
800  * @drv: cpuidle driver with cpuidle state information
801  * @index: the index of suggested state
802  */
803 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
804 		struct cpuidle_driver *drv, int index)
805 {
806 	struct acpi_processor *pr;
807 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
808 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
809 	ktime_t  kt1, kt2;
810 	s64 idle_time_ns;
811 	s64 idle_time;
812 
813 	pr = __this_cpu_read(processors);
814 	dev->last_residency = 0;
815 
816 	if (unlikely(!pr))
817 		return -EINVAL;
818 
819 	local_irq_disable();
820 
821 
822 	if (cx->entry_method != ACPI_CSTATE_FFH) {
823 		current_thread_info()->status &= ~TS_POLLING;
824 		/*
825 		 * TS_POLLING-cleared state must be visible before we test
826 		 * NEED_RESCHED:
827 		 */
828 		smp_mb();
829 
830 		if (unlikely(need_resched())) {
831 			current_thread_info()->status |= TS_POLLING;
832 			local_irq_enable();
833 			return -EINVAL;
834 		}
835 	}
836 
837 	/*
838 	 * Must be done before busmaster disable as we might need to
839 	 * access HPET !
840 	 */
841 	lapic_timer_state_broadcast(pr, cx, 1);
842 
843 	if (cx->type == ACPI_STATE_C3)
844 		ACPI_FLUSH_CPU_CACHE();
845 
846 	kt1 = ktime_get_real();
847 	/* Tell the scheduler that we are going deep-idle: */
848 	sched_clock_idle_sleep_event();
849 	acpi_idle_do_entry(cx);
850 	kt2 = ktime_get_real();
851 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
852 	idle_time = idle_time_ns;
853 	do_div(idle_time, NSEC_PER_USEC);
854 
855 	/* Update device last_residency*/
856 	dev->last_residency = (int)idle_time;
857 
858 	/* Tell the scheduler how much we idled: */
859 	sched_clock_idle_wakeup_event(idle_time_ns);
860 
861 	local_irq_enable();
862 	if (cx->entry_method != ACPI_CSTATE_FFH)
863 		current_thread_info()->status |= TS_POLLING;
864 
865 	lapic_timer_state_broadcast(pr, cx, 0);
866 	return index;
867 }
868 
869 static int c3_cpu_count;
870 static DEFINE_RAW_SPINLOCK(c3_lock);
871 
872 /**
873  * acpi_idle_enter_bm - enters C3 with proper BM handling
874  * @dev: the target CPU
875  * @drv: cpuidle driver containing state data
876  * @index: the index of suggested state
877  *
878  * If BM is detected, the deepest non-C3 idle state is entered instead.
879  */
880 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
881 		struct cpuidle_driver *drv, int index)
882 {
883 	struct acpi_processor *pr;
884 	struct cpuidle_state_usage *state_usage = &dev->states_usage[index];
885 	struct acpi_processor_cx *cx = cpuidle_get_statedata(state_usage);
886 	ktime_t  kt1, kt2;
887 	s64 idle_time_ns;
888 	s64 idle_time;
889 
890 
891 	pr = __this_cpu_read(processors);
892 	dev->last_residency = 0;
893 
894 	if (unlikely(!pr))
895 		return -EINVAL;
896 
897 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
898 		if (drv->safe_state_index >= 0) {
899 			return drv->states[drv->safe_state_index].enter(dev,
900 						drv, drv->safe_state_index);
901 		} else {
902 			local_irq_disable();
903 			acpi_safe_halt();
904 			local_irq_enable();
905 			return -EBUSY;
906 		}
907 	}
908 
909 	local_irq_disable();
910 
911 
912 	if (cx->entry_method != ACPI_CSTATE_FFH) {
913 		current_thread_info()->status &= ~TS_POLLING;
914 		/*
915 		 * TS_POLLING-cleared state must be visible before we test
916 		 * NEED_RESCHED:
917 		 */
918 		smp_mb();
919 
920 		if (unlikely(need_resched())) {
921 			current_thread_info()->status |= TS_POLLING;
922 			local_irq_enable();
923 			return -EINVAL;
924 		}
925 	}
926 
927 	acpi_unlazy_tlb(smp_processor_id());
928 
929 	/* Tell the scheduler that we are going deep-idle: */
930 	sched_clock_idle_sleep_event();
931 	/*
932 	 * Must be done before busmaster disable as we might need to
933 	 * access HPET !
934 	 */
935 	lapic_timer_state_broadcast(pr, cx, 1);
936 
937 	kt1 = ktime_get_real();
938 	/*
939 	 * disable bus master
940 	 * bm_check implies we need ARB_DIS
941 	 * !bm_check implies we need cache flush
942 	 * bm_control implies whether we can do ARB_DIS
943 	 *
944 	 * That leaves a case where bm_check is set and bm_control is
945 	 * not set. In that case we cannot do much, we enter C3
946 	 * without doing anything.
947 	 */
948 	if (pr->flags.bm_check && pr->flags.bm_control) {
949 		raw_spin_lock(&c3_lock);
950 		c3_cpu_count++;
951 		/* Disable bus master arbitration when all CPUs are in C3 */
952 		if (c3_cpu_count == num_online_cpus())
953 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
954 		raw_spin_unlock(&c3_lock);
955 	} else if (!pr->flags.bm_check) {
956 		ACPI_FLUSH_CPU_CACHE();
957 	}
958 
959 	acpi_idle_do_entry(cx);
960 
961 	/* Re-enable bus master arbitration */
962 	if (pr->flags.bm_check && pr->flags.bm_control) {
963 		raw_spin_lock(&c3_lock);
964 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
965 		c3_cpu_count--;
966 		raw_spin_unlock(&c3_lock);
967 	}
968 	kt2 = ktime_get_real();
969 	idle_time_ns = ktime_to_ns(ktime_sub(kt2, kt1));
970 	idle_time = idle_time_ns;
971 	do_div(idle_time, NSEC_PER_USEC);
972 
973 	/* Update device last_residency*/
974 	dev->last_residency = (int)idle_time;
975 
976 	/* Tell the scheduler how much we idled: */
977 	sched_clock_idle_wakeup_event(idle_time_ns);
978 
979 	local_irq_enable();
980 	if (cx->entry_method != ACPI_CSTATE_FFH)
981 		current_thread_info()->status |= TS_POLLING;
982 
983 	lapic_timer_state_broadcast(pr, cx, 0);
984 	return index;
985 }
986 
987 struct cpuidle_driver acpi_idle_driver = {
988 	.name =		"acpi_idle",
989 	.owner =	THIS_MODULE,
990 };
991 
992 /**
993  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
994  * device i.e. per-cpu data
995  *
996  * @pr: the ACPI processor
997  */
998 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr)
999 {
1000 	int i, count = CPUIDLE_DRIVER_STATE_START;
1001 	struct acpi_processor_cx *cx;
1002 	struct cpuidle_state_usage *state_usage;
1003 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1004 
1005 	if (!pr->flags.power_setup_done)
1006 		return -EINVAL;
1007 
1008 	if (pr->flags.power == 0) {
1009 		return -EINVAL;
1010 	}
1011 
1012 	dev->cpu = pr->id;
1013 
1014 	if (max_cstate == 0)
1015 		max_cstate = 1;
1016 
1017 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1018 		cx = &pr->power.states[i];
1019 		state_usage = &dev->states_usage[count];
1020 
1021 		if (!cx->valid)
1022 			continue;
1023 
1024 #ifdef CONFIG_HOTPLUG_CPU
1025 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1026 		    !pr->flags.has_cst &&
1027 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1028 			continue;
1029 #endif
1030 
1031 		cpuidle_set_statedata(state_usage, cx);
1032 
1033 		count++;
1034 		if (count == CPUIDLE_STATE_MAX)
1035 			break;
1036 	}
1037 
1038 	dev->state_count = count;
1039 
1040 	if (!count)
1041 		return -EINVAL;
1042 
1043 	return 0;
1044 }
1045 
1046 /**
1047  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
1048  * global state data i.e. idle routines
1049  *
1050  * @pr: the ACPI processor
1051  */
1052 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1053 {
1054 	int i, count = CPUIDLE_DRIVER_STATE_START;
1055 	struct acpi_processor_cx *cx;
1056 	struct cpuidle_state *state;
1057 	struct cpuidle_driver *drv = &acpi_idle_driver;
1058 
1059 	if (!pr->flags.power_setup_done)
1060 		return -EINVAL;
1061 
1062 	if (pr->flags.power == 0)
1063 		return -EINVAL;
1064 
1065 	drv->safe_state_index = -1;
1066 	for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1067 		drv->states[i].name[0] = '\0';
1068 		drv->states[i].desc[0] = '\0';
1069 	}
1070 
1071 	if (max_cstate == 0)
1072 		max_cstate = 1;
1073 
1074 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1075 		cx = &pr->power.states[i];
1076 
1077 		if (!cx->valid)
1078 			continue;
1079 
1080 #ifdef CONFIG_HOTPLUG_CPU
1081 		if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1082 		    !pr->flags.has_cst &&
1083 		    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1084 			continue;
1085 #endif
1086 
1087 		state = &drv->states[count];
1088 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1089 		strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1090 		state->exit_latency = cx->latency;
1091 		state->target_residency = cx->latency * latency_factor;
1092 
1093 		state->flags = 0;
1094 		switch (cx->type) {
1095 			case ACPI_STATE_C1:
1096 			if (cx->entry_method == ACPI_CSTATE_FFH)
1097 				state->flags |= CPUIDLE_FLAG_TIME_VALID;
1098 
1099 			state->enter = acpi_idle_enter_c1;
1100 			state->enter_dead = acpi_idle_play_dead;
1101 			drv->safe_state_index = count;
1102 			break;
1103 
1104 			case ACPI_STATE_C2:
1105 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1106 			state->enter = acpi_idle_enter_simple;
1107 			state->enter_dead = acpi_idle_play_dead;
1108 			drv->safe_state_index = count;
1109 			break;
1110 
1111 			case ACPI_STATE_C3:
1112 			state->flags |= CPUIDLE_FLAG_TIME_VALID;
1113 			state->enter = pr->flags.bm_check ?
1114 					acpi_idle_enter_bm :
1115 					acpi_idle_enter_simple;
1116 			break;
1117 		}
1118 
1119 		count++;
1120 		if (count == CPUIDLE_STATE_MAX)
1121 			break;
1122 	}
1123 
1124 	drv->state_count = count;
1125 
1126 	if (!count)
1127 		return -EINVAL;
1128 
1129 	return 0;
1130 }
1131 
1132 int acpi_processor_hotplug(struct acpi_processor *pr)
1133 {
1134 	int ret = 0;
1135 	struct cpuidle_device *dev;
1136 
1137 	if (disabled_by_idle_boot_param())
1138 		return 0;
1139 
1140 	if (!pr)
1141 		return -EINVAL;
1142 
1143 	if (nocst) {
1144 		return -ENODEV;
1145 	}
1146 
1147 	if (!pr->flags.power_setup_done)
1148 		return -ENODEV;
1149 
1150 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1151 	cpuidle_pause_and_lock();
1152 	cpuidle_disable_device(dev);
1153 	acpi_processor_get_power_info(pr);
1154 	if (pr->flags.power) {
1155 		acpi_processor_setup_cpuidle_cx(pr);
1156 		ret = cpuidle_enable_device(dev);
1157 	}
1158 	cpuidle_resume_and_unlock();
1159 
1160 	return ret;
1161 }
1162 
1163 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1164 {
1165 	int cpu;
1166 	struct acpi_processor *_pr;
1167 	struct cpuidle_device *dev;
1168 
1169 	if (disabled_by_idle_boot_param())
1170 		return 0;
1171 
1172 	if (!pr)
1173 		return -EINVAL;
1174 
1175 	if (nocst)
1176 		return -ENODEV;
1177 
1178 	if (!pr->flags.power_setup_done)
1179 		return -ENODEV;
1180 
1181 	/*
1182 	 * FIXME:  Design the ACPI notification to make it once per
1183 	 * system instead of once per-cpu.  This condition is a hack
1184 	 * to make the code that updates C-States be called once.
1185 	 */
1186 
1187 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1188 
1189 		cpuidle_pause_and_lock();
1190 		/* Protect against cpu-hotplug */
1191 		get_online_cpus();
1192 
1193 		/* Disable all cpuidle devices */
1194 		for_each_online_cpu(cpu) {
1195 			_pr = per_cpu(processors, cpu);
1196 			if (!_pr || !_pr->flags.power_setup_done)
1197 				continue;
1198 			dev = per_cpu(acpi_cpuidle_device, cpu);
1199 			cpuidle_disable_device(dev);
1200 		}
1201 
1202 		/* Populate Updated C-state information */
1203 		acpi_processor_setup_cpuidle_states(pr);
1204 
1205 		/* Enable all cpuidle devices */
1206 		for_each_online_cpu(cpu) {
1207 			_pr = per_cpu(processors, cpu);
1208 			if (!_pr || !_pr->flags.power_setup_done)
1209 				continue;
1210 			acpi_processor_get_power_info(_pr);
1211 			if (_pr->flags.power) {
1212 				acpi_processor_setup_cpuidle_cx(_pr);
1213 				dev = per_cpu(acpi_cpuidle_device, cpu);
1214 				cpuidle_enable_device(dev);
1215 			}
1216 		}
1217 		put_online_cpus();
1218 		cpuidle_resume_and_unlock();
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static int acpi_processor_registered;
1225 
1226 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr)
1227 {
1228 	acpi_status status = 0;
1229 	int retval;
1230 	struct cpuidle_device *dev;
1231 	static int first_run;
1232 
1233 	if (disabled_by_idle_boot_param())
1234 		return 0;
1235 
1236 	if (!first_run) {
1237 		dmi_check_system(processor_power_dmi_table);
1238 		max_cstate = acpi_processor_cstate_check(max_cstate);
1239 		if (max_cstate < ACPI_C_STATES_MAX)
1240 			printk(KERN_NOTICE
1241 			       "ACPI: processor limited to max C-state %d\n",
1242 			       max_cstate);
1243 		first_run++;
1244 	}
1245 
1246 	if (!pr)
1247 		return -EINVAL;
1248 
1249 	if (acpi_gbl_FADT.cst_control && !nocst) {
1250 		status =
1251 		    acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1252 		if (ACPI_FAILURE(status)) {
1253 			ACPI_EXCEPTION((AE_INFO, status,
1254 					"Notifying BIOS of _CST ability failed"));
1255 		}
1256 	}
1257 
1258 	acpi_processor_get_power_info(pr);
1259 	pr->flags.power_setup_done = 1;
1260 
1261 	/*
1262 	 * Install the idle handler if processor power management is supported.
1263 	 * Note that we use previously set idle handler will be used on
1264 	 * platforms that only support C1.
1265 	 */
1266 	if (pr->flags.power) {
1267 		/* Register acpi_idle_driver if not already registered */
1268 		if (!acpi_processor_registered) {
1269 			acpi_processor_setup_cpuidle_states(pr);
1270 			retval = cpuidle_register_driver(&acpi_idle_driver);
1271 			if (retval)
1272 				return retval;
1273 			printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1274 					acpi_idle_driver.name);
1275 		}
1276 
1277 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1278 		if (!dev)
1279 			return -ENOMEM;
1280 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1281 
1282 		acpi_processor_setup_cpuidle_cx(pr);
1283 
1284 		/* Register per-cpu cpuidle_device. Cpuidle driver
1285 		 * must already be registered before registering device
1286 		 */
1287 		retval = cpuidle_register_device(dev);
1288 		if (retval) {
1289 			if (acpi_processor_registered == 0)
1290 				cpuidle_unregister_driver(&acpi_idle_driver);
1291 			return retval;
1292 		}
1293 		acpi_processor_registered++;
1294 	}
1295 	return 0;
1296 }
1297 
1298 int acpi_processor_power_exit(struct acpi_processor *pr)
1299 {
1300 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1301 
1302 	if (disabled_by_idle_boot_param())
1303 		return 0;
1304 
1305 	if (pr->flags.power) {
1306 		cpuidle_unregister_device(dev);
1307 		acpi_processor_registered--;
1308 		if (acpi_processor_registered == 0)
1309 			cpuidle_unregister_driver(&acpi_idle_driver);
1310 	}
1311 
1312 	pr->flags.power_setup_done = 0;
1313 	return 0;
1314 }
1315