1 #include <linux/proc_fs.h> 2 #include <linux/seq_file.h> 3 #include <linux/export.h> 4 #include <linux/suspend.h> 5 #include <linux/bcd.h> 6 #include <asm/uaccess.h> 7 8 #include <acpi/acpi_bus.h> 9 #include <acpi/acpi_drivers.h> 10 11 #ifdef CONFIG_X86 12 #include <linux/mc146818rtc.h> 13 #endif 14 15 #include "sleep.h" 16 17 #define _COMPONENT ACPI_SYSTEM_COMPONENT 18 19 /* 20 * this file provides support for: 21 * /proc/acpi/alarm 22 * /proc/acpi/wakeup 23 */ 24 25 ACPI_MODULE_NAME("sleep") 26 27 #if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE) || !defined(CONFIG_X86) 28 /* use /sys/class/rtc/rtcX/wakealarm instead; it's not ACPI-specific */ 29 #else 30 #define HAVE_ACPI_LEGACY_ALARM 31 #endif 32 33 #ifdef HAVE_ACPI_LEGACY_ALARM 34 35 static u32 cmos_bcd_read(int offset, int rtc_control); 36 37 static int acpi_system_alarm_seq_show(struct seq_file *seq, void *offset) 38 { 39 u32 sec, min, hr; 40 u32 day, mo, yr, cent = 0; 41 u32 today = 0; 42 unsigned char rtc_control = 0; 43 unsigned long flags; 44 45 spin_lock_irqsave(&rtc_lock, flags); 46 47 rtc_control = CMOS_READ(RTC_CONTROL); 48 sec = cmos_bcd_read(RTC_SECONDS_ALARM, rtc_control); 49 min = cmos_bcd_read(RTC_MINUTES_ALARM, rtc_control); 50 hr = cmos_bcd_read(RTC_HOURS_ALARM, rtc_control); 51 52 /* If we ever get an FACP with proper values... */ 53 if (acpi_gbl_FADT.day_alarm) { 54 /* ACPI spec: only low 6 its should be cared */ 55 day = CMOS_READ(acpi_gbl_FADT.day_alarm) & 0x3F; 56 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 57 day = bcd2bin(day); 58 } else 59 day = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control); 60 if (acpi_gbl_FADT.month_alarm) 61 mo = cmos_bcd_read(acpi_gbl_FADT.month_alarm, rtc_control); 62 else { 63 mo = cmos_bcd_read(RTC_MONTH, rtc_control); 64 today = cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control); 65 } 66 if (acpi_gbl_FADT.century) 67 cent = cmos_bcd_read(acpi_gbl_FADT.century, rtc_control); 68 69 yr = cmos_bcd_read(RTC_YEAR, rtc_control); 70 71 spin_unlock_irqrestore(&rtc_lock, flags); 72 73 /* we're trusting the FADT (see above) */ 74 if (!acpi_gbl_FADT.century) 75 /* If we're not trusting the FADT, we should at least make it 76 * right for _this_ century... ehm, what is _this_ century? 77 * 78 * TBD: 79 * ASAP: find piece of code in the kernel, e.g. star tracker driver, 80 * which we can trust to determine the century correctly. Atom 81 * watch driver would be nice, too... 82 * 83 * if that has not happened, change for first release in 2050: 84 * if (yr<50) 85 * yr += 2100; 86 * else 87 * yr += 2000; // current line of code 88 * 89 * if that has not happened either, please do on 2099/12/31:23:59:59 90 * s/2000/2100 91 * 92 */ 93 yr += 2000; 94 else 95 yr += cent * 100; 96 97 /* 98 * Show correct dates for alarms up to a month into the future. 99 * This solves issues for nearly all situations with the common 100 * 30-day alarm clocks in PC hardware. 101 */ 102 if (day < today) { 103 if (mo < 12) { 104 mo += 1; 105 } else { 106 mo = 1; 107 yr += 1; 108 } 109 } 110 111 seq_printf(seq, "%4.4u-", yr); 112 (mo > 12) ? seq_puts(seq, "**-") : seq_printf(seq, "%2.2u-", mo); 113 (day > 31) ? seq_puts(seq, "** ") : seq_printf(seq, "%2.2u ", day); 114 (hr > 23) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", hr); 115 (min > 59) ? seq_puts(seq, "**:") : seq_printf(seq, "%2.2u:", min); 116 (sec > 59) ? seq_puts(seq, "**\n") : seq_printf(seq, "%2.2u\n", sec); 117 118 return 0; 119 } 120 121 static int acpi_system_alarm_open_fs(struct inode *inode, struct file *file) 122 { 123 return single_open(file, acpi_system_alarm_seq_show, PDE(inode)->data); 124 } 125 126 static int get_date_field(char **p, u32 * value) 127 { 128 char *next = NULL; 129 char *string_end = NULL; 130 int result = -EINVAL; 131 132 /* 133 * Try to find delimeter, only to insert null. The end of the 134 * string won't have one, but is still valid. 135 */ 136 if (*p == NULL) 137 return result; 138 139 next = strpbrk(*p, "- :"); 140 if (next) 141 *next++ = '\0'; 142 143 *value = simple_strtoul(*p, &string_end, 10); 144 145 /* Signal success if we got a good digit */ 146 if (string_end != *p) 147 result = 0; 148 149 if (next) 150 *p = next; 151 else 152 *p = NULL; 153 154 return result; 155 } 156 157 /* Read a possibly BCD register, always return binary */ 158 static u32 cmos_bcd_read(int offset, int rtc_control) 159 { 160 u32 val = CMOS_READ(offset); 161 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 162 val = bcd2bin(val); 163 return val; 164 } 165 166 /* Write binary value into possibly BCD register */ 167 static void cmos_bcd_write(u32 val, int offset, int rtc_control) 168 { 169 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) 170 val = bin2bcd(val); 171 CMOS_WRITE(val, offset); 172 } 173 174 static ssize_t 175 acpi_system_write_alarm(struct file *file, 176 const char __user * buffer, size_t count, loff_t * ppos) 177 { 178 int result = 0; 179 char alarm_string[30] = { '\0' }; 180 char *p = alarm_string; 181 u32 sec, min, hr, day, mo, yr; 182 int adjust = 0; 183 unsigned char rtc_control = 0; 184 185 if (count > sizeof(alarm_string) - 1) 186 return -EINVAL; 187 188 if (copy_from_user(alarm_string, buffer, count)) 189 return -EFAULT; 190 191 alarm_string[count] = '\0'; 192 193 /* check for time adjustment */ 194 if (alarm_string[0] == '+') { 195 p++; 196 adjust = 1; 197 } 198 199 if ((result = get_date_field(&p, &yr))) 200 goto end; 201 if ((result = get_date_field(&p, &mo))) 202 goto end; 203 if ((result = get_date_field(&p, &day))) 204 goto end; 205 if ((result = get_date_field(&p, &hr))) 206 goto end; 207 if ((result = get_date_field(&p, &min))) 208 goto end; 209 if ((result = get_date_field(&p, &sec))) 210 goto end; 211 212 spin_lock_irq(&rtc_lock); 213 214 rtc_control = CMOS_READ(RTC_CONTROL); 215 216 if (adjust) { 217 yr += cmos_bcd_read(RTC_YEAR, rtc_control); 218 mo += cmos_bcd_read(RTC_MONTH, rtc_control); 219 day += cmos_bcd_read(RTC_DAY_OF_MONTH, rtc_control); 220 hr += cmos_bcd_read(RTC_HOURS, rtc_control); 221 min += cmos_bcd_read(RTC_MINUTES, rtc_control); 222 sec += cmos_bcd_read(RTC_SECONDS, rtc_control); 223 } 224 225 spin_unlock_irq(&rtc_lock); 226 227 if (sec > 59) { 228 min += sec/60; 229 sec = sec%60; 230 } 231 if (min > 59) { 232 hr += min/60; 233 min = min%60; 234 } 235 if (hr > 23) { 236 day += hr/24; 237 hr = hr%24; 238 } 239 if (day > 31) { 240 mo += day/32; 241 day = day%32; 242 } 243 if (mo > 12) { 244 yr += mo/13; 245 mo = mo%13; 246 } 247 248 spin_lock_irq(&rtc_lock); 249 /* 250 * Disable alarm interrupt before setting alarm timer or else 251 * when ACPI_EVENT_RTC is enabled, a spurious ACPI interrupt occurs 252 */ 253 rtc_control &= ~RTC_AIE; 254 CMOS_WRITE(rtc_control, RTC_CONTROL); 255 CMOS_READ(RTC_INTR_FLAGS); 256 257 /* write the fields the rtc knows about */ 258 cmos_bcd_write(hr, RTC_HOURS_ALARM, rtc_control); 259 cmos_bcd_write(min, RTC_MINUTES_ALARM, rtc_control); 260 cmos_bcd_write(sec, RTC_SECONDS_ALARM, rtc_control); 261 262 /* 263 * If the system supports an enhanced alarm it will have non-zero 264 * offsets into the CMOS RAM here -- which for some reason are pointing 265 * to the RTC area of memory. 266 */ 267 if (acpi_gbl_FADT.day_alarm) 268 cmos_bcd_write(day, acpi_gbl_FADT.day_alarm, rtc_control); 269 if (acpi_gbl_FADT.month_alarm) 270 cmos_bcd_write(mo, acpi_gbl_FADT.month_alarm, rtc_control); 271 if (acpi_gbl_FADT.century) { 272 if (adjust) 273 yr += cmos_bcd_read(acpi_gbl_FADT.century, rtc_control) * 100; 274 cmos_bcd_write(yr / 100, acpi_gbl_FADT.century, rtc_control); 275 } 276 /* enable the rtc alarm interrupt */ 277 rtc_control |= RTC_AIE; 278 CMOS_WRITE(rtc_control, RTC_CONTROL); 279 CMOS_READ(RTC_INTR_FLAGS); 280 281 spin_unlock_irq(&rtc_lock); 282 283 acpi_clear_event(ACPI_EVENT_RTC); 284 acpi_enable_event(ACPI_EVENT_RTC, 0); 285 286 *ppos += count; 287 288 result = 0; 289 end: 290 return result ? result : count; 291 } 292 #endif /* HAVE_ACPI_LEGACY_ALARM */ 293 294 static int 295 acpi_system_wakeup_device_seq_show(struct seq_file *seq, void *offset) 296 { 297 struct list_head *node, *next; 298 299 seq_printf(seq, "Device\tS-state\t Status Sysfs node\n"); 300 301 mutex_lock(&acpi_device_lock); 302 list_for_each_safe(node, next, &acpi_wakeup_device_list) { 303 struct acpi_device *dev = 304 container_of(node, struct acpi_device, wakeup_list); 305 struct device *ldev; 306 307 if (!dev->wakeup.flags.valid) 308 continue; 309 310 ldev = acpi_get_physical_device(dev->handle); 311 seq_printf(seq, "%s\t S%d\t%c%-8s ", 312 dev->pnp.bus_id, 313 (u32) dev->wakeup.sleep_state, 314 dev->wakeup.flags.run_wake ? '*' : ' ', 315 (device_may_wakeup(&dev->dev) 316 || (ldev && device_may_wakeup(ldev))) ? 317 "enabled" : "disabled"); 318 if (ldev) 319 seq_printf(seq, "%s:%s", 320 ldev->bus ? ldev->bus->name : "no-bus", 321 dev_name(ldev)); 322 seq_printf(seq, "\n"); 323 put_device(ldev); 324 325 } 326 mutex_unlock(&acpi_device_lock); 327 return 0; 328 } 329 330 static void physical_device_enable_wakeup(struct acpi_device *adev) 331 { 332 struct device *dev = acpi_get_physical_device(adev->handle); 333 334 if (dev && device_can_wakeup(dev)) { 335 bool enable = !device_may_wakeup(dev); 336 device_set_wakeup_enable(dev, enable); 337 } 338 } 339 340 static ssize_t 341 acpi_system_write_wakeup_device(struct file *file, 342 const char __user * buffer, 343 size_t count, loff_t * ppos) 344 { 345 struct list_head *node, *next; 346 char strbuf[5]; 347 char str[5] = ""; 348 unsigned int len = count; 349 350 if (len > 4) 351 len = 4; 352 if (len < 0) 353 return -EFAULT; 354 355 if (copy_from_user(strbuf, buffer, len)) 356 return -EFAULT; 357 strbuf[len] = '\0'; 358 sscanf(strbuf, "%s", str); 359 360 mutex_lock(&acpi_device_lock); 361 list_for_each_safe(node, next, &acpi_wakeup_device_list) { 362 struct acpi_device *dev = 363 container_of(node, struct acpi_device, wakeup_list); 364 if (!dev->wakeup.flags.valid) 365 continue; 366 367 if (!strncmp(dev->pnp.bus_id, str, 4)) { 368 if (device_can_wakeup(&dev->dev)) { 369 bool enable = !device_may_wakeup(&dev->dev); 370 device_set_wakeup_enable(&dev->dev, enable); 371 } else { 372 physical_device_enable_wakeup(dev); 373 } 374 break; 375 } 376 } 377 mutex_unlock(&acpi_device_lock); 378 return count; 379 } 380 381 static int 382 acpi_system_wakeup_device_open_fs(struct inode *inode, struct file *file) 383 { 384 return single_open(file, acpi_system_wakeup_device_seq_show, 385 PDE(inode)->data); 386 } 387 388 static const struct file_operations acpi_system_wakeup_device_fops = { 389 .owner = THIS_MODULE, 390 .open = acpi_system_wakeup_device_open_fs, 391 .read = seq_read, 392 .write = acpi_system_write_wakeup_device, 393 .llseek = seq_lseek, 394 .release = single_release, 395 }; 396 397 #ifdef HAVE_ACPI_LEGACY_ALARM 398 static const struct file_operations acpi_system_alarm_fops = { 399 .owner = THIS_MODULE, 400 .open = acpi_system_alarm_open_fs, 401 .read = seq_read, 402 .write = acpi_system_write_alarm, 403 .llseek = seq_lseek, 404 .release = single_release, 405 }; 406 407 static u32 rtc_handler(void *context) 408 { 409 acpi_clear_event(ACPI_EVENT_RTC); 410 acpi_disable_event(ACPI_EVENT_RTC, 0); 411 412 return ACPI_INTERRUPT_HANDLED; 413 } 414 #endif /* HAVE_ACPI_LEGACY_ALARM */ 415 416 int __init acpi_sleep_proc_init(void) 417 { 418 #ifdef HAVE_ACPI_LEGACY_ALARM 419 /* 'alarm' [R/W] */ 420 proc_create("alarm", S_IFREG | S_IRUGO | S_IWUSR, 421 acpi_root_dir, &acpi_system_alarm_fops); 422 423 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL); 424 /* 425 * Disable the RTC event after installing RTC handler. 426 * Only when RTC alarm is set will it be enabled. 427 */ 428 acpi_clear_event(ACPI_EVENT_RTC); 429 acpi_disable_event(ACPI_EVENT_RTC, 0); 430 #endif /* HAVE_ACPI_LEGACY_ALARM */ 431 432 /* 'wakeup device' [R/W] */ 433 proc_create("wakeup", S_IFREG | S_IRUGO | S_IWUSR, 434 acpi_root_dir, &acpi_system_wakeup_device_fops); 435 436 return 0; 437 } 438