xref: /openbmc/linux/drivers/acpi/pptt.c (revision cbdf59ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4  *
5  * Copyright (C) 2018, ARM
6  *
7  * This file implements parsing of the Processor Properties Topology Table
8  * which is optionally used to describe the processor and cache topology.
9  * Due to the relative pointers used throughout the table, this doesn't
10  * leverage the existing subtable parsing in the kernel.
11  *
12  * The PPTT structure is an inverted tree, with each node potentially
13  * holding one or two inverted tree data structures describing
14  * the caches available at that level. Each cache structure optionally
15  * contains properties describing the cache at a given level which can be
16  * used to override hardware probed values.
17  */
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
19 
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
23 
24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 							u32 pptt_ref)
26 {
27 	struct acpi_subtable_header *entry;
28 
29 	/* there isn't a subtable at reference 0 */
30 	if (pptt_ref < sizeof(struct acpi_subtable_header))
31 		return NULL;
32 
33 	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 		return NULL;
35 
36 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
37 
38 	if (entry->length == 0)
39 		return NULL;
40 
41 	if (pptt_ref + entry->length > table_hdr->length)
42 		return NULL;
43 
44 	return entry;
45 }
46 
47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 						   u32 pptt_ref)
49 {
50 	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
51 }
52 
53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 						u32 pptt_ref)
55 {
56 	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
57 }
58 
59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 							   struct acpi_pptt_processor *node,
61 							   int resource)
62 {
63 	u32 *ref;
64 
65 	if (resource >= node->number_of_priv_resources)
66 		return NULL;
67 
68 	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 	ref += resource;
70 
71 	return fetch_pptt_subtable(table_hdr, *ref);
72 }
73 
74 static inline bool acpi_pptt_match_type(int table_type, int type)
75 {
76 	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
78 }
79 
80 /**
81  * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82  * @table_hdr: Pointer to the head of the PPTT table
83  * @local_level: passed res reflects this cache level
84  * @res: cache resource in the PPTT we want to walk
85  * @found: returns a pointer to the requested level if found
86  * @level: the requested cache level
87  * @type: the requested cache type
88  *
89  * Attempt to find a given cache level, while counting the max number
90  * of cache levels for the cache node.
91  *
92  * Given a pptt resource, verify that it is a cache node, then walk
93  * down each level of caches, counting how many levels are found
94  * as well as checking the cache type (icache, dcache, unified). If a
95  * level & type match, then we set found, and continue the search.
96  * Once the entire cache branch has been walked return its max
97  * depth.
98  *
99  * Return: The cache structure and the level we terminated with.
100  */
101 static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102 				int local_level,
103 				struct acpi_subtable_header *res,
104 				struct acpi_pptt_cache **found,
105 				int level, int type)
106 {
107 	struct acpi_pptt_cache *cache;
108 
109 	if (res->type != ACPI_PPTT_TYPE_CACHE)
110 		return 0;
111 
112 	cache = (struct acpi_pptt_cache *) res;
113 	while (cache) {
114 		local_level++;
115 
116 		if (local_level == level &&
117 		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118 		    acpi_pptt_match_type(cache->attributes, type)) {
119 			if (*found != NULL && cache != *found)
120 				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121 
122 			pr_debug("Found cache @ level %d\n", level);
123 			*found = cache;
124 			/*
125 			 * continue looking at this node's resource list
126 			 * to verify that we don't find a duplicate
127 			 * cache node.
128 			 */
129 		}
130 		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131 	}
132 	return local_level;
133 }
134 
135 static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr,
136 						     struct acpi_pptt_processor *cpu_node,
137 						     int *starting_level, int level,
138 						     int type)
139 {
140 	struct acpi_subtable_header *res;
141 	int number_of_levels = *starting_level;
142 	int resource = 0;
143 	struct acpi_pptt_cache *ret = NULL;
144 	int local_level;
145 
146 	/* walk down from processor node */
147 	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
148 		resource++;
149 
150 		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
151 						   res, &ret, level, type);
152 		/*
153 		 * we are looking for the max depth. Since its potentially
154 		 * possible for a given node to have resources with differing
155 		 * depths verify that the depth we have found is the largest.
156 		 */
157 		if (number_of_levels < local_level)
158 			number_of_levels = local_level;
159 	}
160 	if (number_of_levels > *starting_level)
161 		*starting_level = number_of_levels;
162 
163 	return ret;
164 }
165 
166 /**
167  * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
168  * @table_hdr: Pointer to the head of the PPTT table
169  * @cpu_node: processor node we wish to count caches for
170  *
171  * Given a processor node containing a processing unit, walk into it and count
172  * how many levels exist solely for it, and then walk up each level until we hit
173  * the root node (ignore the package level because it may be possible to have
174  * caches that exist across packages). Count the number of cache levels that
175  * exist at each level on the way up.
176  *
177  * Return: Total number of levels found.
178  */
179 static int acpi_count_levels(struct acpi_table_header *table_hdr,
180 			     struct acpi_pptt_processor *cpu_node)
181 {
182 	int total_levels = 0;
183 
184 	do {
185 		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
186 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
187 	} while (cpu_node);
188 
189 	return total_levels;
190 }
191 
192 /**
193  * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
194  * @table_hdr: Pointer to the head of the PPTT table
195  * @node: passed node is checked to see if its a leaf
196  *
197  * Determine if the *node parameter is a leaf node by iterating the
198  * PPTT table, looking for nodes which reference it.
199  *
200  * Return: 0 if we find a node referencing the passed node (or table error),
201  * or 1 if we don't.
202  */
203 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
204 			       struct acpi_pptt_processor *node)
205 {
206 	struct acpi_subtable_header *entry;
207 	unsigned long table_end;
208 	u32 node_entry;
209 	struct acpi_pptt_processor *cpu_node;
210 	u32 proc_sz;
211 
212 	if (table_hdr->revision > 1)
213 		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
214 
215 	table_end = (unsigned long)table_hdr + table_hdr->length;
216 	node_entry = ACPI_PTR_DIFF(node, table_hdr);
217 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
218 			     sizeof(struct acpi_table_pptt));
219 	proc_sz = sizeof(struct acpi_pptt_processor *);
220 
221 	while ((unsigned long)entry + proc_sz < table_end) {
222 		cpu_node = (struct acpi_pptt_processor *)entry;
223 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
224 		    cpu_node->parent == node_entry)
225 			return 0;
226 		if (entry->length == 0)
227 			return 0;
228 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
229 				     entry->length);
230 
231 	}
232 	return 1;
233 }
234 
235 /**
236  * acpi_find_processor_node() - Given a PPTT table find the requested processor
237  * @table_hdr:  Pointer to the head of the PPTT table
238  * @acpi_cpu_id: CPU we are searching for
239  *
240  * Find the subtable entry describing the provided processor.
241  * This is done by iterating the PPTT table looking for processor nodes
242  * which have an acpi_processor_id that matches the acpi_cpu_id parameter
243  * passed into the function. If we find a node that matches this criteria
244  * we verify that its a leaf node in the topology rather than depending
245  * on the valid flag, which doesn't need to be set for leaf nodes.
246  *
247  * Return: NULL, or the processors acpi_pptt_processor*
248  */
249 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
250 							    u32 acpi_cpu_id)
251 {
252 	struct acpi_subtable_header *entry;
253 	unsigned long table_end;
254 	struct acpi_pptt_processor *cpu_node;
255 	u32 proc_sz;
256 
257 	table_end = (unsigned long)table_hdr + table_hdr->length;
258 	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
259 			     sizeof(struct acpi_table_pptt));
260 	proc_sz = sizeof(struct acpi_pptt_processor *);
261 
262 	/* find the processor structure associated with this cpuid */
263 	while ((unsigned long)entry + proc_sz < table_end) {
264 		cpu_node = (struct acpi_pptt_processor *)entry;
265 
266 		if (entry->length == 0) {
267 			pr_warn("Invalid zero length subtable\n");
268 			break;
269 		}
270 		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
271 		    acpi_cpu_id == cpu_node->acpi_processor_id &&
272 		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
273 			return (struct acpi_pptt_processor *)entry;
274 		}
275 
276 		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
277 				     entry->length);
278 	}
279 
280 	return NULL;
281 }
282 
283 static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
284 				  u32 acpi_cpu_id)
285 {
286 	int number_of_levels = 0;
287 	struct acpi_pptt_processor *cpu;
288 
289 	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
290 	if (cpu)
291 		number_of_levels = acpi_count_levels(table_hdr, cpu);
292 
293 	return number_of_levels;
294 }
295 
296 static u8 acpi_cache_type(enum cache_type type)
297 {
298 	switch (type) {
299 	case CACHE_TYPE_DATA:
300 		pr_debug("Looking for data cache\n");
301 		return ACPI_PPTT_CACHE_TYPE_DATA;
302 	case CACHE_TYPE_INST:
303 		pr_debug("Looking for instruction cache\n");
304 		return ACPI_PPTT_CACHE_TYPE_INSTR;
305 	default:
306 	case CACHE_TYPE_UNIFIED:
307 		pr_debug("Looking for unified cache\n");
308 		/*
309 		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
310 		 * contains the bit pattern that will match both
311 		 * ACPI unified bit patterns because we use it later
312 		 * to match both cases.
313 		 */
314 		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
315 	}
316 }
317 
318 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
319 						    u32 acpi_cpu_id,
320 						    enum cache_type type,
321 						    unsigned int level,
322 						    struct acpi_pptt_processor **node)
323 {
324 	int total_levels = 0;
325 	struct acpi_pptt_cache *found = NULL;
326 	struct acpi_pptt_processor *cpu_node;
327 	u8 acpi_type = acpi_cache_type(type);
328 
329 	pr_debug("Looking for CPU %d's level %d cache type %d\n",
330 		 acpi_cpu_id, level, acpi_type);
331 
332 	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
333 
334 	while (cpu_node && !found) {
335 		found = acpi_find_cache_level(table_hdr, cpu_node,
336 					      &total_levels, level, acpi_type);
337 		*node = cpu_node;
338 		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
339 	}
340 
341 	return found;
342 }
343 
344 /**
345  * update_cache_properties() - Update cacheinfo for the given processor
346  * @this_leaf: Kernel cache info structure being updated
347  * @found_cache: The PPTT node describing this cache instance
348  * @cpu_node: A unique reference to describe this cache instance
349  *
350  * The ACPI spec implies that the fields in the cache structures are used to
351  * extend and correct the information probed from the hardware. Lets only
352  * set fields that we determine are VALID.
353  *
354  * Return: nothing. Side effect of updating the global cacheinfo
355  */
356 static void update_cache_properties(struct cacheinfo *this_leaf,
357 				    struct acpi_pptt_cache *found_cache,
358 				    struct acpi_pptt_processor *cpu_node)
359 {
360 	this_leaf->fw_token = cpu_node;
361 	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
362 		this_leaf->size = found_cache->size;
363 	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
364 		this_leaf->coherency_line_size = found_cache->line_size;
365 	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
366 		this_leaf->number_of_sets = found_cache->number_of_sets;
367 	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
368 		this_leaf->ways_of_associativity = found_cache->associativity;
369 	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
370 		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
371 		case ACPI_PPTT_CACHE_POLICY_WT:
372 			this_leaf->attributes = CACHE_WRITE_THROUGH;
373 			break;
374 		case ACPI_PPTT_CACHE_POLICY_WB:
375 			this_leaf->attributes = CACHE_WRITE_BACK;
376 			break;
377 		}
378 	}
379 	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
380 		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
381 		case ACPI_PPTT_CACHE_READ_ALLOCATE:
382 			this_leaf->attributes |= CACHE_READ_ALLOCATE;
383 			break;
384 		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
385 			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
386 			break;
387 		case ACPI_PPTT_CACHE_RW_ALLOCATE:
388 		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
389 			this_leaf->attributes |=
390 				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
391 			break;
392 		}
393 	}
394 	/*
395 	 * If cache type is NOCACHE, then the cache hasn't been specified
396 	 * via other mechanisms.  Update the type if a cache type has been
397 	 * provided.
398 	 *
399 	 * Note, we assume such caches are unified based on conventional system
400 	 * design and known examples.  Significant work is required elsewhere to
401 	 * fully support data/instruction only type caches which are only
402 	 * specified in PPTT.
403 	 */
404 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
405 	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
406 		this_leaf->type = CACHE_TYPE_UNIFIED;
407 }
408 
409 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
410 				 unsigned int cpu)
411 {
412 	struct acpi_pptt_cache *found_cache;
413 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
414 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
415 	struct cacheinfo *this_leaf;
416 	unsigned int index = 0;
417 	struct acpi_pptt_processor *cpu_node = NULL;
418 
419 	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
420 		this_leaf = this_cpu_ci->info_list + index;
421 		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
422 						   this_leaf->type,
423 						   this_leaf->level,
424 						   &cpu_node);
425 		pr_debug("found = %p %p\n", found_cache, cpu_node);
426 		if (found_cache)
427 			update_cache_properties(this_leaf,
428 						found_cache,
429 						cpu_node);
430 
431 		index++;
432 	}
433 }
434 
435 static bool flag_identical(struct acpi_table_header *table_hdr,
436 			   struct acpi_pptt_processor *cpu)
437 {
438 	struct acpi_pptt_processor *next;
439 
440 	/* heterogeneous machines must use PPTT revision > 1 */
441 	if (table_hdr->revision < 2)
442 		return false;
443 
444 	/* Locate the last node in the tree with IDENTICAL set */
445 	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
446 		next = fetch_pptt_node(table_hdr, cpu->parent);
447 		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
448 			return true;
449 	}
450 
451 	return false;
452 }
453 
454 /* Passing level values greater than this will result in search termination */
455 #define PPTT_ABORT_PACKAGE 0xFF
456 
457 static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
458 							   struct acpi_pptt_processor *cpu,
459 							   int level, int flag)
460 {
461 	struct acpi_pptt_processor *prev_node;
462 
463 	while (cpu && level) {
464 		/* special case the identical flag to find last identical */
465 		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
466 			if (flag_identical(table_hdr, cpu))
467 				break;
468 		} else if (cpu->flags & flag)
469 			break;
470 		pr_debug("level %d\n", level);
471 		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
472 		if (prev_node == NULL)
473 			break;
474 		cpu = prev_node;
475 		level--;
476 	}
477 	return cpu;
478 }
479 
480 static void acpi_pptt_warn_missing(void)
481 {
482 	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
483 }
484 
485 /**
486  * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
487  * @table: Pointer to the head of the PPTT table
488  * @cpu: Kernel logical CPU number
489  * @level: A level that terminates the search
490  * @flag: A flag which terminates the search
491  *
492  * Get a unique value given a CPU, and a topology level, that can be
493  * matched to determine which cpus share common topological features
494  * at that level.
495  *
496  * Return: Unique value, or -ENOENT if unable to locate CPU
497  */
498 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
499 				     unsigned int cpu, int level, int flag)
500 {
501 	struct acpi_pptt_processor *cpu_node;
502 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
503 
504 	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
505 	if (cpu_node) {
506 		cpu_node = acpi_find_processor_tag(table, cpu_node,
507 						   level, flag);
508 		/*
509 		 * As per specification if the processor structure represents
510 		 * an actual processor, then ACPI processor ID must be valid.
511 		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
512 		 * should be set if the UID is valid
513 		 */
514 		if (level == 0 ||
515 		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
516 			return cpu_node->acpi_processor_id;
517 		return ACPI_PTR_DIFF(cpu_node, table);
518 	}
519 	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
520 		    cpu, acpi_cpu_id);
521 	return -ENOENT;
522 }
523 
524 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
525 {
526 	struct acpi_table_header *table;
527 	acpi_status status;
528 	int retval;
529 
530 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
531 	if (ACPI_FAILURE(status)) {
532 		acpi_pptt_warn_missing();
533 		return -ENOENT;
534 	}
535 	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
536 	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
537 		 cpu, level, retval);
538 	acpi_put_table(table);
539 
540 	return retval;
541 }
542 
543 /**
544  * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
545  * @cpu: Kernel logical CPU number
546  *
547  * Given a logical CPU number, returns the number of levels of cache represented
548  * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
549  * indicating we didn't find any cache levels.
550  *
551  * Return: Cache levels visible to this core.
552  */
553 int acpi_find_last_cache_level(unsigned int cpu)
554 {
555 	u32 acpi_cpu_id;
556 	struct acpi_table_header *table;
557 	int number_of_levels = 0;
558 	acpi_status status;
559 
560 	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
561 
562 	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
563 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
564 	if (ACPI_FAILURE(status)) {
565 		acpi_pptt_warn_missing();
566 	} else {
567 		number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
568 		acpi_put_table(table);
569 	}
570 	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
571 
572 	return number_of_levels;
573 }
574 
575 /**
576  * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
577  * @cpu: Kernel logical CPU number
578  *
579  * Updates the global cache info provided by cpu_get_cacheinfo()
580  * when there are valid properties in the acpi_pptt_cache nodes. A
581  * successful parse may not result in any updates if none of the
582  * cache levels have any valid flags set.  Further, a unique value is
583  * associated with each known CPU cache entry. This unique value
584  * can be used to determine whether caches are shared between CPUs.
585  *
586  * Return: -ENOENT on failure to find table, or 0 on success
587  */
588 int cache_setup_acpi(unsigned int cpu)
589 {
590 	struct acpi_table_header *table;
591 	acpi_status status;
592 
593 	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
594 
595 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
596 	if (ACPI_FAILURE(status)) {
597 		acpi_pptt_warn_missing();
598 		return -ENOENT;
599 	}
600 
601 	cache_setup_acpi_cpu(table, cpu);
602 	acpi_put_table(table);
603 
604 	return status;
605 }
606 
607 /**
608  * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
609  * @cpu: Kernel logical CPU number
610  * @level: The topological level for which we would like a unique ID
611  *
612  * Determine a topology unique ID for each thread/core/cluster/mc_grouping
613  * /socket/etc. This ID can then be used to group peers, which will have
614  * matching ids.
615  *
616  * The search terminates when either the requested level is found or
617  * we reach a root node. Levels beyond the termination point will return the
618  * same unique ID. The unique id for level 0 is the acpi processor id. All
619  * other levels beyond this use a generated value to uniquely identify
620  * a topological feature.
621  *
622  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
623  * Otherwise returns a value which represents a unique topological feature.
624  */
625 int find_acpi_cpu_topology(unsigned int cpu, int level)
626 {
627 	return find_acpi_cpu_topology_tag(cpu, level, 0);
628 }
629 
630 /**
631  * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
632  * @cpu: Kernel logical CPU number
633  * @level: The cache level for which we would like a unique ID
634  *
635  * Determine a unique ID for each unified cache in the system
636  *
637  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
638  * Otherwise returns a value which represents a unique topological feature.
639  */
640 int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
641 {
642 	struct acpi_table_header *table;
643 	struct acpi_pptt_cache *found_cache;
644 	acpi_status status;
645 	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
646 	struct acpi_pptt_processor *cpu_node = NULL;
647 	int ret = -1;
648 
649 	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
650 	if (ACPI_FAILURE(status)) {
651 		acpi_pptt_warn_missing();
652 		return -ENOENT;
653 	}
654 
655 	found_cache = acpi_find_cache_node(table, acpi_cpu_id,
656 					   CACHE_TYPE_UNIFIED,
657 					   level,
658 					   &cpu_node);
659 	if (found_cache)
660 		ret = ACPI_PTR_DIFF(cpu_node, table);
661 
662 	acpi_put_table(table);
663 
664 	return ret;
665 }
666 
667 
668 /**
669  * find_acpi_cpu_topology_package() - Determine a unique CPU package value
670  * @cpu: Kernel logical CPU number
671  *
672  * Determine a topology unique package ID for the given CPU.
673  * This ID can then be used to group peers, which will have matching ids.
674  *
675  * The search terminates when either a level is found with the PHYSICAL_PACKAGE
676  * flag set or we reach a root node.
677  *
678  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
679  * Otherwise returns a value which represents the package for this CPU.
680  */
681 int find_acpi_cpu_topology_package(unsigned int cpu)
682 {
683 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
684 					  ACPI_PPTT_PHYSICAL_PACKAGE);
685 }
686 
687 /**
688  * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
689  * @cpu: Kernel logical CPU number
690  *
691  * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
692  * implementation should have matching tags.
693  *
694  * The returned tag can be used to group peers with identical implementation.
695  *
696  * The search terminates when a level is found with the identical implementation
697  * flag set or we reach a root node.
698  *
699  * Due to limitations in the PPTT data structure, there may be rare situations
700  * where two cores in a heterogeneous machine may be identical, but won't have
701  * the same tag.
702  *
703  * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
704  * Otherwise returns a value which represents a group of identical cores
705  * similar to this CPU.
706  */
707 int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
708 {
709 	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
710 					  ACPI_PPTT_ACPI_IDENTICAL);
711 }
712