1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * drivers/acpi/power.c - ACPI Power Resources management. 4 * 5 * Copyright (C) 2001 - 2015 Intel Corp. 6 * Author: Andy Grover <andrew.grover@intel.com> 7 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 8 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 9 */ 10 11 /* 12 * ACPI power-managed devices may be controlled in two ways: 13 * 1. via "Device Specific (D-State) Control" 14 * 2. via "Power Resource Control". 15 * The code below deals with ACPI Power Resources control. 16 * 17 * An ACPI "power resource object" represents a software controllable power 18 * plane, clock plane, or other resource depended on by a device. 19 * 20 * A device may rely on multiple power resources, and a power resource 21 * may be shared by multiple devices. 22 */ 23 24 #define pr_fmt(fmt) "ACPI: PM: " fmt 25 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/sysfs.h> 33 #include <linux/acpi.h> 34 #include "sleep.h" 35 #include "internal.h" 36 37 #define ACPI_POWER_CLASS "power_resource" 38 #define ACPI_POWER_DEVICE_NAME "Power Resource" 39 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 40 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 42 43 struct acpi_power_dependent_device { 44 struct device *dev; 45 struct list_head node; 46 }; 47 48 struct acpi_power_resource { 49 struct acpi_device device; 50 struct list_head list_node; 51 u32 system_level; 52 u32 order; 53 unsigned int ref_count; 54 u8 state; 55 bool wakeup_enabled; 56 struct mutex resource_lock; 57 struct list_head dependents; 58 }; 59 60 struct acpi_power_resource_entry { 61 struct list_head node; 62 struct acpi_power_resource *resource; 63 }; 64 65 static LIST_HEAD(acpi_power_resource_list); 66 static DEFINE_MUTEX(power_resource_list_lock); 67 68 /* -------------------------------------------------------------------------- 69 Power Resource Management 70 -------------------------------------------------------------------------- */ 71 72 static inline const char *resource_dev_name(struct acpi_power_resource *pr) 73 { 74 return dev_name(&pr->device.dev); 75 } 76 77 static inline 78 struct acpi_power_resource *to_power_resource(struct acpi_device *device) 79 { 80 return container_of(device, struct acpi_power_resource, device); 81 } 82 83 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) 84 { 85 struct acpi_device *device; 86 87 if (acpi_bus_get_device(handle, &device)) 88 return NULL; 89 90 return to_power_resource(device); 91 } 92 93 static int acpi_power_resources_list_add(acpi_handle handle, 94 struct list_head *list) 95 { 96 struct acpi_power_resource *resource = acpi_power_get_context(handle); 97 struct acpi_power_resource_entry *entry; 98 99 if (!resource || !list) 100 return -EINVAL; 101 102 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 103 if (!entry) 104 return -ENOMEM; 105 106 entry->resource = resource; 107 if (!list_empty(list)) { 108 struct acpi_power_resource_entry *e; 109 110 list_for_each_entry(e, list, node) 111 if (e->resource->order > resource->order) { 112 list_add_tail(&entry->node, &e->node); 113 return 0; 114 } 115 } 116 list_add_tail(&entry->node, list); 117 return 0; 118 } 119 120 void acpi_power_resources_list_free(struct list_head *list) 121 { 122 struct acpi_power_resource_entry *entry, *e; 123 124 list_for_each_entry_safe(entry, e, list, node) { 125 list_del(&entry->node); 126 kfree(entry); 127 } 128 } 129 130 static bool acpi_power_resource_is_dup(union acpi_object *package, 131 unsigned int start, unsigned int i) 132 { 133 acpi_handle rhandle, dup; 134 unsigned int j; 135 136 /* The caller is expected to check the package element types */ 137 rhandle = package->package.elements[i].reference.handle; 138 for (j = start; j < i; j++) { 139 dup = package->package.elements[j].reference.handle; 140 if (dup == rhandle) 141 return true; 142 } 143 144 return false; 145 } 146 147 int acpi_extract_power_resources(union acpi_object *package, unsigned int start, 148 struct list_head *list) 149 { 150 unsigned int i; 151 int err = 0; 152 153 for (i = start; i < package->package.count; i++) { 154 union acpi_object *element = &package->package.elements[i]; 155 struct acpi_device *rdev; 156 acpi_handle rhandle; 157 158 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { 159 err = -ENODATA; 160 break; 161 } 162 rhandle = element->reference.handle; 163 if (!rhandle) { 164 err = -ENODEV; 165 break; 166 } 167 168 /* Some ACPI tables contain duplicate power resource references */ 169 if (acpi_power_resource_is_dup(package, start, i)) 170 continue; 171 172 rdev = acpi_add_power_resource(rhandle); 173 if (!rdev) { 174 err = -ENODEV; 175 break; 176 } 177 err = acpi_power_resources_list_add(rhandle, list); 178 if (err) 179 break; 180 } 181 if (err) 182 acpi_power_resources_list_free(list); 183 184 return err; 185 } 186 187 static int __get_state(acpi_handle handle, u8 *state) 188 { 189 acpi_status status = AE_OK; 190 unsigned long long sta = 0; 191 u8 cur_state; 192 193 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 194 if (ACPI_FAILURE(status)) 195 return -ENODEV; 196 197 cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON; 198 199 acpi_handle_debug(handle, "Power resource is %s\n", 200 cur_state ? "on" : "off"); 201 202 *state = cur_state; 203 return 0; 204 } 205 206 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state) 207 { 208 if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) { 209 int ret; 210 211 ret = __get_state(resource->device.handle, &resource->state); 212 if (ret) 213 return ret; 214 } 215 216 *state = resource->state; 217 return 0; 218 } 219 220 static int acpi_power_get_list_state(struct list_head *list, u8 *state) 221 { 222 struct acpi_power_resource_entry *entry; 223 u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF; 224 225 if (!list || !state) 226 return -EINVAL; 227 228 /* The state of the list is 'on' IFF all resources are 'on'. */ 229 list_for_each_entry(entry, list, node) { 230 struct acpi_power_resource *resource = entry->resource; 231 int result; 232 233 mutex_lock(&resource->resource_lock); 234 result = acpi_power_get_state(resource, &cur_state); 235 mutex_unlock(&resource->resource_lock); 236 if (result) 237 return result; 238 239 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) 240 break; 241 } 242 243 pr_debug("Power resource list is %s\n", cur_state ? "on" : "off"); 244 245 *state = cur_state; 246 return 0; 247 } 248 249 static int 250 acpi_power_resource_add_dependent(struct acpi_power_resource *resource, 251 struct device *dev) 252 { 253 struct acpi_power_dependent_device *dep; 254 int ret = 0; 255 256 mutex_lock(&resource->resource_lock); 257 list_for_each_entry(dep, &resource->dependents, node) { 258 /* Only add it once */ 259 if (dep->dev == dev) 260 goto unlock; 261 } 262 263 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 264 if (!dep) { 265 ret = -ENOMEM; 266 goto unlock; 267 } 268 269 dep->dev = dev; 270 list_add_tail(&dep->node, &resource->dependents); 271 dev_dbg(dev, "added power dependency to [%s]\n", 272 resource_dev_name(resource)); 273 274 unlock: 275 mutex_unlock(&resource->resource_lock); 276 return ret; 277 } 278 279 static void 280 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource, 281 struct device *dev) 282 { 283 struct acpi_power_dependent_device *dep; 284 285 mutex_lock(&resource->resource_lock); 286 list_for_each_entry(dep, &resource->dependents, node) { 287 if (dep->dev == dev) { 288 list_del(&dep->node); 289 kfree(dep); 290 dev_dbg(dev, "removed power dependency to [%s]\n", 291 resource_dev_name(resource)); 292 break; 293 } 294 } 295 mutex_unlock(&resource->resource_lock); 296 } 297 298 /** 299 * acpi_device_power_add_dependent - Add dependent device of this ACPI device 300 * @adev: ACPI device pointer 301 * @dev: Dependent device 302 * 303 * If @adev has non-empty _PR0 the @dev is added as dependent device to all 304 * power resources returned by it. This means that whenever these power 305 * resources are turned _ON the dependent devices get runtime resumed. This 306 * is needed for devices such as PCI to allow its driver to re-initialize 307 * it after it went to D0uninitialized. 308 * 309 * If @adev does not have _PR0 this does nothing. 310 * 311 * Returns %0 in case of success and negative errno otherwise. 312 */ 313 int acpi_device_power_add_dependent(struct acpi_device *adev, 314 struct device *dev) 315 { 316 struct acpi_power_resource_entry *entry; 317 struct list_head *resources; 318 int ret; 319 320 if (!adev->flags.power_manageable) 321 return 0; 322 323 resources = &adev->power.states[ACPI_STATE_D0].resources; 324 list_for_each_entry(entry, resources, node) { 325 ret = acpi_power_resource_add_dependent(entry->resource, dev); 326 if (ret) 327 goto err; 328 } 329 330 return 0; 331 332 err: 333 list_for_each_entry(entry, resources, node) 334 acpi_power_resource_remove_dependent(entry->resource, dev); 335 336 return ret; 337 } 338 339 /** 340 * acpi_device_power_remove_dependent - Remove dependent device 341 * @adev: ACPI device pointer 342 * @dev: Dependent device 343 * 344 * Does the opposite of acpi_device_power_add_dependent() and removes the 345 * dependent device if it is found. Can be called to @adev that does not 346 * have _PR0 as well. 347 */ 348 void acpi_device_power_remove_dependent(struct acpi_device *adev, 349 struct device *dev) 350 { 351 struct acpi_power_resource_entry *entry; 352 struct list_head *resources; 353 354 if (!adev->flags.power_manageable) 355 return; 356 357 resources = &adev->power.states[ACPI_STATE_D0].resources; 358 list_for_each_entry_reverse(entry, resources, node) 359 acpi_power_resource_remove_dependent(entry->resource, dev); 360 } 361 362 static int __acpi_power_on(struct acpi_power_resource *resource) 363 { 364 acpi_handle handle = resource->device.handle; 365 struct acpi_power_dependent_device *dep; 366 acpi_status status = AE_OK; 367 368 status = acpi_evaluate_object(handle, "_ON", NULL, NULL); 369 if (ACPI_FAILURE(status)) { 370 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN; 371 return -ENODEV; 372 } 373 374 resource->state = ACPI_POWER_RESOURCE_STATE_ON; 375 376 acpi_handle_debug(handle, "Power resource turned on\n"); 377 378 /* 379 * If there are other dependents on this power resource we need to 380 * resume them now so that their drivers can re-initialize the 381 * hardware properly after it went back to D0. 382 */ 383 if (list_empty(&resource->dependents) || 384 list_is_singular(&resource->dependents)) 385 return 0; 386 387 list_for_each_entry(dep, &resource->dependents, node) { 388 dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n", 389 resource_dev_name(resource)); 390 pm_request_resume(dep->dev); 391 } 392 393 return 0; 394 } 395 396 static int acpi_power_on_unlocked(struct acpi_power_resource *resource) 397 { 398 int result = 0; 399 400 if (resource->ref_count++) { 401 acpi_handle_debug(resource->device.handle, 402 "Power resource already on\n"); 403 } else { 404 result = __acpi_power_on(resource); 405 if (result) 406 resource->ref_count--; 407 } 408 return result; 409 } 410 411 static int acpi_power_on(struct acpi_power_resource *resource) 412 { 413 int result; 414 415 mutex_lock(&resource->resource_lock); 416 result = acpi_power_on_unlocked(resource); 417 mutex_unlock(&resource->resource_lock); 418 return result; 419 } 420 421 static int __acpi_power_off(struct acpi_power_resource *resource) 422 { 423 acpi_handle handle = resource->device.handle; 424 acpi_status status; 425 426 status = acpi_evaluate_object(handle, "_OFF", NULL, NULL); 427 if (ACPI_FAILURE(status)) { 428 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN; 429 return -ENODEV; 430 } 431 432 resource->state = ACPI_POWER_RESOURCE_STATE_OFF; 433 434 acpi_handle_debug(handle, "Power resource turned off\n"); 435 436 return 0; 437 } 438 439 static int acpi_power_off_unlocked(struct acpi_power_resource *resource) 440 { 441 int result = 0; 442 443 if (!resource->ref_count) { 444 acpi_handle_debug(resource->device.handle, 445 "Power resource already off\n"); 446 return 0; 447 } 448 449 if (--resource->ref_count) { 450 acpi_handle_debug(resource->device.handle, 451 "Power resource still in use\n"); 452 } else { 453 result = __acpi_power_off(resource); 454 if (result) 455 resource->ref_count++; 456 } 457 return result; 458 } 459 460 static int acpi_power_off(struct acpi_power_resource *resource) 461 { 462 int result; 463 464 mutex_lock(&resource->resource_lock); 465 result = acpi_power_off_unlocked(resource); 466 mutex_unlock(&resource->resource_lock); 467 return result; 468 } 469 470 static int acpi_power_off_list(struct list_head *list) 471 { 472 struct acpi_power_resource_entry *entry; 473 int result = 0; 474 475 list_for_each_entry_reverse(entry, list, node) { 476 result = acpi_power_off(entry->resource); 477 if (result) 478 goto err; 479 } 480 return 0; 481 482 err: 483 list_for_each_entry_continue(entry, list, node) 484 acpi_power_on(entry->resource); 485 486 return result; 487 } 488 489 static int acpi_power_on_list(struct list_head *list) 490 { 491 struct acpi_power_resource_entry *entry; 492 int result = 0; 493 494 list_for_each_entry(entry, list, node) { 495 result = acpi_power_on(entry->resource); 496 if (result) 497 goto err; 498 } 499 return 0; 500 501 err: 502 list_for_each_entry_continue_reverse(entry, list, node) 503 acpi_power_off(entry->resource); 504 505 return result; 506 } 507 508 static struct attribute *attrs[] = { 509 NULL, 510 }; 511 512 static const struct attribute_group attr_groups[] = { 513 [ACPI_STATE_D0] = { 514 .name = "power_resources_D0", 515 .attrs = attrs, 516 }, 517 [ACPI_STATE_D1] = { 518 .name = "power_resources_D1", 519 .attrs = attrs, 520 }, 521 [ACPI_STATE_D2] = { 522 .name = "power_resources_D2", 523 .attrs = attrs, 524 }, 525 [ACPI_STATE_D3_HOT] = { 526 .name = "power_resources_D3hot", 527 .attrs = attrs, 528 }, 529 }; 530 531 static const struct attribute_group wakeup_attr_group = { 532 .name = "power_resources_wakeup", 533 .attrs = attrs, 534 }; 535 536 static void acpi_power_hide_list(struct acpi_device *adev, 537 struct list_head *resources, 538 const struct attribute_group *attr_group) 539 { 540 struct acpi_power_resource_entry *entry; 541 542 if (list_empty(resources)) 543 return; 544 545 list_for_each_entry_reverse(entry, resources, node) { 546 struct acpi_device *res_dev = &entry->resource->device; 547 548 sysfs_remove_link_from_group(&adev->dev.kobj, 549 attr_group->name, 550 dev_name(&res_dev->dev)); 551 } 552 sysfs_remove_group(&adev->dev.kobj, attr_group); 553 } 554 555 static void acpi_power_expose_list(struct acpi_device *adev, 556 struct list_head *resources, 557 const struct attribute_group *attr_group) 558 { 559 struct acpi_power_resource_entry *entry; 560 int ret; 561 562 if (list_empty(resources)) 563 return; 564 565 ret = sysfs_create_group(&adev->dev.kobj, attr_group); 566 if (ret) 567 return; 568 569 list_for_each_entry(entry, resources, node) { 570 struct acpi_device *res_dev = &entry->resource->device; 571 572 ret = sysfs_add_link_to_group(&adev->dev.kobj, 573 attr_group->name, 574 &res_dev->dev.kobj, 575 dev_name(&res_dev->dev)); 576 if (ret) { 577 acpi_power_hide_list(adev, resources, attr_group); 578 break; 579 } 580 } 581 } 582 583 static void acpi_power_expose_hide(struct acpi_device *adev, 584 struct list_head *resources, 585 const struct attribute_group *attr_group, 586 bool expose) 587 { 588 if (expose) 589 acpi_power_expose_list(adev, resources, attr_group); 590 else 591 acpi_power_hide_list(adev, resources, attr_group); 592 } 593 594 void acpi_power_add_remove_device(struct acpi_device *adev, bool add) 595 { 596 int state; 597 598 if (adev->wakeup.flags.valid) 599 acpi_power_expose_hide(adev, &adev->wakeup.resources, 600 &wakeup_attr_group, add); 601 602 if (!adev->power.flags.power_resources) 603 return; 604 605 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) 606 acpi_power_expose_hide(adev, 607 &adev->power.states[state].resources, 608 &attr_groups[state], add); 609 } 610 611 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) 612 { 613 struct acpi_power_resource_entry *entry; 614 int system_level = 5; 615 616 list_for_each_entry(entry, list, node) { 617 struct acpi_power_resource *resource = entry->resource; 618 int result; 619 u8 state; 620 621 mutex_lock(&resource->resource_lock); 622 623 result = acpi_power_get_state(resource, &state); 624 if (result) { 625 mutex_unlock(&resource->resource_lock); 626 return result; 627 } 628 if (state == ACPI_POWER_RESOURCE_STATE_ON) { 629 resource->ref_count++; 630 resource->wakeup_enabled = true; 631 } 632 if (system_level > resource->system_level) 633 system_level = resource->system_level; 634 635 mutex_unlock(&resource->resource_lock); 636 } 637 *system_level_p = system_level; 638 return 0; 639 } 640 641 /* -------------------------------------------------------------------------- 642 Device Power Management 643 -------------------------------------------------------------------------- */ 644 645 /** 646 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 647 * ACPI 3.0) _PSW (Power State Wake) 648 * @dev: Device to handle. 649 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 650 * @sleep_state: Target sleep state of the system. 651 * @dev_state: Target power state of the device. 652 * 653 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 654 * State Wake) for the device, if present. On failure reset the device's 655 * wakeup.flags.valid flag. 656 * 657 * RETURN VALUE: 658 * 0 if either _DSW or _PSW has been successfully executed 659 * 0 if neither _DSW nor _PSW has been found 660 * -ENODEV if the execution of either _DSW or _PSW has failed 661 */ 662 int acpi_device_sleep_wake(struct acpi_device *dev, 663 int enable, int sleep_state, int dev_state) 664 { 665 union acpi_object in_arg[3]; 666 struct acpi_object_list arg_list = { 3, in_arg }; 667 acpi_status status = AE_OK; 668 669 /* 670 * Try to execute _DSW first. 671 * 672 * Three arguments are needed for the _DSW object: 673 * Argument 0: enable/disable the wake capabilities 674 * Argument 1: target system state 675 * Argument 2: target device state 676 * When _DSW object is called to disable the wake capabilities, maybe 677 * the first argument is filled. The values of the other two arguments 678 * are meaningless. 679 */ 680 in_arg[0].type = ACPI_TYPE_INTEGER; 681 in_arg[0].integer.value = enable; 682 in_arg[1].type = ACPI_TYPE_INTEGER; 683 in_arg[1].integer.value = sleep_state; 684 in_arg[2].type = ACPI_TYPE_INTEGER; 685 in_arg[2].integer.value = dev_state; 686 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 687 if (ACPI_SUCCESS(status)) { 688 return 0; 689 } else if (status != AE_NOT_FOUND) { 690 acpi_handle_info(dev->handle, "_DSW execution failed\n"); 691 dev->wakeup.flags.valid = 0; 692 return -ENODEV; 693 } 694 695 /* Execute _PSW */ 696 status = acpi_execute_simple_method(dev->handle, "_PSW", enable); 697 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 698 acpi_handle_info(dev->handle, "_PSW execution failed\n"); 699 dev->wakeup.flags.valid = 0; 700 return -ENODEV; 701 } 702 703 return 0; 704 } 705 706 /* 707 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 708 * 1. Power on the power resources required for the wakeup device 709 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 710 * State Wake) for the device, if present 711 */ 712 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 713 { 714 struct acpi_power_resource_entry *entry; 715 int err = 0; 716 717 if (!dev || !dev->wakeup.flags.valid) 718 return -EINVAL; 719 720 mutex_lock(&acpi_device_lock); 721 722 if (dev->wakeup.prepare_count++) 723 goto out; 724 725 list_for_each_entry(entry, &dev->wakeup.resources, node) { 726 struct acpi_power_resource *resource = entry->resource; 727 728 mutex_lock(&resource->resource_lock); 729 730 if (!resource->wakeup_enabled) { 731 err = acpi_power_on_unlocked(resource); 732 if (!err) 733 resource->wakeup_enabled = true; 734 } 735 736 mutex_unlock(&resource->resource_lock); 737 738 if (err) { 739 dev_err(&dev->dev, 740 "Cannot turn wakeup power resources on\n"); 741 dev->wakeup.flags.valid = 0; 742 goto out; 743 } 744 } 745 /* 746 * Passing 3 as the third argument below means the device may be 747 * put into arbitrary power state afterward. 748 */ 749 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 750 if (err) 751 dev->wakeup.prepare_count = 0; 752 753 out: 754 mutex_unlock(&acpi_device_lock); 755 return err; 756 } 757 758 /* 759 * Shutdown a wakeup device, counterpart of above method 760 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 761 * State Wake) for the device, if present 762 * 2. Shutdown down the power resources 763 */ 764 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 765 { 766 struct acpi_power_resource_entry *entry; 767 int err = 0; 768 769 if (!dev || !dev->wakeup.flags.valid) 770 return -EINVAL; 771 772 mutex_lock(&acpi_device_lock); 773 774 if (--dev->wakeup.prepare_count > 0) 775 goto out; 776 777 /* 778 * Executing the code below even if prepare_count is already zero when 779 * the function is called may be useful, for example for initialisation. 780 */ 781 if (dev->wakeup.prepare_count < 0) 782 dev->wakeup.prepare_count = 0; 783 784 err = acpi_device_sleep_wake(dev, 0, 0, 0); 785 if (err) 786 goto out; 787 788 list_for_each_entry(entry, &dev->wakeup.resources, node) { 789 struct acpi_power_resource *resource = entry->resource; 790 791 mutex_lock(&resource->resource_lock); 792 793 if (resource->wakeup_enabled) { 794 err = acpi_power_off_unlocked(resource); 795 if (!err) 796 resource->wakeup_enabled = false; 797 } 798 799 mutex_unlock(&resource->resource_lock); 800 801 if (err) { 802 dev_err(&dev->dev, 803 "Cannot turn wakeup power resources off\n"); 804 dev->wakeup.flags.valid = 0; 805 break; 806 } 807 } 808 809 out: 810 mutex_unlock(&acpi_device_lock); 811 return err; 812 } 813 814 int acpi_power_get_inferred_state(struct acpi_device *device, int *state) 815 { 816 u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF; 817 int result = 0; 818 int i = 0; 819 820 if (!device || !state) 821 return -EINVAL; 822 823 /* 824 * We know a device's inferred power state when all the resources 825 * required for a given D-state are 'on'. 826 */ 827 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 828 struct list_head *list = &device->power.states[i].resources; 829 830 if (list_empty(list)) 831 continue; 832 833 result = acpi_power_get_list_state(list, &list_state); 834 if (result) 835 return result; 836 837 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 838 *state = i; 839 return 0; 840 } 841 } 842 843 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ? 844 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT; 845 return 0; 846 } 847 848 int acpi_power_on_resources(struct acpi_device *device, int state) 849 { 850 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) 851 return -EINVAL; 852 853 return acpi_power_on_list(&device->power.states[state].resources); 854 } 855 856 int acpi_power_transition(struct acpi_device *device, int state) 857 { 858 int result = 0; 859 860 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 861 return -EINVAL; 862 863 if (device->power.state == state || !device->flags.power_manageable) 864 return 0; 865 866 if ((device->power.state < ACPI_STATE_D0) 867 || (device->power.state > ACPI_STATE_D3_COLD)) 868 return -ENODEV; 869 870 /* 871 * First we reference all power resources required in the target list 872 * (e.g. so the device doesn't lose power while transitioning). Then, 873 * we dereference all power resources used in the current list. 874 */ 875 if (state < ACPI_STATE_D3_COLD) 876 result = acpi_power_on_list( 877 &device->power.states[state].resources); 878 879 if (!result && device->power.state < ACPI_STATE_D3_COLD) 880 acpi_power_off_list( 881 &device->power.states[device->power.state].resources); 882 883 /* We shouldn't change the state unless the above operations succeed. */ 884 device->power.state = result ? ACPI_STATE_UNKNOWN : state; 885 886 return result; 887 } 888 889 static void acpi_release_power_resource(struct device *dev) 890 { 891 struct acpi_device *device = to_acpi_device(dev); 892 struct acpi_power_resource *resource; 893 894 resource = container_of(device, struct acpi_power_resource, device); 895 896 mutex_lock(&power_resource_list_lock); 897 list_del(&resource->list_node); 898 mutex_unlock(&power_resource_list_lock); 899 900 acpi_free_pnp_ids(&device->pnp); 901 kfree(resource); 902 } 903 904 static ssize_t resource_in_use_show(struct device *dev, 905 struct device_attribute *attr, 906 char *buf) 907 { 908 struct acpi_power_resource *resource; 909 910 resource = to_power_resource(to_acpi_device(dev)); 911 return sprintf(buf, "%u\n", !!resource->ref_count); 912 } 913 static DEVICE_ATTR_RO(resource_in_use); 914 915 static void acpi_power_sysfs_remove(struct acpi_device *device) 916 { 917 device_remove_file(&device->dev, &dev_attr_resource_in_use); 918 } 919 920 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource) 921 { 922 mutex_lock(&power_resource_list_lock); 923 924 if (!list_empty(&acpi_power_resource_list)) { 925 struct acpi_power_resource *r; 926 927 list_for_each_entry(r, &acpi_power_resource_list, list_node) 928 if (r->order > resource->order) { 929 list_add_tail(&resource->list_node, &r->list_node); 930 goto out; 931 } 932 } 933 list_add_tail(&resource->list_node, &acpi_power_resource_list); 934 935 out: 936 mutex_unlock(&power_resource_list_lock); 937 } 938 939 struct acpi_device *acpi_add_power_resource(acpi_handle handle) 940 { 941 struct acpi_power_resource *resource; 942 struct acpi_device *device = NULL; 943 union acpi_object acpi_object; 944 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 945 acpi_status status; 946 int result; 947 948 acpi_bus_get_device(handle, &device); 949 if (device) 950 return device; 951 952 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 953 if (!resource) 954 return NULL; 955 956 device = &resource->device; 957 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER); 958 mutex_init(&resource->resource_lock); 959 INIT_LIST_HEAD(&resource->list_node); 960 INIT_LIST_HEAD(&resource->dependents); 961 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 962 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 963 device->power.state = ACPI_STATE_UNKNOWN; 964 965 /* Evaluate the object to get the system level and resource order. */ 966 status = acpi_evaluate_object(handle, NULL, NULL, &buffer); 967 if (ACPI_FAILURE(status)) 968 goto err; 969 970 resource->system_level = acpi_object.power_resource.system_level; 971 resource->order = acpi_object.power_resource.resource_order; 972 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN; 973 974 pr_info("%s [%s]\n", acpi_device_name(device), acpi_device_bid(device)); 975 976 device->flags.match_driver = true; 977 result = acpi_device_add(device, acpi_release_power_resource); 978 if (result) 979 goto err; 980 981 if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) 982 device->remove = acpi_power_sysfs_remove; 983 984 acpi_power_add_resource_to_list(resource); 985 acpi_device_add_finalize(device); 986 return device; 987 988 err: 989 acpi_release_power_resource(&device->dev); 990 return NULL; 991 } 992 993 #ifdef CONFIG_ACPI_SLEEP 994 void acpi_resume_power_resources(void) 995 { 996 struct acpi_power_resource *resource; 997 998 mutex_lock(&power_resource_list_lock); 999 1000 list_for_each_entry(resource, &acpi_power_resource_list, list_node) { 1001 int result; 1002 u8 state; 1003 1004 mutex_lock(&resource->resource_lock); 1005 1006 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN; 1007 result = acpi_power_get_state(resource, &state); 1008 if (result) { 1009 mutex_unlock(&resource->resource_lock); 1010 continue; 1011 } 1012 1013 if (state == ACPI_POWER_RESOURCE_STATE_OFF 1014 && resource->ref_count) { 1015 acpi_handle_debug(resource->device.handle, "Turning ON\n"); 1016 __acpi_power_on(resource); 1017 } 1018 1019 mutex_unlock(&resource->resource_lock); 1020 } 1021 1022 mutex_unlock(&power_resource_list_lock); 1023 } 1024 #endif 1025 1026 /** 1027 * acpi_turn_off_unused_power_resources - Turn off power resources not in use. 1028 */ 1029 void acpi_turn_off_unused_power_resources(void) 1030 { 1031 struct acpi_power_resource *resource; 1032 1033 mutex_lock(&power_resource_list_lock); 1034 1035 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) { 1036 mutex_lock(&resource->resource_lock); 1037 1038 /* 1039 * Turn off power resources in an unknown state too, because the 1040 * platform firmware on some system expects the OS to turn off 1041 * power resources without any users unconditionally. 1042 */ 1043 if (!resource->ref_count && 1044 resource->state != ACPI_POWER_RESOURCE_STATE_OFF) { 1045 acpi_handle_debug(resource->device.handle, "Turning OFF\n"); 1046 __acpi_power_off(resource); 1047 } 1048 1049 mutex_unlock(&resource->resource_lock); 1050 } 1051 1052 mutex_unlock(&power_resource_list_lock); 1053 } 1054