xref: /openbmc/linux/drivers/acpi/power.c (revision c6acb1e7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/acpi/power.c - ACPI Power Resources management.
4  *
5  * Copyright (C) 2001 - 2015 Intel Corp.
6  * Author: Andy Grover <andrew.grover@intel.com>
7  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9  */
10 
11 /*
12  * ACPI power-managed devices may be controlled in two ways:
13  * 1. via "Device Specific (D-State) Control"
14  * 2. via "Power Resource Control".
15  * The code below deals with ACPI Power Resources control.
16  *
17  * An ACPI "power resource object" represents a software controllable power
18  * plane, clock plane, or other resource depended on by a device.
19  *
20  * A device may rely on multiple power resources, and a power resource
21  * may be shared by multiple devices.
22  */
23 
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sysfs.h>
33 #include <linux/acpi.h>
34 #include "sleep.h"
35 #include "internal.h"
36 
37 #define ACPI_POWER_CLASS		"power_resource"
38 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
39 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
40 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
42 
43 struct acpi_power_dependent_device {
44 	struct device *dev;
45 	struct list_head node;
46 };
47 
48 struct acpi_power_resource {
49 	struct acpi_device device;
50 	struct list_head list_node;
51 	u32 system_level;
52 	u32 order;
53 	unsigned int ref_count;
54 	u8 state;
55 	struct mutex resource_lock;
56 	struct list_head dependents;
57 };
58 
59 struct acpi_power_resource_entry {
60 	struct list_head node;
61 	struct acpi_power_resource *resource;
62 };
63 
64 static LIST_HEAD(acpi_power_resource_list);
65 static DEFINE_MUTEX(power_resource_list_lock);
66 
67 /* --------------------------------------------------------------------------
68                              Power Resource Management
69    -------------------------------------------------------------------------- */
70 
71 static inline const char *resource_dev_name(struct acpi_power_resource *pr)
72 {
73 	return dev_name(&pr->device.dev);
74 }
75 
76 static inline
77 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
78 {
79 	return container_of(device, struct acpi_power_resource, device);
80 }
81 
82 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
83 {
84 	struct acpi_device *device;
85 
86 	if (acpi_bus_get_device(handle, &device))
87 		return NULL;
88 
89 	return to_power_resource(device);
90 }
91 
92 static int acpi_power_resources_list_add(acpi_handle handle,
93 					 struct list_head *list)
94 {
95 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
96 	struct acpi_power_resource_entry *entry;
97 
98 	if (!resource || !list)
99 		return -EINVAL;
100 
101 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
102 	if (!entry)
103 		return -ENOMEM;
104 
105 	entry->resource = resource;
106 	if (!list_empty(list)) {
107 		struct acpi_power_resource_entry *e;
108 
109 		list_for_each_entry(e, list, node)
110 			if (e->resource->order > resource->order) {
111 				list_add_tail(&entry->node, &e->node);
112 				return 0;
113 			}
114 	}
115 	list_add_tail(&entry->node, list);
116 	return 0;
117 }
118 
119 void acpi_power_resources_list_free(struct list_head *list)
120 {
121 	struct acpi_power_resource_entry *entry, *e;
122 
123 	list_for_each_entry_safe(entry, e, list, node) {
124 		list_del(&entry->node);
125 		kfree(entry);
126 	}
127 }
128 
129 static bool acpi_power_resource_is_dup(union acpi_object *package,
130 				       unsigned int start, unsigned int i)
131 {
132 	acpi_handle rhandle, dup;
133 	unsigned int j;
134 
135 	/* The caller is expected to check the package element types */
136 	rhandle = package->package.elements[i].reference.handle;
137 	for (j = start; j < i; j++) {
138 		dup = package->package.elements[j].reference.handle;
139 		if (dup == rhandle)
140 			return true;
141 	}
142 
143 	return false;
144 }
145 
146 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
147 				 struct list_head *list)
148 {
149 	unsigned int i;
150 	int err = 0;
151 
152 	for (i = start; i < package->package.count; i++) {
153 		union acpi_object *element = &package->package.elements[i];
154 		struct acpi_device *rdev;
155 		acpi_handle rhandle;
156 
157 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
158 			err = -ENODATA;
159 			break;
160 		}
161 		rhandle = element->reference.handle;
162 		if (!rhandle) {
163 			err = -ENODEV;
164 			break;
165 		}
166 
167 		/* Some ACPI tables contain duplicate power resource references */
168 		if (acpi_power_resource_is_dup(package, start, i))
169 			continue;
170 
171 		rdev = acpi_add_power_resource(rhandle);
172 		if (!rdev) {
173 			err = -ENODEV;
174 			break;
175 		}
176 		err = acpi_power_resources_list_add(rhandle, list);
177 		if (err)
178 			break;
179 	}
180 	if (err)
181 		acpi_power_resources_list_free(list);
182 
183 	return err;
184 }
185 
186 static int __get_state(acpi_handle handle, u8 *state)
187 {
188 	acpi_status status = AE_OK;
189 	unsigned long long sta = 0;
190 	u8 cur_state;
191 
192 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
193 	if (ACPI_FAILURE(status))
194 		return -ENODEV;
195 
196 	cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON;
197 
198 	acpi_handle_debug(handle, "Power resource is %s\n",
199 			  cur_state ? "on" : "off");
200 
201 	*state = cur_state;
202 	return 0;
203 }
204 
205 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state)
206 {
207 	if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) {
208 		int ret;
209 
210 		ret = __get_state(resource->device.handle, &resource->state);
211 		if (ret)
212 			return ret;
213 	}
214 
215 	*state = resource->state;
216 	return 0;
217 }
218 
219 static int acpi_power_get_list_state(struct list_head *list, u8 *state)
220 {
221 	struct acpi_power_resource_entry *entry;
222 	u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF;
223 
224 	if (!list || !state)
225 		return -EINVAL;
226 
227 	/* The state of the list is 'on' IFF all resources are 'on'. */
228 	list_for_each_entry(entry, list, node) {
229 		struct acpi_power_resource *resource = entry->resource;
230 		int result;
231 
232 		mutex_lock(&resource->resource_lock);
233 		result = acpi_power_get_state(resource, &cur_state);
234 		mutex_unlock(&resource->resource_lock);
235 		if (result)
236 			return result;
237 
238 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
239 			break;
240 	}
241 
242 	pr_debug("Power resource list is %s\n", cur_state ? "on" : "off");
243 
244 	*state = cur_state;
245 	return 0;
246 }
247 
248 static int
249 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
250 				  struct device *dev)
251 {
252 	struct acpi_power_dependent_device *dep;
253 	int ret = 0;
254 
255 	mutex_lock(&resource->resource_lock);
256 	list_for_each_entry(dep, &resource->dependents, node) {
257 		/* Only add it once */
258 		if (dep->dev == dev)
259 			goto unlock;
260 	}
261 
262 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
263 	if (!dep) {
264 		ret = -ENOMEM;
265 		goto unlock;
266 	}
267 
268 	dep->dev = dev;
269 	list_add_tail(&dep->node, &resource->dependents);
270 	dev_dbg(dev, "added power dependency to [%s]\n",
271 		resource_dev_name(resource));
272 
273 unlock:
274 	mutex_unlock(&resource->resource_lock);
275 	return ret;
276 }
277 
278 static void
279 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
280 				     struct device *dev)
281 {
282 	struct acpi_power_dependent_device *dep;
283 
284 	mutex_lock(&resource->resource_lock);
285 	list_for_each_entry(dep, &resource->dependents, node) {
286 		if (dep->dev == dev) {
287 			list_del(&dep->node);
288 			kfree(dep);
289 			dev_dbg(dev, "removed power dependency to [%s]\n",
290 				resource_dev_name(resource));
291 			break;
292 		}
293 	}
294 	mutex_unlock(&resource->resource_lock);
295 }
296 
297 /**
298  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
299  * @adev: ACPI device pointer
300  * @dev: Dependent device
301  *
302  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
303  * power resources returned by it. This means that whenever these power
304  * resources are turned _ON the dependent devices get runtime resumed. This
305  * is needed for devices such as PCI to allow its driver to re-initialize
306  * it after it went to D0uninitialized.
307  *
308  * If @adev does not have _PR0 this does nothing.
309  *
310  * Returns %0 in case of success and negative errno otherwise.
311  */
312 int acpi_device_power_add_dependent(struct acpi_device *adev,
313 				    struct device *dev)
314 {
315 	struct acpi_power_resource_entry *entry;
316 	struct list_head *resources;
317 	int ret;
318 
319 	if (!adev->flags.power_manageable)
320 		return 0;
321 
322 	resources = &adev->power.states[ACPI_STATE_D0].resources;
323 	list_for_each_entry(entry, resources, node) {
324 		ret = acpi_power_resource_add_dependent(entry->resource, dev);
325 		if (ret)
326 			goto err;
327 	}
328 
329 	return 0;
330 
331 err:
332 	list_for_each_entry(entry, resources, node)
333 		acpi_power_resource_remove_dependent(entry->resource, dev);
334 
335 	return ret;
336 }
337 
338 /**
339  * acpi_device_power_remove_dependent - Remove dependent device
340  * @adev: ACPI device pointer
341  * @dev: Dependent device
342  *
343  * Does the opposite of acpi_device_power_add_dependent() and removes the
344  * dependent device if it is found. Can be called to @adev that does not
345  * have _PR0 as well.
346  */
347 void acpi_device_power_remove_dependent(struct acpi_device *adev,
348 					struct device *dev)
349 {
350 	struct acpi_power_resource_entry *entry;
351 	struct list_head *resources;
352 
353 	if (!adev->flags.power_manageable)
354 		return;
355 
356 	resources = &adev->power.states[ACPI_STATE_D0].resources;
357 	list_for_each_entry_reverse(entry, resources, node)
358 		acpi_power_resource_remove_dependent(entry->resource, dev);
359 }
360 
361 static int __acpi_power_on(struct acpi_power_resource *resource)
362 {
363 	acpi_handle handle = resource->device.handle;
364 	struct acpi_power_dependent_device *dep;
365 	acpi_status status = AE_OK;
366 
367 	status = acpi_evaluate_object(handle, "_ON", NULL, NULL);
368 	if (ACPI_FAILURE(status)) {
369 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
370 		return -ENODEV;
371 	}
372 
373 	resource->state = ACPI_POWER_RESOURCE_STATE_ON;
374 
375 	acpi_handle_debug(handle, "Power resource turned on\n");
376 
377 	/*
378 	 * If there are other dependents on this power resource we need to
379 	 * resume them now so that their drivers can re-initialize the
380 	 * hardware properly after it went back to D0.
381 	 */
382 	if (list_empty(&resource->dependents) ||
383 	    list_is_singular(&resource->dependents))
384 		return 0;
385 
386 	list_for_each_entry(dep, &resource->dependents, node) {
387 		dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
388 			resource_dev_name(resource));
389 		pm_request_resume(dep->dev);
390 	}
391 
392 	return 0;
393 }
394 
395 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
396 {
397 	int result = 0;
398 
399 	if (resource->ref_count++) {
400 		acpi_handle_debug(resource->device.handle,
401 				  "Power resource already on\n");
402 	} else {
403 		result = __acpi_power_on(resource);
404 		if (result)
405 			resource->ref_count--;
406 	}
407 	return result;
408 }
409 
410 static int acpi_power_on(struct acpi_power_resource *resource)
411 {
412 	int result;
413 
414 	mutex_lock(&resource->resource_lock);
415 	result = acpi_power_on_unlocked(resource);
416 	mutex_unlock(&resource->resource_lock);
417 	return result;
418 }
419 
420 static int __acpi_power_off(struct acpi_power_resource *resource)
421 {
422 	acpi_handle handle = resource->device.handle;
423 	acpi_status status;
424 
425 	status = acpi_evaluate_object(handle, "_OFF", NULL, NULL);
426 	if (ACPI_FAILURE(status)) {
427 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
428 		return -ENODEV;
429 	}
430 
431 	resource->state = ACPI_POWER_RESOURCE_STATE_OFF;
432 
433 	acpi_handle_debug(handle, "Power resource turned off\n");
434 
435 	return 0;
436 }
437 
438 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
439 {
440 	int result = 0;
441 
442 	if (!resource->ref_count) {
443 		acpi_handle_debug(resource->device.handle,
444 				  "Power resource already off\n");
445 		return 0;
446 	}
447 
448 	if (--resource->ref_count) {
449 		acpi_handle_debug(resource->device.handle,
450 				  "Power resource still in use\n");
451 	} else {
452 		result = __acpi_power_off(resource);
453 		if (result)
454 			resource->ref_count++;
455 	}
456 	return result;
457 }
458 
459 static int acpi_power_off(struct acpi_power_resource *resource)
460 {
461 	int result;
462 
463 	mutex_lock(&resource->resource_lock);
464 	result = acpi_power_off_unlocked(resource);
465 	mutex_unlock(&resource->resource_lock);
466 	return result;
467 }
468 
469 static int acpi_power_off_list(struct list_head *list)
470 {
471 	struct acpi_power_resource_entry *entry;
472 	int result = 0;
473 
474 	list_for_each_entry_reverse(entry, list, node) {
475 		result = acpi_power_off(entry->resource);
476 		if (result)
477 			goto err;
478 	}
479 	return 0;
480 
481  err:
482 	list_for_each_entry_continue(entry, list, node)
483 		acpi_power_on(entry->resource);
484 
485 	return result;
486 }
487 
488 static int acpi_power_on_list(struct list_head *list)
489 {
490 	struct acpi_power_resource_entry *entry;
491 	int result = 0;
492 
493 	list_for_each_entry(entry, list, node) {
494 		result = acpi_power_on(entry->resource);
495 		if (result)
496 			goto err;
497 	}
498 	return 0;
499 
500  err:
501 	list_for_each_entry_continue_reverse(entry, list, node)
502 		acpi_power_off(entry->resource);
503 
504 	return result;
505 }
506 
507 static struct attribute *attrs[] = {
508 	NULL,
509 };
510 
511 static const struct attribute_group attr_groups[] = {
512 	[ACPI_STATE_D0] = {
513 		.name = "power_resources_D0",
514 		.attrs = attrs,
515 	},
516 	[ACPI_STATE_D1] = {
517 		.name = "power_resources_D1",
518 		.attrs = attrs,
519 	},
520 	[ACPI_STATE_D2] = {
521 		.name = "power_resources_D2",
522 		.attrs = attrs,
523 	},
524 	[ACPI_STATE_D3_HOT] = {
525 		.name = "power_resources_D3hot",
526 		.attrs = attrs,
527 	},
528 };
529 
530 static const struct attribute_group wakeup_attr_group = {
531 	.name = "power_resources_wakeup",
532 	.attrs = attrs,
533 };
534 
535 static void acpi_power_hide_list(struct acpi_device *adev,
536 				 struct list_head *resources,
537 				 const struct attribute_group *attr_group)
538 {
539 	struct acpi_power_resource_entry *entry;
540 
541 	if (list_empty(resources))
542 		return;
543 
544 	list_for_each_entry_reverse(entry, resources, node) {
545 		struct acpi_device *res_dev = &entry->resource->device;
546 
547 		sysfs_remove_link_from_group(&adev->dev.kobj,
548 					     attr_group->name,
549 					     dev_name(&res_dev->dev));
550 	}
551 	sysfs_remove_group(&adev->dev.kobj, attr_group);
552 }
553 
554 static void acpi_power_expose_list(struct acpi_device *adev,
555 				   struct list_head *resources,
556 				   const struct attribute_group *attr_group)
557 {
558 	struct acpi_power_resource_entry *entry;
559 	int ret;
560 
561 	if (list_empty(resources))
562 		return;
563 
564 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
565 	if (ret)
566 		return;
567 
568 	list_for_each_entry(entry, resources, node) {
569 		struct acpi_device *res_dev = &entry->resource->device;
570 
571 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
572 					      attr_group->name,
573 					      &res_dev->dev.kobj,
574 					      dev_name(&res_dev->dev));
575 		if (ret) {
576 			acpi_power_hide_list(adev, resources, attr_group);
577 			break;
578 		}
579 	}
580 }
581 
582 static void acpi_power_expose_hide(struct acpi_device *adev,
583 				   struct list_head *resources,
584 				   const struct attribute_group *attr_group,
585 				   bool expose)
586 {
587 	if (expose)
588 		acpi_power_expose_list(adev, resources, attr_group);
589 	else
590 		acpi_power_hide_list(adev, resources, attr_group);
591 }
592 
593 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
594 {
595 	int state;
596 
597 	if (adev->wakeup.flags.valid)
598 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
599 				       &wakeup_attr_group, add);
600 
601 	if (!adev->power.flags.power_resources)
602 		return;
603 
604 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
605 		acpi_power_expose_hide(adev,
606 				       &adev->power.states[state].resources,
607 				       &attr_groups[state], add);
608 }
609 
610 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
611 {
612 	struct acpi_power_resource_entry *entry;
613 	int system_level = 5;
614 
615 	list_for_each_entry(entry, list, node) {
616 		struct acpi_power_resource *resource = entry->resource;
617 		u8 state;
618 
619 		mutex_lock(&resource->resource_lock);
620 
621 		/*
622 		 * Make sure that the power resource state and its reference
623 		 * counter value are consistent with each other.
624 		 */
625 		if (!resource->ref_count &&
626 		    !acpi_power_get_state(resource, &state) &&
627 		    state == ACPI_POWER_RESOURCE_STATE_ON)
628 			__acpi_power_off(resource);
629 
630 		if (system_level > resource->system_level)
631 			system_level = resource->system_level;
632 
633 		mutex_unlock(&resource->resource_lock);
634 	}
635 	*system_level_p = system_level;
636 	return 0;
637 }
638 
639 /* --------------------------------------------------------------------------
640                              Device Power Management
641    -------------------------------------------------------------------------- */
642 
643 /**
644  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
645  *                          ACPI 3.0) _PSW (Power State Wake)
646  * @dev: Device to handle.
647  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
648  * @sleep_state: Target sleep state of the system.
649  * @dev_state: Target power state of the device.
650  *
651  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
652  * State Wake) for the device, if present.  On failure reset the device's
653  * wakeup.flags.valid flag.
654  *
655  * RETURN VALUE:
656  * 0 if either _DSW or _PSW has been successfully executed
657  * 0 if neither _DSW nor _PSW has been found
658  * -ENODEV if the execution of either _DSW or _PSW has failed
659  */
660 int acpi_device_sleep_wake(struct acpi_device *dev,
661 			   int enable, int sleep_state, int dev_state)
662 {
663 	union acpi_object in_arg[3];
664 	struct acpi_object_list arg_list = { 3, in_arg };
665 	acpi_status status = AE_OK;
666 
667 	/*
668 	 * Try to execute _DSW first.
669 	 *
670 	 * Three arguments are needed for the _DSW object:
671 	 * Argument 0: enable/disable the wake capabilities
672 	 * Argument 1: target system state
673 	 * Argument 2: target device state
674 	 * When _DSW object is called to disable the wake capabilities, maybe
675 	 * the first argument is filled. The values of the other two arguments
676 	 * are meaningless.
677 	 */
678 	in_arg[0].type = ACPI_TYPE_INTEGER;
679 	in_arg[0].integer.value = enable;
680 	in_arg[1].type = ACPI_TYPE_INTEGER;
681 	in_arg[1].integer.value = sleep_state;
682 	in_arg[2].type = ACPI_TYPE_INTEGER;
683 	in_arg[2].integer.value = dev_state;
684 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
685 	if (ACPI_SUCCESS(status)) {
686 		return 0;
687 	} else if (status != AE_NOT_FOUND) {
688 		acpi_handle_info(dev->handle, "_DSW execution failed\n");
689 		dev->wakeup.flags.valid = 0;
690 		return -ENODEV;
691 	}
692 
693 	/* Execute _PSW */
694 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
695 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
696 		acpi_handle_info(dev->handle, "_PSW execution failed\n");
697 		dev->wakeup.flags.valid = 0;
698 		return -ENODEV;
699 	}
700 
701 	return 0;
702 }
703 
704 /*
705  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
706  * 1. Power on the power resources required for the wakeup device
707  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
708  *    State Wake) for the device, if present
709  */
710 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
711 {
712 	int err = 0;
713 
714 	if (!dev || !dev->wakeup.flags.valid)
715 		return -EINVAL;
716 
717 	mutex_lock(&acpi_device_lock);
718 
719 	if (dev->wakeup.prepare_count++)
720 		goto out;
721 
722 	err = acpi_power_on_list(&dev->wakeup.resources);
723 	if (err) {
724 		dev_err(&dev->dev, "Cannot turn on wakeup power resources\n");
725 		dev->wakeup.flags.valid = 0;
726 		goto out;
727 	}
728 
729 	/*
730 	 * Passing 3 as the third argument below means the device may be
731 	 * put into arbitrary power state afterward.
732 	 */
733 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
734 	if (err) {
735 		acpi_power_off_list(&dev->wakeup.resources);
736 		dev->wakeup.prepare_count = 0;
737 	}
738 
739  out:
740 	mutex_unlock(&acpi_device_lock);
741 	return err;
742 }
743 
744 /*
745  * Shutdown a wakeup device, counterpart of above method
746  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
747  *    State Wake) for the device, if present
748  * 2. Shutdown down the power resources
749  */
750 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
751 {
752 	struct acpi_power_resource_entry *entry;
753 	int err = 0;
754 
755 	if (!dev || !dev->wakeup.flags.valid)
756 		return -EINVAL;
757 
758 	mutex_lock(&acpi_device_lock);
759 
760 	/* Do nothing if wakeup power has not been enabled for this device. */
761 	if (dev->wakeup.prepare_count <= 0)
762 		goto out;
763 
764 	if (--dev->wakeup.prepare_count > 0)
765 		goto out;
766 
767 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
768 	if (err)
769 		goto out;
770 
771 	/*
772 	 * All of the power resources in the list need to be turned off even if
773 	 * there are errors.
774 	 */
775 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
776 		int ret;
777 
778 		ret = acpi_power_off(entry->resource);
779 		if (ret && !err)
780 			err = ret;
781 	}
782 	if (err) {
783 		dev_err(&dev->dev, "Cannot turn off wakeup power resources\n");
784 		dev->wakeup.flags.valid = 0;
785 	}
786 
787  out:
788 	mutex_unlock(&acpi_device_lock);
789 	return err;
790 }
791 
792 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
793 {
794 	u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF;
795 	int result = 0;
796 	int i = 0;
797 
798 	if (!device || !state)
799 		return -EINVAL;
800 
801 	/*
802 	 * We know a device's inferred power state when all the resources
803 	 * required for a given D-state are 'on'.
804 	 */
805 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
806 		struct list_head *list = &device->power.states[i].resources;
807 
808 		if (list_empty(list))
809 			continue;
810 
811 		result = acpi_power_get_list_state(list, &list_state);
812 		if (result)
813 			return result;
814 
815 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
816 			*state = i;
817 			return 0;
818 		}
819 	}
820 
821 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
822 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
823 	return 0;
824 }
825 
826 int acpi_power_on_resources(struct acpi_device *device, int state)
827 {
828 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
829 		return -EINVAL;
830 
831 	return acpi_power_on_list(&device->power.states[state].resources);
832 }
833 
834 int acpi_power_transition(struct acpi_device *device, int state)
835 {
836 	int result = 0;
837 
838 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
839 		return -EINVAL;
840 
841 	if (device->power.state == state || !device->flags.power_manageable)
842 		return 0;
843 
844 	if ((device->power.state < ACPI_STATE_D0)
845 	    || (device->power.state > ACPI_STATE_D3_COLD))
846 		return -ENODEV;
847 
848 	/*
849 	 * First we reference all power resources required in the target list
850 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
851 	 * we dereference all power resources used in the current list.
852 	 */
853 	if (state < ACPI_STATE_D3_COLD)
854 		result = acpi_power_on_list(
855 			&device->power.states[state].resources);
856 
857 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
858 		acpi_power_off_list(
859 			&device->power.states[device->power.state].resources);
860 
861 	/* We shouldn't change the state unless the above operations succeed. */
862 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
863 
864 	return result;
865 }
866 
867 static void acpi_release_power_resource(struct device *dev)
868 {
869 	struct acpi_device *device = to_acpi_device(dev);
870 	struct acpi_power_resource *resource;
871 
872 	resource = container_of(device, struct acpi_power_resource, device);
873 
874 	mutex_lock(&power_resource_list_lock);
875 	list_del(&resource->list_node);
876 	mutex_unlock(&power_resource_list_lock);
877 
878 	acpi_free_pnp_ids(&device->pnp);
879 	kfree(resource);
880 }
881 
882 static ssize_t resource_in_use_show(struct device *dev,
883 				    struct device_attribute *attr,
884 				    char *buf)
885 {
886 	struct acpi_power_resource *resource;
887 
888 	resource = to_power_resource(to_acpi_device(dev));
889 	return sprintf(buf, "%u\n", !!resource->ref_count);
890 }
891 static DEVICE_ATTR_RO(resource_in_use);
892 
893 static void acpi_power_sysfs_remove(struct acpi_device *device)
894 {
895 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
896 }
897 
898 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
899 {
900 	mutex_lock(&power_resource_list_lock);
901 
902 	if (!list_empty(&acpi_power_resource_list)) {
903 		struct acpi_power_resource *r;
904 
905 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
906 			if (r->order > resource->order) {
907 				list_add_tail(&resource->list_node, &r->list_node);
908 				goto out;
909 			}
910 	}
911 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
912 
913  out:
914 	mutex_unlock(&power_resource_list_lock);
915 }
916 
917 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
918 {
919 	struct acpi_power_resource *resource;
920 	struct acpi_device *device = NULL;
921 	union acpi_object acpi_object;
922 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
923 	acpi_status status;
924 	u8 state_dummy;
925 	int result;
926 
927 	acpi_bus_get_device(handle, &device);
928 	if (device)
929 		return device;
930 
931 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
932 	if (!resource)
933 		return NULL;
934 
935 	device = &resource->device;
936 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER);
937 	mutex_init(&resource->resource_lock);
938 	INIT_LIST_HEAD(&resource->list_node);
939 	INIT_LIST_HEAD(&resource->dependents);
940 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
941 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
942 	device->power.state = ACPI_STATE_UNKNOWN;
943 
944 	/* Evaluate the object to get the system level and resource order. */
945 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
946 	if (ACPI_FAILURE(status))
947 		goto err;
948 
949 	resource->system_level = acpi_object.power_resource.system_level;
950 	resource->order = acpi_object.power_resource.resource_order;
951 	resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
952 
953 	/* Get the initial state or just flip it on if that fails. */
954 	if (acpi_power_get_state(resource, &state_dummy))
955 		__acpi_power_on(resource);
956 
957 	pr_info("%s [%s]\n", acpi_device_name(device), acpi_device_bid(device));
958 
959 	device->flags.match_driver = true;
960 	result = acpi_device_add(device, acpi_release_power_resource);
961 	if (result)
962 		goto err;
963 
964 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
965 		device->remove = acpi_power_sysfs_remove;
966 
967 	acpi_power_add_resource_to_list(resource);
968 	acpi_device_add_finalize(device);
969 	return device;
970 
971  err:
972 	acpi_release_power_resource(&device->dev);
973 	return NULL;
974 }
975 
976 #ifdef CONFIG_ACPI_SLEEP
977 void acpi_resume_power_resources(void)
978 {
979 	struct acpi_power_resource *resource;
980 
981 	mutex_lock(&power_resource_list_lock);
982 
983 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
984 		int result;
985 		u8 state;
986 
987 		mutex_lock(&resource->resource_lock);
988 
989 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
990 		result = acpi_power_get_state(resource, &state);
991 		if (result) {
992 			mutex_unlock(&resource->resource_lock);
993 			continue;
994 		}
995 
996 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
997 		    && resource->ref_count) {
998 			acpi_handle_debug(resource->device.handle, "Turning ON\n");
999 			__acpi_power_on(resource);
1000 		}
1001 
1002 		mutex_unlock(&resource->resource_lock);
1003 	}
1004 
1005 	mutex_unlock(&power_resource_list_lock);
1006 }
1007 #endif
1008 
1009 /**
1010  * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1011  */
1012 void acpi_turn_off_unused_power_resources(void)
1013 {
1014 	struct acpi_power_resource *resource;
1015 
1016 	mutex_lock(&power_resource_list_lock);
1017 
1018 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1019 		mutex_lock(&resource->resource_lock);
1020 
1021 		if (!resource->ref_count &&
1022 		    resource->state == ACPI_POWER_RESOURCE_STATE_ON) {
1023 			acpi_handle_debug(resource->device.handle, "Turning OFF\n");
1024 			__acpi_power_off(resource);
1025 		}
1026 
1027 		mutex_unlock(&resource->resource_lock);
1028 	}
1029 
1030 	mutex_unlock(&power_resource_list_lock);
1031 }
1032