xref: /openbmc/linux/drivers/acpi/power.c (revision a2cce7a9)
1 /*
2  * drivers/acpi/power.c - ACPI Power Resources management.
3  *
4  * Copyright (C) 2001 - 2015 Intel Corp.
5  * Author: Andy Grover <andrew.grover@intel.com>
6  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
22  */
23 
24 /*
25  * ACPI power-managed devices may be controlled in two ways:
26  * 1. via "Device Specific (D-State) Control"
27  * 2. via "Power Resource Control".
28  * The code below deals with ACPI Power Resources control.
29  *
30  * An ACPI "power resource object" represents a software controllable power
31  * plane, clock plane, or other resource depended on by a device.
32  *
33  * A device may rely on multiple power resources, and a power resource
34  * may be shared by multiple devices.
35  */
36 
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/init.h>
40 #include <linux/types.h>
41 #include <linux/slab.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/sysfs.h>
44 #include <linux/acpi.h>
45 #include "sleep.h"
46 #include "internal.h"
47 
48 #define _COMPONENT			ACPI_POWER_COMPONENT
49 ACPI_MODULE_NAME("power");
50 #define ACPI_POWER_CLASS		"power_resource"
51 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
52 #define ACPI_POWER_FILE_INFO		"info"
53 #define ACPI_POWER_FILE_STATUS		"state"
54 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
55 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
56 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
57 
58 struct acpi_power_resource {
59 	struct acpi_device device;
60 	struct list_head list_node;
61 	char *name;
62 	u32 system_level;
63 	u32 order;
64 	unsigned int ref_count;
65 	bool wakeup_enabled;
66 	struct mutex resource_lock;
67 };
68 
69 struct acpi_power_resource_entry {
70 	struct list_head node;
71 	struct acpi_power_resource *resource;
72 };
73 
74 static LIST_HEAD(acpi_power_resource_list);
75 static DEFINE_MUTEX(power_resource_list_lock);
76 
77 /* --------------------------------------------------------------------------
78                              Power Resource Management
79    -------------------------------------------------------------------------- */
80 
81 static inline
82 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
83 {
84 	return container_of(device, struct acpi_power_resource, device);
85 }
86 
87 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
88 {
89 	struct acpi_device *device;
90 
91 	if (acpi_bus_get_device(handle, &device))
92 		return NULL;
93 
94 	return to_power_resource(device);
95 }
96 
97 static int acpi_power_resources_list_add(acpi_handle handle,
98 					 struct list_head *list)
99 {
100 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
101 	struct acpi_power_resource_entry *entry;
102 
103 	if (!resource || !list)
104 		return -EINVAL;
105 
106 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
107 	if (!entry)
108 		return -ENOMEM;
109 
110 	entry->resource = resource;
111 	if (!list_empty(list)) {
112 		struct acpi_power_resource_entry *e;
113 
114 		list_for_each_entry(e, list, node)
115 			if (e->resource->order > resource->order) {
116 				list_add_tail(&entry->node, &e->node);
117 				return 0;
118 			}
119 	}
120 	list_add_tail(&entry->node, list);
121 	return 0;
122 }
123 
124 void acpi_power_resources_list_free(struct list_head *list)
125 {
126 	struct acpi_power_resource_entry *entry, *e;
127 
128 	list_for_each_entry_safe(entry, e, list, node) {
129 		list_del(&entry->node);
130 		kfree(entry);
131 	}
132 }
133 
134 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
135 				 struct list_head *list)
136 {
137 	unsigned int i;
138 	int err = 0;
139 
140 	for (i = start; i < package->package.count; i++) {
141 		union acpi_object *element = &package->package.elements[i];
142 		acpi_handle rhandle;
143 
144 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
145 			err = -ENODATA;
146 			break;
147 		}
148 		rhandle = element->reference.handle;
149 		if (!rhandle) {
150 			err = -ENODEV;
151 			break;
152 		}
153 		err = acpi_add_power_resource(rhandle);
154 		if (err)
155 			break;
156 
157 		err = acpi_power_resources_list_add(rhandle, list);
158 		if (err)
159 			break;
160 	}
161 	if (err)
162 		acpi_power_resources_list_free(list);
163 
164 	return err;
165 }
166 
167 static int acpi_power_get_state(acpi_handle handle, int *state)
168 {
169 	acpi_status status = AE_OK;
170 	unsigned long long sta = 0;
171 	char node_name[5];
172 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
173 
174 
175 	if (!handle || !state)
176 		return -EINVAL;
177 
178 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
179 	if (ACPI_FAILURE(status))
180 		return -ENODEV;
181 
182 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
183 			      ACPI_POWER_RESOURCE_STATE_OFF;
184 
185 	acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
186 
187 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
188 			  node_name,
189 				*state ? "on" : "off"));
190 
191 	return 0;
192 }
193 
194 static int acpi_power_get_list_state(struct list_head *list, int *state)
195 {
196 	struct acpi_power_resource_entry *entry;
197 	int cur_state;
198 
199 	if (!list || !state)
200 		return -EINVAL;
201 
202 	/* The state of the list is 'on' IFF all resources are 'on'. */
203 	list_for_each_entry(entry, list, node) {
204 		struct acpi_power_resource *resource = entry->resource;
205 		acpi_handle handle = resource->device.handle;
206 		int result;
207 
208 		mutex_lock(&resource->resource_lock);
209 		result = acpi_power_get_state(handle, &cur_state);
210 		mutex_unlock(&resource->resource_lock);
211 		if (result)
212 			return result;
213 
214 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
215 			break;
216 	}
217 
218 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
219 			  cur_state ? "on" : "off"));
220 
221 	*state = cur_state;
222 	return 0;
223 }
224 
225 static int __acpi_power_on(struct acpi_power_resource *resource)
226 {
227 	acpi_status status = AE_OK;
228 
229 	status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
230 	if (ACPI_FAILURE(status))
231 		return -ENODEV;
232 
233 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
234 			  resource->name));
235 
236 	return 0;
237 }
238 
239 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
240 {
241 	int result = 0;
242 
243 	if (resource->ref_count++) {
244 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
245 				  "Power resource [%s] already on\n",
246 				  resource->name));
247 	} else {
248 		result = __acpi_power_on(resource);
249 		if (result)
250 			resource->ref_count--;
251 	}
252 	return result;
253 }
254 
255 static int acpi_power_on(struct acpi_power_resource *resource)
256 {
257 	int result;
258 
259 	mutex_lock(&resource->resource_lock);
260 	result = acpi_power_on_unlocked(resource);
261 	mutex_unlock(&resource->resource_lock);
262 	return result;
263 }
264 
265 static int __acpi_power_off(struct acpi_power_resource *resource)
266 {
267 	acpi_status status;
268 
269 	status = acpi_evaluate_object(resource->device.handle, "_OFF",
270 				      NULL, NULL);
271 	if (ACPI_FAILURE(status))
272 		return -ENODEV;
273 
274 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
275 			  resource->name));
276 	return 0;
277 }
278 
279 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
280 {
281 	int result = 0;
282 
283 	if (!resource->ref_count) {
284 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
285 				  "Power resource [%s] already off\n",
286 				  resource->name));
287 		return 0;
288 	}
289 
290 	if (--resource->ref_count) {
291 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
292 				  "Power resource [%s] still in use\n",
293 				  resource->name));
294 	} else {
295 		result = __acpi_power_off(resource);
296 		if (result)
297 			resource->ref_count++;
298 	}
299 	return result;
300 }
301 
302 static int acpi_power_off(struct acpi_power_resource *resource)
303 {
304 	int result;
305 
306 	mutex_lock(&resource->resource_lock);
307 	result = acpi_power_off_unlocked(resource);
308 	mutex_unlock(&resource->resource_lock);
309 	return result;
310 }
311 
312 static int acpi_power_off_list(struct list_head *list)
313 {
314 	struct acpi_power_resource_entry *entry;
315 	int result = 0;
316 
317 	list_for_each_entry_reverse(entry, list, node) {
318 		result = acpi_power_off(entry->resource);
319 		if (result)
320 			goto err;
321 	}
322 	return 0;
323 
324  err:
325 	list_for_each_entry_continue(entry, list, node)
326 		acpi_power_on(entry->resource);
327 
328 	return result;
329 }
330 
331 static int acpi_power_on_list(struct list_head *list)
332 {
333 	struct acpi_power_resource_entry *entry;
334 	int result = 0;
335 
336 	list_for_each_entry(entry, list, node) {
337 		result = acpi_power_on(entry->resource);
338 		if (result)
339 			goto err;
340 	}
341 	return 0;
342 
343  err:
344 	list_for_each_entry_continue_reverse(entry, list, node)
345 		acpi_power_off(entry->resource);
346 
347 	return result;
348 }
349 
350 static struct attribute *attrs[] = {
351 	NULL,
352 };
353 
354 static struct attribute_group attr_groups[] = {
355 	[ACPI_STATE_D0] = {
356 		.name = "power_resources_D0",
357 		.attrs = attrs,
358 	},
359 	[ACPI_STATE_D1] = {
360 		.name = "power_resources_D1",
361 		.attrs = attrs,
362 	},
363 	[ACPI_STATE_D2] = {
364 		.name = "power_resources_D2",
365 		.attrs = attrs,
366 	},
367 	[ACPI_STATE_D3_HOT] = {
368 		.name = "power_resources_D3hot",
369 		.attrs = attrs,
370 	},
371 };
372 
373 static struct attribute_group wakeup_attr_group = {
374 	.name = "power_resources_wakeup",
375 	.attrs = attrs,
376 };
377 
378 static void acpi_power_hide_list(struct acpi_device *adev,
379 				 struct list_head *resources,
380 				 struct attribute_group *attr_group)
381 {
382 	struct acpi_power_resource_entry *entry;
383 
384 	if (list_empty(resources))
385 		return;
386 
387 	list_for_each_entry_reverse(entry, resources, node) {
388 		struct acpi_device *res_dev = &entry->resource->device;
389 
390 		sysfs_remove_link_from_group(&adev->dev.kobj,
391 					     attr_group->name,
392 					     dev_name(&res_dev->dev));
393 	}
394 	sysfs_remove_group(&adev->dev.kobj, attr_group);
395 }
396 
397 static void acpi_power_expose_list(struct acpi_device *adev,
398 				   struct list_head *resources,
399 				   struct attribute_group *attr_group)
400 {
401 	struct acpi_power_resource_entry *entry;
402 	int ret;
403 
404 	if (list_empty(resources))
405 		return;
406 
407 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
408 	if (ret)
409 		return;
410 
411 	list_for_each_entry(entry, resources, node) {
412 		struct acpi_device *res_dev = &entry->resource->device;
413 
414 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
415 					      attr_group->name,
416 					      &res_dev->dev.kobj,
417 					      dev_name(&res_dev->dev));
418 		if (ret) {
419 			acpi_power_hide_list(adev, resources, attr_group);
420 			break;
421 		}
422 	}
423 }
424 
425 static void acpi_power_expose_hide(struct acpi_device *adev,
426 				   struct list_head *resources,
427 				   struct attribute_group *attr_group,
428 				   bool expose)
429 {
430 	if (expose)
431 		acpi_power_expose_list(adev, resources, attr_group);
432 	else
433 		acpi_power_hide_list(adev, resources, attr_group);
434 }
435 
436 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
437 {
438 	int state;
439 
440 	if (adev->wakeup.flags.valid)
441 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
442 				       &wakeup_attr_group, add);
443 
444 	if (!adev->power.flags.power_resources)
445 		return;
446 
447 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
448 		acpi_power_expose_hide(adev,
449 				       &adev->power.states[state].resources,
450 				       &attr_groups[state], add);
451 }
452 
453 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
454 {
455 	struct acpi_power_resource_entry *entry;
456 	int system_level = 5;
457 
458 	list_for_each_entry(entry, list, node) {
459 		struct acpi_power_resource *resource = entry->resource;
460 		acpi_handle handle = resource->device.handle;
461 		int result;
462 		int state;
463 
464 		mutex_lock(&resource->resource_lock);
465 
466 		result = acpi_power_get_state(handle, &state);
467 		if (result) {
468 			mutex_unlock(&resource->resource_lock);
469 			return result;
470 		}
471 		if (state == ACPI_POWER_RESOURCE_STATE_ON) {
472 			resource->ref_count++;
473 			resource->wakeup_enabled = true;
474 		}
475 		if (system_level > resource->system_level)
476 			system_level = resource->system_level;
477 
478 		mutex_unlock(&resource->resource_lock);
479 	}
480 	*system_level_p = system_level;
481 	return 0;
482 }
483 
484 /* --------------------------------------------------------------------------
485                              Device Power Management
486    -------------------------------------------------------------------------- */
487 
488 /**
489  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
490  *                          ACPI 3.0) _PSW (Power State Wake)
491  * @dev: Device to handle.
492  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
493  * @sleep_state: Target sleep state of the system.
494  * @dev_state: Target power state of the device.
495  *
496  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
497  * State Wake) for the device, if present.  On failure reset the device's
498  * wakeup.flags.valid flag.
499  *
500  * RETURN VALUE:
501  * 0 if either _DSW or _PSW has been successfully executed
502  * 0 if neither _DSW nor _PSW has been found
503  * -ENODEV if the execution of either _DSW or _PSW has failed
504  */
505 int acpi_device_sleep_wake(struct acpi_device *dev,
506                            int enable, int sleep_state, int dev_state)
507 {
508 	union acpi_object in_arg[3];
509 	struct acpi_object_list arg_list = { 3, in_arg };
510 	acpi_status status = AE_OK;
511 
512 	/*
513 	 * Try to execute _DSW first.
514 	 *
515 	 * Three agruments are needed for the _DSW object:
516 	 * Argument 0: enable/disable the wake capabilities
517 	 * Argument 1: target system state
518 	 * Argument 2: target device state
519 	 * When _DSW object is called to disable the wake capabilities, maybe
520 	 * the first argument is filled. The values of the other two agruments
521 	 * are meaningless.
522 	 */
523 	in_arg[0].type = ACPI_TYPE_INTEGER;
524 	in_arg[0].integer.value = enable;
525 	in_arg[1].type = ACPI_TYPE_INTEGER;
526 	in_arg[1].integer.value = sleep_state;
527 	in_arg[2].type = ACPI_TYPE_INTEGER;
528 	in_arg[2].integer.value = dev_state;
529 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
530 	if (ACPI_SUCCESS(status)) {
531 		return 0;
532 	} else if (status != AE_NOT_FOUND) {
533 		printk(KERN_ERR PREFIX "_DSW execution failed\n");
534 		dev->wakeup.flags.valid = 0;
535 		return -ENODEV;
536 	}
537 
538 	/* Execute _PSW */
539 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
540 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
541 		printk(KERN_ERR PREFIX "_PSW execution failed\n");
542 		dev->wakeup.flags.valid = 0;
543 		return -ENODEV;
544 	}
545 
546 	return 0;
547 }
548 
549 /*
550  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
551  * 1. Power on the power resources required for the wakeup device
552  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
553  *    State Wake) for the device, if present
554  */
555 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
556 {
557 	struct acpi_power_resource_entry *entry;
558 	int err = 0;
559 
560 	if (!dev || !dev->wakeup.flags.valid)
561 		return -EINVAL;
562 
563 	mutex_lock(&acpi_device_lock);
564 
565 	if (dev->wakeup.prepare_count++)
566 		goto out;
567 
568 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
569 		struct acpi_power_resource *resource = entry->resource;
570 
571 		mutex_lock(&resource->resource_lock);
572 
573 		if (!resource->wakeup_enabled) {
574 			err = acpi_power_on_unlocked(resource);
575 			if (!err)
576 				resource->wakeup_enabled = true;
577 		}
578 
579 		mutex_unlock(&resource->resource_lock);
580 
581 		if (err) {
582 			dev_err(&dev->dev,
583 				"Cannot turn wakeup power resources on\n");
584 			dev->wakeup.flags.valid = 0;
585 			goto out;
586 		}
587 	}
588 	/*
589 	 * Passing 3 as the third argument below means the device may be
590 	 * put into arbitrary power state afterward.
591 	 */
592 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
593 	if (err)
594 		dev->wakeup.prepare_count = 0;
595 
596  out:
597 	mutex_unlock(&acpi_device_lock);
598 	return err;
599 }
600 
601 /*
602  * Shutdown a wakeup device, counterpart of above method
603  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
604  *    State Wake) for the device, if present
605  * 2. Shutdown down the power resources
606  */
607 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
608 {
609 	struct acpi_power_resource_entry *entry;
610 	int err = 0;
611 
612 	if (!dev || !dev->wakeup.flags.valid)
613 		return -EINVAL;
614 
615 	mutex_lock(&acpi_device_lock);
616 
617 	if (--dev->wakeup.prepare_count > 0)
618 		goto out;
619 
620 	/*
621 	 * Executing the code below even if prepare_count is already zero when
622 	 * the function is called may be useful, for example for initialisation.
623 	 */
624 	if (dev->wakeup.prepare_count < 0)
625 		dev->wakeup.prepare_count = 0;
626 
627 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
628 	if (err)
629 		goto out;
630 
631 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
632 		struct acpi_power_resource *resource = entry->resource;
633 
634 		mutex_lock(&resource->resource_lock);
635 
636 		if (resource->wakeup_enabled) {
637 			err = acpi_power_off_unlocked(resource);
638 			if (!err)
639 				resource->wakeup_enabled = false;
640 		}
641 
642 		mutex_unlock(&resource->resource_lock);
643 
644 		if (err) {
645 			dev_err(&dev->dev,
646 				"Cannot turn wakeup power resources off\n");
647 			dev->wakeup.flags.valid = 0;
648 			break;
649 		}
650 	}
651 
652  out:
653 	mutex_unlock(&acpi_device_lock);
654 	return err;
655 }
656 
657 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
658 {
659 	int result = 0;
660 	int list_state = 0;
661 	int i = 0;
662 
663 	if (!device || !state)
664 		return -EINVAL;
665 
666 	/*
667 	 * We know a device's inferred power state when all the resources
668 	 * required for a given D-state are 'on'.
669 	 */
670 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
671 		struct list_head *list = &device->power.states[i].resources;
672 
673 		if (list_empty(list))
674 			continue;
675 
676 		result = acpi_power_get_list_state(list, &list_state);
677 		if (result)
678 			return result;
679 
680 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
681 			*state = i;
682 			return 0;
683 		}
684 	}
685 
686 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
687 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
688 	return 0;
689 }
690 
691 int acpi_power_on_resources(struct acpi_device *device, int state)
692 {
693 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
694 		return -EINVAL;
695 
696 	return acpi_power_on_list(&device->power.states[state].resources);
697 }
698 
699 int acpi_power_transition(struct acpi_device *device, int state)
700 {
701 	int result = 0;
702 
703 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
704 		return -EINVAL;
705 
706 	if (device->power.state == state || !device->flags.power_manageable)
707 		return 0;
708 
709 	if ((device->power.state < ACPI_STATE_D0)
710 	    || (device->power.state > ACPI_STATE_D3_COLD))
711 		return -ENODEV;
712 
713 	/*
714 	 * First we reference all power resources required in the target list
715 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
716 	 * we dereference all power resources used in the current list.
717 	 */
718 	if (state < ACPI_STATE_D3_COLD)
719 		result = acpi_power_on_list(
720 			&device->power.states[state].resources);
721 
722 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
723 		acpi_power_off_list(
724 			&device->power.states[device->power.state].resources);
725 
726 	/* We shouldn't change the state unless the above operations succeed. */
727 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
728 
729 	return result;
730 }
731 
732 static void acpi_release_power_resource(struct device *dev)
733 {
734 	struct acpi_device *device = to_acpi_device(dev);
735 	struct acpi_power_resource *resource;
736 
737 	resource = container_of(device, struct acpi_power_resource, device);
738 
739 	mutex_lock(&power_resource_list_lock);
740 	list_del(&resource->list_node);
741 	mutex_unlock(&power_resource_list_lock);
742 
743 	acpi_free_pnp_ids(&device->pnp);
744 	kfree(resource);
745 }
746 
747 static ssize_t acpi_power_in_use_show(struct device *dev,
748 				      struct device_attribute *attr,
749 				      char *buf) {
750 	struct acpi_power_resource *resource;
751 
752 	resource = to_power_resource(to_acpi_device(dev));
753 	return sprintf(buf, "%u\n", !!resource->ref_count);
754 }
755 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
756 
757 static void acpi_power_sysfs_remove(struct acpi_device *device)
758 {
759 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
760 }
761 
762 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
763 {
764 	mutex_lock(&power_resource_list_lock);
765 
766 	if (!list_empty(&acpi_power_resource_list)) {
767 		struct acpi_power_resource *r;
768 
769 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
770 			if (r->order > resource->order) {
771 				list_add_tail(&resource->list_node, &r->list_node);
772 				goto out;
773 			}
774 	}
775 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
776 
777  out:
778 	mutex_unlock(&power_resource_list_lock);
779 }
780 
781 int acpi_add_power_resource(acpi_handle handle)
782 {
783 	struct acpi_power_resource *resource;
784 	struct acpi_device *device = NULL;
785 	union acpi_object acpi_object;
786 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
787 	acpi_status status;
788 	int state, result = -ENODEV;
789 
790 	acpi_bus_get_device(handle, &device);
791 	if (device)
792 		return 0;
793 
794 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
795 	if (!resource)
796 		return -ENOMEM;
797 
798 	device = &resource->device;
799 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
800 				ACPI_STA_DEFAULT);
801 	mutex_init(&resource->resource_lock);
802 	INIT_LIST_HEAD(&resource->list_node);
803 	resource->name = device->pnp.bus_id;
804 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
805 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
806 	device->power.state = ACPI_STATE_UNKNOWN;
807 
808 	/* Evalute the object to get the system level and resource order. */
809 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
810 	if (ACPI_FAILURE(status))
811 		goto err;
812 
813 	resource->system_level = acpi_object.power_resource.system_level;
814 	resource->order = acpi_object.power_resource.resource_order;
815 
816 	result = acpi_power_get_state(handle, &state);
817 	if (result)
818 		goto err;
819 
820 	printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
821 	       acpi_device_bid(device), state ? "on" : "off");
822 
823 	device->flags.match_driver = true;
824 	result = acpi_device_add(device, acpi_release_power_resource);
825 	if (result)
826 		goto err;
827 
828 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
829 		device->remove = acpi_power_sysfs_remove;
830 
831 	acpi_power_add_resource_to_list(resource);
832 	acpi_device_add_finalize(device);
833 	return 0;
834 
835  err:
836 	acpi_release_power_resource(&device->dev);
837 	return result;
838 }
839 
840 #ifdef CONFIG_ACPI_SLEEP
841 void acpi_resume_power_resources(void)
842 {
843 	struct acpi_power_resource *resource;
844 
845 	mutex_lock(&power_resource_list_lock);
846 
847 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
848 		int result, state;
849 
850 		mutex_lock(&resource->resource_lock);
851 
852 		result = acpi_power_get_state(resource->device.handle, &state);
853 		if (result) {
854 			mutex_unlock(&resource->resource_lock);
855 			continue;
856 		}
857 
858 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
859 		    && resource->ref_count) {
860 			dev_info(&resource->device.dev, "Turning ON\n");
861 			__acpi_power_on(resource);
862 		}
863 
864 		mutex_unlock(&resource->resource_lock);
865 	}
866 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
867 		int result, state;
868 
869 		mutex_lock(&resource->resource_lock);
870 
871 		result = acpi_power_get_state(resource->device.handle, &state);
872 		if (result) {
873 			mutex_unlock(&resource->resource_lock);
874 			continue;
875 		}
876 
877 		if (state == ACPI_POWER_RESOURCE_STATE_ON
878 		    && !resource->ref_count) {
879 			dev_info(&resource->device.dev, "Turning OFF\n");
880 			__acpi_power_off(resource);
881 		}
882 
883 		mutex_unlock(&resource->resource_lock);
884 	}
885 
886 	mutex_unlock(&power_resource_list_lock);
887 }
888 #endif
889