xref: /openbmc/linux/drivers/acpi/power.c (revision 9d749629)
1 /*
2  *  acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or (at
12  *  your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful, but
15  *  WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  *  General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22  *
23  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24  */
25 
26 /*
27  * ACPI power-managed devices may be controlled in two ways:
28  * 1. via "Device Specific (D-State) Control"
29  * 2. via "Power Resource Control".
30  * This module is used to manage devices relying on Power Resource Control.
31  *
32  * An ACPI "power resource object" describes a software controllable power
33  * plane, clock plane, or other resource used by a power managed device.
34  * A device may rely on multiple power resources, and a power resource
35  * may be shared by multiple devices.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/sysfs.h>
45 #include <acpi/acpi_bus.h>
46 #include <acpi/acpi_drivers.h>
47 #include "sleep.h"
48 #include "internal.h"
49 
50 #define PREFIX "ACPI: "
51 
52 #define _COMPONENT			ACPI_POWER_COMPONENT
53 ACPI_MODULE_NAME("power");
54 #define ACPI_POWER_CLASS		"power_resource"
55 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
56 #define ACPI_POWER_FILE_INFO		"info"
57 #define ACPI_POWER_FILE_STATUS		"state"
58 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
59 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
60 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
61 
62 struct acpi_power_dependent_device {
63 	struct list_head node;
64 	struct acpi_device *adev;
65 	struct work_struct work;
66 };
67 
68 struct acpi_power_resource {
69 	struct acpi_device device;
70 	struct list_head list_node;
71 	struct list_head dependent;
72 	char *name;
73 	u32 system_level;
74 	u32 order;
75 	unsigned int ref_count;
76 	struct mutex resource_lock;
77 };
78 
79 struct acpi_power_resource_entry {
80 	struct list_head node;
81 	struct acpi_power_resource *resource;
82 };
83 
84 static LIST_HEAD(acpi_power_resource_list);
85 static DEFINE_MUTEX(power_resource_list_lock);
86 
87 /* --------------------------------------------------------------------------
88                              Power Resource Management
89    -------------------------------------------------------------------------- */
90 
91 static inline
92 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
93 {
94 	return container_of(device, struct acpi_power_resource, device);
95 }
96 
97 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
98 {
99 	struct acpi_device *device;
100 
101 	if (acpi_bus_get_device(handle, &device))
102 		return NULL;
103 
104 	return to_power_resource(device);
105 }
106 
107 static int acpi_power_resources_list_add(acpi_handle handle,
108 					 struct list_head *list)
109 {
110 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
111 	struct acpi_power_resource_entry *entry;
112 
113 	if (!resource || !list)
114 		return -EINVAL;
115 
116 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
117 	if (!entry)
118 		return -ENOMEM;
119 
120 	entry->resource = resource;
121 	if (!list_empty(list)) {
122 		struct acpi_power_resource_entry *e;
123 
124 		list_for_each_entry(e, list, node)
125 			if (e->resource->order > resource->order) {
126 				list_add_tail(&entry->node, &e->node);
127 				return 0;
128 			}
129 	}
130 	list_add_tail(&entry->node, list);
131 	return 0;
132 }
133 
134 void acpi_power_resources_list_free(struct list_head *list)
135 {
136 	struct acpi_power_resource_entry *entry, *e;
137 
138 	list_for_each_entry_safe(entry, e, list, node) {
139 		list_del(&entry->node);
140 		kfree(entry);
141 	}
142 }
143 
144 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
145 				 struct list_head *list)
146 {
147 	unsigned int i;
148 	int err = 0;
149 
150 	for (i = start; i < package->package.count; i++) {
151 		union acpi_object *element = &package->package.elements[i];
152 		acpi_handle rhandle;
153 
154 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
155 			err = -ENODATA;
156 			break;
157 		}
158 		rhandle = element->reference.handle;
159 		if (!rhandle) {
160 			err = -ENODEV;
161 			break;
162 		}
163 		err = acpi_add_power_resource(rhandle);
164 		if (err)
165 			break;
166 
167 		err = acpi_power_resources_list_add(rhandle, list);
168 		if (err)
169 			break;
170 	}
171 	if (err)
172 		acpi_power_resources_list_free(list);
173 
174 	return err;
175 }
176 
177 static int acpi_power_get_state(acpi_handle handle, int *state)
178 {
179 	acpi_status status = AE_OK;
180 	unsigned long long sta = 0;
181 	char node_name[5];
182 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
183 
184 
185 	if (!handle || !state)
186 		return -EINVAL;
187 
188 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
189 	if (ACPI_FAILURE(status))
190 		return -ENODEV;
191 
192 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
193 			      ACPI_POWER_RESOURCE_STATE_OFF;
194 
195 	acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
196 
197 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
198 			  node_name,
199 				*state ? "on" : "off"));
200 
201 	return 0;
202 }
203 
204 static int acpi_power_get_list_state(struct list_head *list, int *state)
205 {
206 	struct acpi_power_resource_entry *entry;
207 	int cur_state;
208 
209 	if (!list || !state)
210 		return -EINVAL;
211 
212 	/* The state of the list is 'on' IFF all resources are 'on'. */
213 	list_for_each_entry(entry, list, node) {
214 		struct acpi_power_resource *resource = entry->resource;
215 		acpi_handle handle = resource->device.handle;
216 		int result;
217 
218 		mutex_lock(&resource->resource_lock);
219 		result = acpi_power_get_state(handle, &cur_state);
220 		mutex_unlock(&resource->resource_lock);
221 		if (result)
222 			return result;
223 
224 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
225 			break;
226 	}
227 
228 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
229 			  cur_state ? "on" : "off"));
230 
231 	*state = cur_state;
232 	return 0;
233 }
234 
235 static void acpi_power_resume_dependent(struct work_struct *work)
236 {
237 	struct acpi_power_dependent_device *dep;
238 	struct acpi_device_physical_node *pn;
239 	struct acpi_device *adev;
240 	int state;
241 
242 	dep = container_of(work, struct acpi_power_dependent_device, work);
243 	adev = dep->adev;
244 	if (acpi_power_get_inferred_state(adev, &state))
245 		return;
246 
247 	if (state > ACPI_STATE_D0)
248 		return;
249 
250 	mutex_lock(&adev->physical_node_lock);
251 
252 	list_for_each_entry(pn, &adev->physical_node_list, node)
253 		pm_request_resume(pn->dev);
254 
255 	list_for_each_entry(pn, &adev->power_dependent, node)
256 		pm_request_resume(pn->dev);
257 
258 	mutex_unlock(&adev->physical_node_lock);
259 }
260 
261 static int __acpi_power_on(struct acpi_power_resource *resource)
262 {
263 	acpi_status status = AE_OK;
264 
265 	status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
266 	if (ACPI_FAILURE(status))
267 		return -ENODEV;
268 
269 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
270 			  resource->name));
271 
272 	return 0;
273 }
274 
275 static int acpi_power_on(struct acpi_power_resource *resource)
276 {
277 	int result = 0;;
278 
279 	mutex_lock(&resource->resource_lock);
280 
281 	if (resource->ref_count++) {
282 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
283 				  "Power resource [%s] already on",
284 				  resource->name));
285 	} else {
286 		result = __acpi_power_on(resource);
287 		if (result) {
288 			resource->ref_count--;
289 		} else {
290 			struct acpi_power_dependent_device *dep;
291 
292 			list_for_each_entry(dep, &resource->dependent, node)
293 				schedule_work(&dep->work);
294 		}
295 	}
296 
297 	mutex_unlock(&resource->resource_lock);
298 
299 	return result;
300 }
301 
302 static int __acpi_power_off(struct acpi_power_resource *resource)
303 {
304 	acpi_status status;
305 
306 	status = acpi_evaluate_object(resource->device.handle, "_OFF",
307 				      NULL, NULL);
308 	if (ACPI_FAILURE(status))
309 		return -ENODEV;
310 
311 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
312 			  resource->name));
313 	return 0;
314 }
315 
316 static int acpi_power_off(struct acpi_power_resource *resource)
317 {
318 	int result = 0;
319 
320 	mutex_lock(&resource->resource_lock);
321 
322 	if (!resource->ref_count) {
323 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
324 				  "Power resource [%s] already off",
325 				  resource->name));
326 		goto unlock;
327 	}
328 
329 	if (--resource->ref_count) {
330 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
331 				  "Power resource [%s] still in use\n",
332 				  resource->name));
333 	} else {
334 		result = __acpi_power_off(resource);
335 		if (result)
336 			resource->ref_count++;
337 	}
338 
339  unlock:
340 	mutex_unlock(&resource->resource_lock);
341 
342 	return result;
343 }
344 
345 static int acpi_power_off_list(struct list_head *list)
346 {
347 	struct acpi_power_resource_entry *entry;
348 	int result = 0;
349 
350 	list_for_each_entry_reverse(entry, list, node) {
351 		result = acpi_power_off(entry->resource);
352 		if (result)
353 			goto err;
354 	}
355 	return 0;
356 
357  err:
358 	list_for_each_entry_continue(entry, list, node)
359 		acpi_power_on(entry->resource);
360 
361 	return result;
362 }
363 
364 static int acpi_power_on_list(struct list_head *list)
365 {
366 	struct acpi_power_resource_entry *entry;
367 	int result = 0;
368 
369 	list_for_each_entry(entry, list, node) {
370 		result = acpi_power_on(entry->resource);
371 		if (result)
372 			goto err;
373 	}
374 	return 0;
375 
376  err:
377 	list_for_each_entry_continue_reverse(entry, list, node)
378 		acpi_power_off(entry->resource);
379 
380 	return result;
381 }
382 
383 static void acpi_power_add_dependent(struct acpi_power_resource *resource,
384 				     struct acpi_device *adev)
385 {
386 	struct acpi_power_dependent_device *dep;
387 
388 	mutex_lock(&resource->resource_lock);
389 
390 	list_for_each_entry(dep, &resource->dependent, node)
391 		if (dep->adev == adev)
392 			goto out;
393 
394 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
395 	if (!dep)
396 		goto out;
397 
398 	dep->adev = adev;
399 	INIT_WORK(&dep->work, acpi_power_resume_dependent);
400 	list_add_tail(&dep->node, &resource->dependent);
401 
402  out:
403 	mutex_unlock(&resource->resource_lock);
404 }
405 
406 static void acpi_power_remove_dependent(struct acpi_power_resource *resource,
407 					struct acpi_device *adev)
408 {
409 	struct acpi_power_dependent_device *dep;
410 	struct work_struct *work = NULL;
411 
412 	mutex_lock(&resource->resource_lock);
413 
414 	list_for_each_entry(dep, &resource->dependent, node)
415 		if (dep->adev == adev) {
416 			list_del(&dep->node);
417 			work = &dep->work;
418 			break;
419 		}
420 
421 	mutex_unlock(&resource->resource_lock);
422 
423 	if (work) {
424 		cancel_work_sync(work);
425 		kfree(dep);
426 	}
427 }
428 
429 static struct attribute *attrs[] = {
430 	NULL,
431 };
432 
433 static struct attribute_group attr_groups[] = {
434 	[ACPI_STATE_D0] = {
435 		.name = "power_resources_D0",
436 		.attrs = attrs,
437 	},
438 	[ACPI_STATE_D1] = {
439 		.name = "power_resources_D1",
440 		.attrs = attrs,
441 	},
442 	[ACPI_STATE_D2] = {
443 		.name = "power_resources_D2",
444 		.attrs = attrs,
445 	},
446 	[ACPI_STATE_D3_HOT] = {
447 		.name = "power_resources_D3hot",
448 		.attrs = attrs,
449 	},
450 };
451 
452 static void acpi_power_hide_list(struct acpi_device *adev, int state)
453 {
454 	struct acpi_device_power_state *ps = &adev->power.states[state];
455 	struct acpi_power_resource_entry *entry;
456 
457 	if (list_empty(&ps->resources))
458 		return;
459 
460 	list_for_each_entry_reverse(entry, &ps->resources, node) {
461 		struct acpi_device *res_dev = &entry->resource->device;
462 
463 		sysfs_remove_link_from_group(&adev->dev.kobj,
464 					     attr_groups[state].name,
465 					     dev_name(&res_dev->dev));
466 	}
467 	sysfs_remove_group(&adev->dev.kobj, &attr_groups[state]);
468 }
469 
470 static void acpi_power_expose_list(struct acpi_device *adev, int state)
471 {
472 	struct acpi_device_power_state *ps = &adev->power.states[state];
473 	struct acpi_power_resource_entry *entry;
474 	int ret;
475 
476 	if (list_empty(&ps->resources))
477 		return;
478 
479 	ret = sysfs_create_group(&adev->dev.kobj, &attr_groups[state]);
480 	if (ret)
481 		return;
482 
483 	list_for_each_entry(entry, &ps->resources, node) {
484 		struct acpi_device *res_dev = &entry->resource->device;
485 
486 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
487 					      attr_groups[state].name,
488 					      &res_dev->dev.kobj,
489 					      dev_name(&res_dev->dev));
490 		if (ret) {
491 			acpi_power_hide_list(adev, state);
492 			break;
493 		}
494 	}
495 }
496 
497 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
498 {
499 	struct acpi_device_power_state *ps;
500 	struct acpi_power_resource_entry *entry;
501 	int state;
502 
503 	if (!adev->power.flags.power_resources)
504 		return;
505 
506 	ps = &adev->power.states[ACPI_STATE_D0];
507 	list_for_each_entry(entry, &ps->resources, node) {
508 		struct acpi_power_resource *resource = entry->resource;
509 
510 		if (add)
511 			acpi_power_add_dependent(resource, adev);
512 		else
513 			acpi_power_remove_dependent(resource, adev);
514 	}
515 
516 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) {
517 		if (add)
518 			acpi_power_expose_list(adev, state);
519 		else
520 			acpi_power_hide_list(adev, state);
521 	}
522 }
523 
524 int acpi_power_min_system_level(struct list_head *list)
525 {
526 	struct acpi_power_resource_entry *entry;
527 	int system_level = 5;
528 
529 	list_for_each_entry(entry, list, node) {
530 		struct acpi_power_resource *resource = entry->resource;
531 
532 		if (system_level > resource->system_level)
533 			system_level = resource->system_level;
534 	}
535 	return system_level;
536 }
537 
538 /* --------------------------------------------------------------------------
539                              Device Power Management
540    -------------------------------------------------------------------------- */
541 
542 /**
543  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
544  *                          ACPI 3.0) _PSW (Power State Wake)
545  * @dev: Device to handle.
546  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
547  * @sleep_state: Target sleep state of the system.
548  * @dev_state: Target power state of the device.
549  *
550  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
551  * State Wake) for the device, if present.  On failure reset the device's
552  * wakeup.flags.valid flag.
553  *
554  * RETURN VALUE:
555  * 0 if either _DSW or _PSW has been successfully executed
556  * 0 if neither _DSW nor _PSW has been found
557  * -ENODEV if the execution of either _DSW or _PSW has failed
558  */
559 int acpi_device_sleep_wake(struct acpi_device *dev,
560                            int enable, int sleep_state, int dev_state)
561 {
562 	union acpi_object in_arg[3];
563 	struct acpi_object_list arg_list = { 3, in_arg };
564 	acpi_status status = AE_OK;
565 
566 	/*
567 	 * Try to execute _DSW first.
568 	 *
569 	 * Three agruments are needed for the _DSW object:
570 	 * Argument 0: enable/disable the wake capabilities
571 	 * Argument 1: target system state
572 	 * Argument 2: target device state
573 	 * When _DSW object is called to disable the wake capabilities, maybe
574 	 * the first argument is filled. The values of the other two agruments
575 	 * are meaningless.
576 	 */
577 	in_arg[0].type = ACPI_TYPE_INTEGER;
578 	in_arg[0].integer.value = enable;
579 	in_arg[1].type = ACPI_TYPE_INTEGER;
580 	in_arg[1].integer.value = sleep_state;
581 	in_arg[2].type = ACPI_TYPE_INTEGER;
582 	in_arg[2].integer.value = dev_state;
583 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
584 	if (ACPI_SUCCESS(status)) {
585 		return 0;
586 	} else if (status != AE_NOT_FOUND) {
587 		printk(KERN_ERR PREFIX "_DSW execution failed\n");
588 		dev->wakeup.flags.valid = 0;
589 		return -ENODEV;
590 	}
591 
592 	/* Execute _PSW */
593 	arg_list.count = 1;
594 	in_arg[0].integer.value = enable;
595 	status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL);
596 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
597 		printk(KERN_ERR PREFIX "_PSW execution failed\n");
598 		dev->wakeup.flags.valid = 0;
599 		return -ENODEV;
600 	}
601 
602 	return 0;
603 }
604 
605 /*
606  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
607  * 1. Power on the power resources required for the wakeup device
608  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
609  *    State Wake) for the device, if present
610  */
611 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
612 {
613 	int err = 0;
614 
615 	if (!dev || !dev->wakeup.flags.valid)
616 		return -EINVAL;
617 
618 	mutex_lock(&acpi_device_lock);
619 
620 	if (dev->wakeup.prepare_count++)
621 		goto out;
622 
623 	err = acpi_power_on_list(&dev->wakeup.resources);
624 	if (err) {
625 		dev_err(&dev->dev, "Cannot turn wakeup power resources on\n");
626 		dev->wakeup.flags.valid = 0;
627 	} else {
628 		/*
629 		 * Passing 3 as the third argument below means the device may be
630 		 * put into arbitrary power state afterward.
631 		 */
632 		err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
633 	}
634 	if (err)
635 		dev->wakeup.prepare_count = 0;
636 
637  out:
638 	mutex_unlock(&acpi_device_lock);
639 	return err;
640 }
641 
642 /*
643  * Shutdown a wakeup device, counterpart of above method
644  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
645  *    State Wake) for the device, if present
646  * 2. Shutdown down the power resources
647  */
648 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
649 {
650 	int err = 0;
651 
652 	if (!dev || !dev->wakeup.flags.valid)
653 		return -EINVAL;
654 
655 	mutex_lock(&acpi_device_lock);
656 
657 	if (--dev->wakeup.prepare_count > 0)
658 		goto out;
659 
660 	/*
661 	 * Executing the code below even if prepare_count is already zero when
662 	 * the function is called may be useful, for example for initialisation.
663 	 */
664 	if (dev->wakeup.prepare_count < 0)
665 		dev->wakeup.prepare_count = 0;
666 
667 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
668 	if (err)
669 		goto out;
670 
671 	err = acpi_power_off_list(&dev->wakeup.resources);
672 	if (err) {
673 		dev_err(&dev->dev, "Cannot turn wakeup power resources off\n");
674 		dev->wakeup.flags.valid = 0;
675 	}
676 
677  out:
678 	mutex_unlock(&acpi_device_lock);
679 	return err;
680 }
681 
682 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
683 {
684 	int result = 0;
685 	int list_state = 0;
686 	int i = 0;
687 
688 	if (!device || !state)
689 		return -EINVAL;
690 
691 	/*
692 	 * We know a device's inferred power state when all the resources
693 	 * required for a given D-state are 'on'.
694 	 */
695 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
696 		struct list_head *list = &device->power.states[i].resources;
697 
698 		if (list_empty(list))
699 			continue;
700 
701 		result = acpi_power_get_list_state(list, &list_state);
702 		if (result)
703 			return result;
704 
705 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
706 			*state = i;
707 			return 0;
708 		}
709 	}
710 
711 	*state = ACPI_STATE_D3;
712 	return 0;
713 }
714 
715 int acpi_power_on_resources(struct acpi_device *device, int state)
716 {
717 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
718 		return -EINVAL;
719 
720 	return acpi_power_on_list(&device->power.states[state].resources);
721 }
722 
723 int acpi_power_transition(struct acpi_device *device, int state)
724 {
725 	int result = 0;
726 
727 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
728 		return -EINVAL;
729 
730 	if (device->power.state == state || !device->flags.power_manageable)
731 		return 0;
732 
733 	if ((device->power.state < ACPI_STATE_D0)
734 	    || (device->power.state > ACPI_STATE_D3_COLD))
735 		return -ENODEV;
736 
737 	/* TBD: Resources must be ordered. */
738 
739 	/*
740 	 * First we reference all power resources required in the target list
741 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
742 	 * we dereference all power resources used in the current list.
743 	 */
744 	if (state < ACPI_STATE_D3_COLD)
745 		result = acpi_power_on_list(
746 			&device->power.states[state].resources);
747 
748 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
749 		acpi_power_off_list(
750 			&device->power.states[device->power.state].resources);
751 
752 	/* We shouldn't change the state unless the above operations succeed. */
753 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
754 
755 	return result;
756 }
757 
758 static void acpi_release_power_resource(struct device *dev)
759 {
760 	struct acpi_device *device = to_acpi_device(dev);
761 	struct acpi_power_resource *resource;
762 
763 	resource = container_of(device, struct acpi_power_resource, device);
764 
765 	mutex_lock(&power_resource_list_lock);
766 	list_del(&resource->list_node);
767 	mutex_unlock(&power_resource_list_lock);
768 
769 	acpi_free_ids(device);
770 	kfree(resource);
771 }
772 
773 static ssize_t acpi_power_in_use_show(struct device *dev,
774 				      struct device_attribute *attr,
775 				      char *buf) {
776 	struct acpi_power_resource *resource;
777 
778 	resource = to_power_resource(to_acpi_device(dev));
779 	return sprintf(buf, "%u\n", !!resource->ref_count);
780 }
781 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
782 
783 static void acpi_power_sysfs_remove(struct acpi_device *device)
784 {
785 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
786 }
787 
788 int acpi_add_power_resource(acpi_handle handle)
789 {
790 	struct acpi_power_resource *resource;
791 	struct acpi_device *device = NULL;
792 	union acpi_object acpi_object;
793 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
794 	acpi_status status;
795 	int state, result = -ENODEV;
796 
797 	acpi_bus_get_device(handle, &device);
798 	if (device)
799 		return 0;
800 
801 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
802 	if (!resource)
803 		return -ENOMEM;
804 
805 	device = &resource->device;
806 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
807 				ACPI_STA_DEFAULT);
808 	mutex_init(&resource->resource_lock);
809 	INIT_LIST_HEAD(&resource->dependent);
810 	resource->name = device->pnp.bus_id;
811 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
812 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
813 	device->power.state = ACPI_STATE_UNKNOWN;
814 
815 	/* Evalute the object to get the system level and resource order. */
816 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
817 	if (ACPI_FAILURE(status))
818 		goto err;
819 
820 	resource->system_level = acpi_object.power_resource.system_level;
821 	resource->order = acpi_object.power_resource.resource_order;
822 
823 	result = acpi_power_get_state(handle, &state);
824 	if (result)
825 		goto err;
826 
827 	printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
828 	       acpi_device_bid(device), state ? "on" : "off");
829 
830 	device->flags.match_driver = true;
831 	result = acpi_device_add(device, acpi_release_power_resource);
832 	if (result)
833 		goto err;
834 
835 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
836 		device->remove = acpi_power_sysfs_remove;
837 
838 	mutex_lock(&power_resource_list_lock);
839 	list_add(&resource->list_node, &acpi_power_resource_list);
840 	mutex_unlock(&power_resource_list_lock);
841 	acpi_device_add_finalize(device);
842 	return 0;
843 
844  err:
845 	acpi_release_power_resource(&device->dev);
846 	return result;
847 }
848 
849 #ifdef CONFIG_ACPI_SLEEP
850 void acpi_resume_power_resources(void)
851 {
852 	struct acpi_power_resource *resource;
853 
854 	mutex_lock(&power_resource_list_lock);
855 
856 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
857 		int result, state;
858 
859 		mutex_lock(&resource->resource_lock);
860 
861 		result = acpi_power_get_state(resource->device.handle, &state);
862 		if (result)
863 			continue;
864 
865 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
866 		    && resource->ref_count) {
867 			dev_info(&resource->device.dev, "Turning ON\n");
868 			__acpi_power_on(resource);
869 		} else if (state == ACPI_POWER_RESOURCE_STATE_ON
870 		    && !resource->ref_count) {
871 			dev_info(&resource->device.dev, "Turning OFF\n");
872 			__acpi_power_off(resource);
873 		}
874 
875 		mutex_unlock(&resource->resource_lock);
876 	}
877 
878 	mutex_unlock(&power_resource_list_lock);
879 }
880 #endif
881