xref: /openbmc/linux/drivers/acpi/power.c (revision 97da55fc)
1 /*
2  *  acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or (at
12  *  your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful, but
15  *  WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  *  General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22  *
23  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24  */
25 
26 /*
27  * ACPI power-managed devices may be controlled in two ways:
28  * 1. via "Device Specific (D-State) Control"
29  * 2. via "Power Resource Control".
30  * This module is used to manage devices relying on Power Resource Control.
31  *
32  * An ACPI "power resource object" describes a software controllable power
33  * plane, clock plane, or other resource used by a power managed device.
34  * A device may rely on multiple power resources, and a power resource
35  * may be shared by multiple devices.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/sysfs.h>
45 #include <acpi/acpi_bus.h>
46 #include <acpi/acpi_drivers.h>
47 #include "sleep.h"
48 #include "internal.h"
49 
50 #define PREFIX "ACPI: "
51 
52 #define _COMPONENT			ACPI_POWER_COMPONENT
53 ACPI_MODULE_NAME("power");
54 #define ACPI_POWER_CLASS		"power_resource"
55 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
56 #define ACPI_POWER_FILE_INFO		"info"
57 #define ACPI_POWER_FILE_STATUS		"state"
58 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
59 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
60 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
61 
62 struct acpi_power_dependent_device {
63 	struct list_head node;
64 	struct acpi_device *adev;
65 	struct work_struct work;
66 };
67 
68 struct acpi_power_resource {
69 	struct acpi_device device;
70 	struct list_head list_node;
71 	struct list_head dependent;
72 	char *name;
73 	u32 system_level;
74 	u32 order;
75 	unsigned int ref_count;
76 	bool wakeup_enabled;
77 	struct mutex resource_lock;
78 };
79 
80 struct acpi_power_resource_entry {
81 	struct list_head node;
82 	struct acpi_power_resource *resource;
83 };
84 
85 static LIST_HEAD(acpi_power_resource_list);
86 static DEFINE_MUTEX(power_resource_list_lock);
87 
88 /* --------------------------------------------------------------------------
89                              Power Resource Management
90    -------------------------------------------------------------------------- */
91 
92 static inline
93 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
94 {
95 	return container_of(device, struct acpi_power_resource, device);
96 }
97 
98 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
99 {
100 	struct acpi_device *device;
101 
102 	if (acpi_bus_get_device(handle, &device))
103 		return NULL;
104 
105 	return to_power_resource(device);
106 }
107 
108 static int acpi_power_resources_list_add(acpi_handle handle,
109 					 struct list_head *list)
110 {
111 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
112 	struct acpi_power_resource_entry *entry;
113 
114 	if (!resource || !list)
115 		return -EINVAL;
116 
117 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
118 	if (!entry)
119 		return -ENOMEM;
120 
121 	entry->resource = resource;
122 	if (!list_empty(list)) {
123 		struct acpi_power_resource_entry *e;
124 
125 		list_for_each_entry(e, list, node)
126 			if (e->resource->order > resource->order) {
127 				list_add_tail(&entry->node, &e->node);
128 				return 0;
129 			}
130 	}
131 	list_add_tail(&entry->node, list);
132 	return 0;
133 }
134 
135 void acpi_power_resources_list_free(struct list_head *list)
136 {
137 	struct acpi_power_resource_entry *entry, *e;
138 
139 	list_for_each_entry_safe(entry, e, list, node) {
140 		list_del(&entry->node);
141 		kfree(entry);
142 	}
143 }
144 
145 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
146 				 struct list_head *list)
147 {
148 	unsigned int i;
149 	int err = 0;
150 
151 	for (i = start; i < package->package.count; i++) {
152 		union acpi_object *element = &package->package.elements[i];
153 		acpi_handle rhandle;
154 
155 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
156 			err = -ENODATA;
157 			break;
158 		}
159 		rhandle = element->reference.handle;
160 		if (!rhandle) {
161 			err = -ENODEV;
162 			break;
163 		}
164 		err = acpi_add_power_resource(rhandle);
165 		if (err)
166 			break;
167 
168 		err = acpi_power_resources_list_add(rhandle, list);
169 		if (err)
170 			break;
171 	}
172 	if (err)
173 		acpi_power_resources_list_free(list);
174 
175 	return err;
176 }
177 
178 static int acpi_power_get_state(acpi_handle handle, int *state)
179 {
180 	acpi_status status = AE_OK;
181 	unsigned long long sta = 0;
182 	char node_name[5];
183 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
184 
185 
186 	if (!handle || !state)
187 		return -EINVAL;
188 
189 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
190 	if (ACPI_FAILURE(status))
191 		return -ENODEV;
192 
193 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
194 			      ACPI_POWER_RESOURCE_STATE_OFF;
195 
196 	acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
197 
198 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
199 			  node_name,
200 				*state ? "on" : "off"));
201 
202 	return 0;
203 }
204 
205 static int acpi_power_get_list_state(struct list_head *list, int *state)
206 {
207 	struct acpi_power_resource_entry *entry;
208 	int cur_state;
209 
210 	if (!list || !state)
211 		return -EINVAL;
212 
213 	/* The state of the list is 'on' IFF all resources are 'on'. */
214 	list_for_each_entry(entry, list, node) {
215 		struct acpi_power_resource *resource = entry->resource;
216 		acpi_handle handle = resource->device.handle;
217 		int result;
218 
219 		mutex_lock(&resource->resource_lock);
220 		result = acpi_power_get_state(handle, &cur_state);
221 		mutex_unlock(&resource->resource_lock);
222 		if (result)
223 			return result;
224 
225 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
226 			break;
227 	}
228 
229 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
230 			  cur_state ? "on" : "off"));
231 
232 	*state = cur_state;
233 	return 0;
234 }
235 
236 static void acpi_power_resume_dependent(struct work_struct *work)
237 {
238 	struct acpi_power_dependent_device *dep;
239 	struct acpi_device_physical_node *pn;
240 	struct acpi_device *adev;
241 	int state;
242 
243 	dep = container_of(work, struct acpi_power_dependent_device, work);
244 	adev = dep->adev;
245 	if (acpi_power_get_inferred_state(adev, &state))
246 		return;
247 
248 	if (state > ACPI_STATE_D0)
249 		return;
250 
251 	mutex_lock(&adev->physical_node_lock);
252 
253 	list_for_each_entry(pn, &adev->physical_node_list, node)
254 		pm_request_resume(pn->dev);
255 
256 	list_for_each_entry(pn, &adev->power_dependent, node)
257 		pm_request_resume(pn->dev);
258 
259 	mutex_unlock(&adev->physical_node_lock);
260 }
261 
262 static int __acpi_power_on(struct acpi_power_resource *resource)
263 {
264 	acpi_status status = AE_OK;
265 
266 	status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
267 	if (ACPI_FAILURE(status))
268 		return -ENODEV;
269 
270 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
271 			  resource->name));
272 
273 	return 0;
274 }
275 
276 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
277 {
278 	int result = 0;
279 
280 	if (resource->ref_count++) {
281 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
282 				  "Power resource [%s] already on",
283 				  resource->name));
284 	} else {
285 		result = __acpi_power_on(resource);
286 		if (result) {
287 			resource->ref_count--;
288 		} else {
289 			struct acpi_power_dependent_device *dep;
290 
291 			list_for_each_entry(dep, &resource->dependent, node)
292 				schedule_work(&dep->work);
293 		}
294 	}
295 	return result;
296 }
297 
298 static int acpi_power_on(struct acpi_power_resource *resource)
299 {
300 	int result;
301 
302 	mutex_lock(&resource->resource_lock);
303 	result = acpi_power_on_unlocked(resource);
304 	mutex_unlock(&resource->resource_lock);
305 	return result;
306 }
307 
308 static int __acpi_power_off(struct acpi_power_resource *resource)
309 {
310 	acpi_status status;
311 
312 	status = acpi_evaluate_object(resource->device.handle, "_OFF",
313 				      NULL, NULL);
314 	if (ACPI_FAILURE(status))
315 		return -ENODEV;
316 
317 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
318 			  resource->name));
319 	return 0;
320 }
321 
322 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
323 {
324 	int result = 0;
325 
326 	if (!resource->ref_count) {
327 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
328 				  "Power resource [%s] already off",
329 				  resource->name));
330 		return 0;
331 	}
332 
333 	if (--resource->ref_count) {
334 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
335 				  "Power resource [%s] still in use\n",
336 				  resource->name));
337 	} else {
338 		result = __acpi_power_off(resource);
339 		if (result)
340 			resource->ref_count++;
341 	}
342 	return result;
343 }
344 
345 static int acpi_power_off(struct acpi_power_resource *resource)
346 {
347 	int result;
348 
349 	mutex_lock(&resource->resource_lock);
350 	result = acpi_power_off_unlocked(resource);
351 	mutex_unlock(&resource->resource_lock);
352 	return result;
353 }
354 
355 static int acpi_power_off_list(struct list_head *list)
356 {
357 	struct acpi_power_resource_entry *entry;
358 	int result = 0;
359 
360 	list_for_each_entry_reverse(entry, list, node) {
361 		result = acpi_power_off(entry->resource);
362 		if (result)
363 			goto err;
364 	}
365 	return 0;
366 
367  err:
368 	list_for_each_entry_continue(entry, list, node)
369 		acpi_power_on(entry->resource);
370 
371 	return result;
372 }
373 
374 static int acpi_power_on_list(struct list_head *list)
375 {
376 	struct acpi_power_resource_entry *entry;
377 	int result = 0;
378 
379 	list_for_each_entry(entry, list, node) {
380 		result = acpi_power_on(entry->resource);
381 		if (result)
382 			goto err;
383 	}
384 	return 0;
385 
386  err:
387 	list_for_each_entry_continue_reverse(entry, list, node)
388 		acpi_power_off(entry->resource);
389 
390 	return result;
391 }
392 
393 static void acpi_power_add_dependent(struct acpi_power_resource *resource,
394 				     struct acpi_device *adev)
395 {
396 	struct acpi_power_dependent_device *dep;
397 
398 	mutex_lock(&resource->resource_lock);
399 
400 	list_for_each_entry(dep, &resource->dependent, node)
401 		if (dep->adev == adev)
402 			goto out;
403 
404 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
405 	if (!dep)
406 		goto out;
407 
408 	dep->adev = adev;
409 	INIT_WORK(&dep->work, acpi_power_resume_dependent);
410 	list_add_tail(&dep->node, &resource->dependent);
411 
412  out:
413 	mutex_unlock(&resource->resource_lock);
414 }
415 
416 static void acpi_power_remove_dependent(struct acpi_power_resource *resource,
417 					struct acpi_device *adev)
418 {
419 	struct acpi_power_dependent_device *dep;
420 	struct work_struct *work = NULL;
421 
422 	mutex_lock(&resource->resource_lock);
423 
424 	list_for_each_entry(dep, &resource->dependent, node)
425 		if (dep->adev == adev) {
426 			list_del(&dep->node);
427 			work = &dep->work;
428 			break;
429 		}
430 
431 	mutex_unlock(&resource->resource_lock);
432 
433 	if (work) {
434 		cancel_work_sync(work);
435 		kfree(dep);
436 	}
437 }
438 
439 static struct attribute *attrs[] = {
440 	NULL,
441 };
442 
443 static struct attribute_group attr_groups[] = {
444 	[ACPI_STATE_D0] = {
445 		.name = "power_resources_D0",
446 		.attrs = attrs,
447 	},
448 	[ACPI_STATE_D1] = {
449 		.name = "power_resources_D1",
450 		.attrs = attrs,
451 	},
452 	[ACPI_STATE_D2] = {
453 		.name = "power_resources_D2",
454 		.attrs = attrs,
455 	},
456 	[ACPI_STATE_D3_HOT] = {
457 		.name = "power_resources_D3hot",
458 		.attrs = attrs,
459 	},
460 };
461 
462 static void acpi_power_hide_list(struct acpi_device *adev, int state)
463 {
464 	struct acpi_device_power_state *ps = &adev->power.states[state];
465 	struct acpi_power_resource_entry *entry;
466 
467 	if (list_empty(&ps->resources))
468 		return;
469 
470 	list_for_each_entry_reverse(entry, &ps->resources, node) {
471 		struct acpi_device *res_dev = &entry->resource->device;
472 
473 		sysfs_remove_link_from_group(&adev->dev.kobj,
474 					     attr_groups[state].name,
475 					     dev_name(&res_dev->dev));
476 	}
477 	sysfs_remove_group(&adev->dev.kobj, &attr_groups[state]);
478 }
479 
480 static void acpi_power_expose_list(struct acpi_device *adev, int state)
481 {
482 	struct acpi_device_power_state *ps = &adev->power.states[state];
483 	struct acpi_power_resource_entry *entry;
484 	int ret;
485 
486 	if (list_empty(&ps->resources))
487 		return;
488 
489 	ret = sysfs_create_group(&adev->dev.kobj, &attr_groups[state]);
490 	if (ret)
491 		return;
492 
493 	list_for_each_entry(entry, &ps->resources, node) {
494 		struct acpi_device *res_dev = &entry->resource->device;
495 
496 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
497 					      attr_groups[state].name,
498 					      &res_dev->dev.kobj,
499 					      dev_name(&res_dev->dev));
500 		if (ret) {
501 			acpi_power_hide_list(adev, state);
502 			break;
503 		}
504 	}
505 }
506 
507 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
508 {
509 	struct acpi_device_power_state *ps;
510 	struct acpi_power_resource_entry *entry;
511 	int state;
512 
513 	if (!adev->power.flags.power_resources)
514 		return;
515 
516 	ps = &adev->power.states[ACPI_STATE_D0];
517 	list_for_each_entry(entry, &ps->resources, node) {
518 		struct acpi_power_resource *resource = entry->resource;
519 
520 		if (add)
521 			acpi_power_add_dependent(resource, adev);
522 		else
523 			acpi_power_remove_dependent(resource, adev);
524 	}
525 
526 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) {
527 		if (add)
528 			acpi_power_expose_list(adev, state);
529 		else
530 			acpi_power_hide_list(adev, state);
531 	}
532 }
533 
534 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
535 {
536 	struct acpi_power_resource_entry *entry;
537 	int system_level = 5;
538 
539 	list_for_each_entry(entry, list, node) {
540 		struct acpi_power_resource *resource = entry->resource;
541 		acpi_handle handle = resource->device.handle;
542 		int result;
543 		int state;
544 
545 		mutex_lock(&resource->resource_lock);
546 
547 		result = acpi_power_get_state(handle, &state);
548 		if (result) {
549 			mutex_unlock(&resource->resource_lock);
550 			return result;
551 		}
552 		if (state == ACPI_POWER_RESOURCE_STATE_ON) {
553 			resource->ref_count++;
554 			resource->wakeup_enabled = true;
555 		}
556 		if (system_level > resource->system_level)
557 			system_level = resource->system_level;
558 
559 		mutex_unlock(&resource->resource_lock);
560 	}
561 	*system_level_p = system_level;
562 	return 0;
563 }
564 
565 /* --------------------------------------------------------------------------
566                              Device Power Management
567    -------------------------------------------------------------------------- */
568 
569 /**
570  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
571  *                          ACPI 3.0) _PSW (Power State Wake)
572  * @dev: Device to handle.
573  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
574  * @sleep_state: Target sleep state of the system.
575  * @dev_state: Target power state of the device.
576  *
577  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
578  * State Wake) for the device, if present.  On failure reset the device's
579  * wakeup.flags.valid flag.
580  *
581  * RETURN VALUE:
582  * 0 if either _DSW or _PSW has been successfully executed
583  * 0 if neither _DSW nor _PSW has been found
584  * -ENODEV if the execution of either _DSW or _PSW has failed
585  */
586 int acpi_device_sleep_wake(struct acpi_device *dev,
587                            int enable, int sleep_state, int dev_state)
588 {
589 	union acpi_object in_arg[3];
590 	struct acpi_object_list arg_list = { 3, in_arg };
591 	acpi_status status = AE_OK;
592 
593 	/*
594 	 * Try to execute _DSW first.
595 	 *
596 	 * Three agruments are needed for the _DSW object:
597 	 * Argument 0: enable/disable the wake capabilities
598 	 * Argument 1: target system state
599 	 * Argument 2: target device state
600 	 * When _DSW object is called to disable the wake capabilities, maybe
601 	 * the first argument is filled. The values of the other two agruments
602 	 * are meaningless.
603 	 */
604 	in_arg[0].type = ACPI_TYPE_INTEGER;
605 	in_arg[0].integer.value = enable;
606 	in_arg[1].type = ACPI_TYPE_INTEGER;
607 	in_arg[1].integer.value = sleep_state;
608 	in_arg[2].type = ACPI_TYPE_INTEGER;
609 	in_arg[2].integer.value = dev_state;
610 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
611 	if (ACPI_SUCCESS(status)) {
612 		return 0;
613 	} else if (status != AE_NOT_FOUND) {
614 		printk(KERN_ERR PREFIX "_DSW execution failed\n");
615 		dev->wakeup.flags.valid = 0;
616 		return -ENODEV;
617 	}
618 
619 	/* Execute _PSW */
620 	arg_list.count = 1;
621 	in_arg[0].integer.value = enable;
622 	status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL);
623 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
624 		printk(KERN_ERR PREFIX "_PSW execution failed\n");
625 		dev->wakeup.flags.valid = 0;
626 		return -ENODEV;
627 	}
628 
629 	return 0;
630 }
631 
632 /*
633  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
634  * 1. Power on the power resources required for the wakeup device
635  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
636  *    State Wake) for the device, if present
637  */
638 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
639 {
640 	struct acpi_power_resource_entry *entry;
641 	int err = 0;
642 
643 	if (!dev || !dev->wakeup.flags.valid)
644 		return -EINVAL;
645 
646 	mutex_lock(&acpi_device_lock);
647 
648 	if (dev->wakeup.prepare_count++)
649 		goto out;
650 
651 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
652 		struct acpi_power_resource *resource = entry->resource;
653 
654 		mutex_lock(&resource->resource_lock);
655 
656 		if (!resource->wakeup_enabled) {
657 			err = acpi_power_on_unlocked(resource);
658 			if (!err)
659 				resource->wakeup_enabled = true;
660 		}
661 
662 		mutex_unlock(&resource->resource_lock);
663 
664 		if (err) {
665 			dev_err(&dev->dev,
666 				"Cannot turn wakeup power resources on\n");
667 			dev->wakeup.flags.valid = 0;
668 			goto out;
669 		}
670 	}
671 	/*
672 	 * Passing 3 as the third argument below means the device may be
673 	 * put into arbitrary power state afterward.
674 	 */
675 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
676 	if (err)
677 		dev->wakeup.prepare_count = 0;
678 
679  out:
680 	mutex_unlock(&acpi_device_lock);
681 	return err;
682 }
683 
684 /*
685  * Shutdown a wakeup device, counterpart of above method
686  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
687  *    State Wake) for the device, if present
688  * 2. Shutdown down the power resources
689  */
690 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
691 {
692 	struct acpi_power_resource_entry *entry;
693 	int err = 0;
694 
695 	if (!dev || !dev->wakeup.flags.valid)
696 		return -EINVAL;
697 
698 	mutex_lock(&acpi_device_lock);
699 
700 	if (--dev->wakeup.prepare_count > 0)
701 		goto out;
702 
703 	/*
704 	 * Executing the code below even if prepare_count is already zero when
705 	 * the function is called may be useful, for example for initialisation.
706 	 */
707 	if (dev->wakeup.prepare_count < 0)
708 		dev->wakeup.prepare_count = 0;
709 
710 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
711 	if (err)
712 		goto out;
713 
714 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
715 		struct acpi_power_resource *resource = entry->resource;
716 
717 		mutex_lock(&resource->resource_lock);
718 
719 		if (resource->wakeup_enabled) {
720 			err = acpi_power_off_unlocked(resource);
721 			if (!err)
722 				resource->wakeup_enabled = false;
723 		}
724 
725 		mutex_unlock(&resource->resource_lock);
726 
727 		if (err) {
728 			dev_err(&dev->dev,
729 				"Cannot turn wakeup power resources off\n");
730 			dev->wakeup.flags.valid = 0;
731 			break;
732 		}
733 	}
734 
735  out:
736 	mutex_unlock(&acpi_device_lock);
737 	return err;
738 }
739 
740 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
741 {
742 	int result = 0;
743 	int list_state = 0;
744 	int i = 0;
745 
746 	if (!device || !state)
747 		return -EINVAL;
748 
749 	/*
750 	 * We know a device's inferred power state when all the resources
751 	 * required for a given D-state are 'on'.
752 	 */
753 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
754 		struct list_head *list = &device->power.states[i].resources;
755 
756 		if (list_empty(list))
757 			continue;
758 
759 		result = acpi_power_get_list_state(list, &list_state);
760 		if (result)
761 			return result;
762 
763 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
764 			*state = i;
765 			return 0;
766 		}
767 	}
768 
769 	*state = ACPI_STATE_D3;
770 	return 0;
771 }
772 
773 int acpi_power_on_resources(struct acpi_device *device, int state)
774 {
775 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
776 		return -EINVAL;
777 
778 	return acpi_power_on_list(&device->power.states[state].resources);
779 }
780 
781 int acpi_power_transition(struct acpi_device *device, int state)
782 {
783 	int result = 0;
784 
785 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
786 		return -EINVAL;
787 
788 	if (device->power.state == state || !device->flags.power_manageable)
789 		return 0;
790 
791 	if ((device->power.state < ACPI_STATE_D0)
792 	    || (device->power.state > ACPI_STATE_D3_COLD))
793 		return -ENODEV;
794 
795 	/* TBD: Resources must be ordered. */
796 
797 	/*
798 	 * First we reference all power resources required in the target list
799 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
800 	 * we dereference all power resources used in the current list.
801 	 */
802 	if (state < ACPI_STATE_D3_COLD)
803 		result = acpi_power_on_list(
804 			&device->power.states[state].resources);
805 
806 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
807 		acpi_power_off_list(
808 			&device->power.states[device->power.state].resources);
809 
810 	/* We shouldn't change the state unless the above operations succeed. */
811 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
812 
813 	return result;
814 }
815 
816 static void acpi_release_power_resource(struct device *dev)
817 {
818 	struct acpi_device *device = to_acpi_device(dev);
819 	struct acpi_power_resource *resource;
820 
821 	resource = container_of(device, struct acpi_power_resource, device);
822 
823 	mutex_lock(&power_resource_list_lock);
824 	list_del(&resource->list_node);
825 	mutex_unlock(&power_resource_list_lock);
826 
827 	acpi_free_ids(device);
828 	kfree(resource);
829 }
830 
831 static ssize_t acpi_power_in_use_show(struct device *dev,
832 				      struct device_attribute *attr,
833 				      char *buf) {
834 	struct acpi_power_resource *resource;
835 
836 	resource = to_power_resource(to_acpi_device(dev));
837 	return sprintf(buf, "%u\n", !!resource->ref_count);
838 }
839 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
840 
841 static void acpi_power_sysfs_remove(struct acpi_device *device)
842 {
843 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
844 }
845 
846 int acpi_add_power_resource(acpi_handle handle)
847 {
848 	struct acpi_power_resource *resource;
849 	struct acpi_device *device = NULL;
850 	union acpi_object acpi_object;
851 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
852 	acpi_status status;
853 	int state, result = -ENODEV;
854 
855 	acpi_bus_get_device(handle, &device);
856 	if (device)
857 		return 0;
858 
859 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
860 	if (!resource)
861 		return -ENOMEM;
862 
863 	device = &resource->device;
864 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
865 				ACPI_STA_DEFAULT);
866 	mutex_init(&resource->resource_lock);
867 	INIT_LIST_HEAD(&resource->dependent);
868 	resource->name = device->pnp.bus_id;
869 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
870 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
871 	device->power.state = ACPI_STATE_UNKNOWN;
872 
873 	/* Evalute the object to get the system level and resource order. */
874 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
875 	if (ACPI_FAILURE(status))
876 		goto err;
877 
878 	resource->system_level = acpi_object.power_resource.system_level;
879 	resource->order = acpi_object.power_resource.resource_order;
880 
881 	result = acpi_power_get_state(handle, &state);
882 	if (result)
883 		goto err;
884 
885 	printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
886 	       acpi_device_bid(device), state ? "on" : "off");
887 
888 	device->flags.match_driver = true;
889 	result = acpi_device_add(device, acpi_release_power_resource);
890 	if (result)
891 		goto err;
892 
893 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
894 		device->remove = acpi_power_sysfs_remove;
895 
896 	mutex_lock(&power_resource_list_lock);
897 	list_add(&resource->list_node, &acpi_power_resource_list);
898 	mutex_unlock(&power_resource_list_lock);
899 	acpi_device_add_finalize(device);
900 	return 0;
901 
902  err:
903 	acpi_release_power_resource(&device->dev);
904 	return result;
905 }
906 
907 #ifdef CONFIG_ACPI_SLEEP
908 void acpi_resume_power_resources(void)
909 {
910 	struct acpi_power_resource *resource;
911 
912 	mutex_lock(&power_resource_list_lock);
913 
914 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
915 		int result, state;
916 
917 		mutex_lock(&resource->resource_lock);
918 
919 		result = acpi_power_get_state(resource->device.handle, &state);
920 		if (result)
921 			continue;
922 
923 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
924 		    && resource->ref_count) {
925 			dev_info(&resource->device.dev, "Turning ON\n");
926 			__acpi_power_on(resource);
927 		} else if (state == ACPI_POWER_RESOURCE_STATE_ON
928 		    && !resource->ref_count) {
929 			dev_info(&resource->device.dev, "Turning OFF\n");
930 			__acpi_power_off(resource);
931 		}
932 
933 		mutex_unlock(&resource->resource_lock);
934 	}
935 
936 	mutex_unlock(&power_resource_list_lock);
937 }
938 #endif
939