1 /* 2 * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $) 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or (at 12 * your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write to the Free Software Foundation, Inc., 21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 22 * 23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 24 */ 25 26 /* 27 * ACPI power-managed devices may be controlled in two ways: 28 * 1. via "Device Specific (D-State) Control" 29 * 2. via "Power Resource Control". 30 * This module is used to manage devices relying on Power Resource Control. 31 * 32 * An ACPI "power resource object" describes a software controllable power 33 * plane, clock plane, or other resource used by a power managed device. 34 * A device may rely on multiple power resources, and a power resource 35 * may be shared by multiple devices. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/init.h> 41 #include <linux/types.h> 42 #include <linux/slab.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/sysfs.h> 45 #include <acpi/acpi_bus.h> 46 #include <acpi/acpi_drivers.h> 47 #include "sleep.h" 48 #include "internal.h" 49 50 #define PREFIX "ACPI: " 51 52 #define _COMPONENT ACPI_POWER_COMPONENT 53 ACPI_MODULE_NAME("power"); 54 #define ACPI_POWER_CLASS "power_resource" 55 #define ACPI_POWER_DEVICE_NAME "Power Resource" 56 #define ACPI_POWER_FILE_INFO "info" 57 #define ACPI_POWER_FILE_STATUS "state" 58 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 59 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 60 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 61 62 struct acpi_power_dependent_device { 63 struct list_head node; 64 struct acpi_device *adev; 65 struct work_struct work; 66 }; 67 68 struct acpi_power_resource { 69 struct acpi_device device; 70 struct list_head list_node; 71 struct list_head dependent; 72 char *name; 73 u32 system_level; 74 u32 order; 75 unsigned int ref_count; 76 bool wakeup_enabled; 77 struct mutex resource_lock; 78 }; 79 80 struct acpi_power_resource_entry { 81 struct list_head node; 82 struct acpi_power_resource *resource; 83 }; 84 85 static LIST_HEAD(acpi_power_resource_list); 86 static DEFINE_MUTEX(power_resource_list_lock); 87 88 /* -------------------------------------------------------------------------- 89 Power Resource Management 90 -------------------------------------------------------------------------- */ 91 92 static inline 93 struct acpi_power_resource *to_power_resource(struct acpi_device *device) 94 { 95 return container_of(device, struct acpi_power_resource, device); 96 } 97 98 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) 99 { 100 struct acpi_device *device; 101 102 if (acpi_bus_get_device(handle, &device)) 103 return NULL; 104 105 return to_power_resource(device); 106 } 107 108 static int acpi_power_resources_list_add(acpi_handle handle, 109 struct list_head *list) 110 { 111 struct acpi_power_resource *resource = acpi_power_get_context(handle); 112 struct acpi_power_resource_entry *entry; 113 114 if (!resource || !list) 115 return -EINVAL; 116 117 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 118 if (!entry) 119 return -ENOMEM; 120 121 entry->resource = resource; 122 if (!list_empty(list)) { 123 struct acpi_power_resource_entry *e; 124 125 list_for_each_entry(e, list, node) 126 if (e->resource->order > resource->order) { 127 list_add_tail(&entry->node, &e->node); 128 return 0; 129 } 130 } 131 list_add_tail(&entry->node, list); 132 return 0; 133 } 134 135 void acpi_power_resources_list_free(struct list_head *list) 136 { 137 struct acpi_power_resource_entry *entry, *e; 138 139 list_for_each_entry_safe(entry, e, list, node) { 140 list_del(&entry->node); 141 kfree(entry); 142 } 143 } 144 145 int acpi_extract_power_resources(union acpi_object *package, unsigned int start, 146 struct list_head *list) 147 { 148 unsigned int i; 149 int err = 0; 150 151 for (i = start; i < package->package.count; i++) { 152 union acpi_object *element = &package->package.elements[i]; 153 acpi_handle rhandle; 154 155 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { 156 err = -ENODATA; 157 break; 158 } 159 rhandle = element->reference.handle; 160 if (!rhandle) { 161 err = -ENODEV; 162 break; 163 } 164 err = acpi_add_power_resource(rhandle); 165 if (err) 166 break; 167 168 err = acpi_power_resources_list_add(rhandle, list); 169 if (err) 170 break; 171 } 172 if (err) 173 acpi_power_resources_list_free(list); 174 175 return err; 176 } 177 178 static int acpi_power_get_state(acpi_handle handle, int *state) 179 { 180 acpi_status status = AE_OK; 181 unsigned long long sta = 0; 182 char node_name[5]; 183 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 184 185 186 if (!handle || !state) 187 return -EINVAL; 188 189 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 190 if (ACPI_FAILURE(status)) 191 return -ENODEV; 192 193 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: 194 ACPI_POWER_RESOURCE_STATE_OFF; 195 196 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 197 198 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", 199 node_name, 200 *state ? "on" : "off")); 201 202 return 0; 203 } 204 205 static int acpi_power_get_list_state(struct list_head *list, int *state) 206 { 207 struct acpi_power_resource_entry *entry; 208 int cur_state; 209 210 if (!list || !state) 211 return -EINVAL; 212 213 /* The state of the list is 'on' IFF all resources are 'on'. */ 214 list_for_each_entry(entry, list, node) { 215 struct acpi_power_resource *resource = entry->resource; 216 acpi_handle handle = resource->device.handle; 217 int result; 218 219 mutex_lock(&resource->resource_lock); 220 result = acpi_power_get_state(handle, &cur_state); 221 mutex_unlock(&resource->resource_lock); 222 if (result) 223 return result; 224 225 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) 226 break; 227 } 228 229 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", 230 cur_state ? "on" : "off")); 231 232 *state = cur_state; 233 return 0; 234 } 235 236 static void acpi_power_resume_dependent(struct work_struct *work) 237 { 238 struct acpi_power_dependent_device *dep; 239 struct acpi_device_physical_node *pn; 240 struct acpi_device *adev; 241 int state; 242 243 dep = container_of(work, struct acpi_power_dependent_device, work); 244 adev = dep->adev; 245 if (acpi_power_get_inferred_state(adev, &state)) 246 return; 247 248 if (state > ACPI_STATE_D0) 249 return; 250 251 mutex_lock(&adev->physical_node_lock); 252 253 list_for_each_entry(pn, &adev->physical_node_list, node) 254 pm_request_resume(pn->dev); 255 256 list_for_each_entry(pn, &adev->power_dependent, node) 257 pm_request_resume(pn->dev); 258 259 mutex_unlock(&adev->physical_node_lock); 260 } 261 262 static int __acpi_power_on(struct acpi_power_resource *resource) 263 { 264 acpi_status status = AE_OK; 265 266 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); 267 if (ACPI_FAILURE(status)) 268 return -ENODEV; 269 270 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", 271 resource->name)); 272 273 return 0; 274 } 275 276 static int acpi_power_on_unlocked(struct acpi_power_resource *resource) 277 { 278 int result = 0; 279 280 if (resource->ref_count++) { 281 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 282 "Power resource [%s] already on", 283 resource->name)); 284 } else { 285 result = __acpi_power_on(resource); 286 if (result) { 287 resource->ref_count--; 288 } else { 289 struct acpi_power_dependent_device *dep; 290 291 list_for_each_entry(dep, &resource->dependent, node) 292 schedule_work(&dep->work); 293 } 294 } 295 return result; 296 } 297 298 static int acpi_power_on(struct acpi_power_resource *resource) 299 { 300 int result; 301 302 mutex_lock(&resource->resource_lock); 303 result = acpi_power_on_unlocked(resource); 304 mutex_unlock(&resource->resource_lock); 305 return result; 306 } 307 308 static int __acpi_power_off(struct acpi_power_resource *resource) 309 { 310 acpi_status status; 311 312 status = acpi_evaluate_object(resource->device.handle, "_OFF", 313 NULL, NULL); 314 if (ACPI_FAILURE(status)) 315 return -ENODEV; 316 317 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", 318 resource->name)); 319 return 0; 320 } 321 322 static int acpi_power_off_unlocked(struct acpi_power_resource *resource) 323 { 324 int result = 0; 325 326 if (!resource->ref_count) { 327 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 328 "Power resource [%s] already off", 329 resource->name)); 330 return 0; 331 } 332 333 if (--resource->ref_count) { 334 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 335 "Power resource [%s] still in use\n", 336 resource->name)); 337 } else { 338 result = __acpi_power_off(resource); 339 if (result) 340 resource->ref_count++; 341 } 342 return result; 343 } 344 345 static int acpi_power_off(struct acpi_power_resource *resource) 346 { 347 int result; 348 349 mutex_lock(&resource->resource_lock); 350 result = acpi_power_off_unlocked(resource); 351 mutex_unlock(&resource->resource_lock); 352 return result; 353 } 354 355 static int acpi_power_off_list(struct list_head *list) 356 { 357 struct acpi_power_resource_entry *entry; 358 int result = 0; 359 360 list_for_each_entry_reverse(entry, list, node) { 361 result = acpi_power_off(entry->resource); 362 if (result) 363 goto err; 364 } 365 return 0; 366 367 err: 368 list_for_each_entry_continue(entry, list, node) 369 acpi_power_on(entry->resource); 370 371 return result; 372 } 373 374 static int acpi_power_on_list(struct list_head *list) 375 { 376 struct acpi_power_resource_entry *entry; 377 int result = 0; 378 379 list_for_each_entry(entry, list, node) { 380 result = acpi_power_on(entry->resource); 381 if (result) 382 goto err; 383 } 384 return 0; 385 386 err: 387 list_for_each_entry_continue_reverse(entry, list, node) 388 acpi_power_off(entry->resource); 389 390 return result; 391 } 392 393 static void acpi_power_add_dependent(struct acpi_power_resource *resource, 394 struct acpi_device *adev) 395 { 396 struct acpi_power_dependent_device *dep; 397 398 mutex_lock(&resource->resource_lock); 399 400 list_for_each_entry(dep, &resource->dependent, node) 401 if (dep->adev == adev) 402 goto out; 403 404 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 405 if (!dep) 406 goto out; 407 408 dep->adev = adev; 409 INIT_WORK(&dep->work, acpi_power_resume_dependent); 410 list_add_tail(&dep->node, &resource->dependent); 411 412 out: 413 mutex_unlock(&resource->resource_lock); 414 } 415 416 static void acpi_power_remove_dependent(struct acpi_power_resource *resource, 417 struct acpi_device *adev) 418 { 419 struct acpi_power_dependent_device *dep; 420 struct work_struct *work = NULL; 421 422 mutex_lock(&resource->resource_lock); 423 424 list_for_each_entry(dep, &resource->dependent, node) 425 if (dep->adev == adev) { 426 list_del(&dep->node); 427 work = &dep->work; 428 break; 429 } 430 431 mutex_unlock(&resource->resource_lock); 432 433 if (work) { 434 cancel_work_sync(work); 435 kfree(dep); 436 } 437 } 438 439 static struct attribute *attrs[] = { 440 NULL, 441 }; 442 443 static struct attribute_group attr_groups[] = { 444 [ACPI_STATE_D0] = { 445 .name = "power_resources_D0", 446 .attrs = attrs, 447 }, 448 [ACPI_STATE_D1] = { 449 .name = "power_resources_D1", 450 .attrs = attrs, 451 }, 452 [ACPI_STATE_D2] = { 453 .name = "power_resources_D2", 454 .attrs = attrs, 455 }, 456 [ACPI_STATE_D3_HOT] = { 457 .name = "power_resources_D3hot", 458 .attrs = attrs, 459 }, 460 }; 461 462 static void acpi_power_hide_list(struct acpi_device *adev, int state) 463 { 464 struct acpi_device_power_state *ps = &adev->power.states[state]; 465 struct acpi_power_resource_entry *entry; 466 467 if (list_empty(&ps->resources)) 468 return; 469 470 list_for_each_entry_reverse(entry, &ps->resources, node) { 471 struct acpi_device *res_dev = &entry->resource->device; 472 473 sysfs_remove_link_from_group(&adev->dev.kobj, 474 attr_groups[state].name, 475 dev_name(&res_dev->dev)); 476 } 477 sysfs_remove_group(&adev->dev.kobj, &attr_groups[state]); 478 } 479 480 static void acpi_power_expose_list(struct acpi_device *adev, int state) 481 { 482 struct acpi_device_power_state *ps = &adev->power.states[state]; 483 struct acpi_power_resource_entry *entry; 484 int ret; 485 486 if (list_empty(&ps->resources)) 487 return; 488 489 ret = sysfs_create_group(&adev->dev.kobj, &attr_groups[state]); 490 if (ret) 491 return; 492 493 list_for_each_entry(entry, &ps->resources, node) { 494 struct acpi_device *res_dev = &entry->resource->device; 495 496 ret = sysfs_add_link_to_group(&adev->dev.kobj, 497 attr_groups[state].name, 498 &res_dev->dev.kobj, 499 dev_name(&res_dev->dev)); 500 if (ret) { 501 acpi_power_hide_list(adev, state); 502 break; 503 } 504 } 505 } 506 507 void acpi_power_add_remove_device(struct acpi_device *adev, bool add) 508 { 509 struct acpi_device_power_state *ps; 510 struct acpi_power_resource_entry *entry; 511 int state; 512 513 if (!adev->power.flags.power_resources) 514 return; 515 516 ps = &adev->power.states[ACPI_STATE_D0]; 517 list_for_each_entry(entry, &ps->resources, node) { 518 struct acpi_power_resource *resource = entry->resource; 519 520 if (add) 521 acpi_power_add_dependent(resource, adev); 522 else 523 acpi_power_remove_dependent(resource, adev); 524 } 525 526 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) { 527 if (add) 528 acpi_power_expose_list(adev, state); 529 else 530 acpi_power_hide_list(adev, state); 531 } 532 } 533 534 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) 535 { 536 struct acpi_power_resource_entry *entry; 537 int system_level = 5; 538 539 list_for_each_entry(entry, list, node) { 540 struct acpi_power_resource *resource = entry->resource; 541 acpi_handle handle = resource->device.handle; 542 int result; 543 int state; 544 545 mutex_lock(&resource->resource_lock); 546 547 result = acpi_power_get_state(handle, &state); 548 if (result) { 549 mutex_unlock(&resource->resource_lock); 550 return result; 551 } 552 if (state == ACPI_POWER_RESOURCE_STATE_ON) { 553 resource->ref_count++; 554 resource->wakeup_enabled = true; 555 } 556 if (system_level > resource->system_level) 557 system_level = resource->system_level; 558 559 mutex_unlock(&resource->resource_lock); 560 } 561 *system_level_p = system_level; 562 return 0; 563 } 564 565 /* -------------------------------------------------------------------------- 566 Device Power Management 567 -------------------------------------------------------------------------- */ 568 569 /** 570 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 571 * ACPI 3.0) _PSW (Power State Wake) 572 * @dev: Device to handle. 573 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 574 * @sleep_state: Target sleep state of the system. 575 * @dev_state: Target power state of the device. 576 * 577 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 578 * State Wake) for the device, if present. On failure reset the device's 579 * wakeup.flags.valid flag. 580 * 581 * RETURN VALUE: 582 * 0 if either _DSW or _PSW has been successfully executed 583 * 0 if neither _DSW nor _PSW has been found 584 * -ENODEV if the execution of either _DSW or _PSW has failed 585 */ 586 int acpi_device_sleep_wake(struct acpi_device *dev, 587 int enable, int sleep_state, int dev_state) 588 { 589 union acpi_object in_arg[3]; 590 struct acpi_object_list arg_list = { 3, in_arg }; 591 acpi_status status = AE_OK; 592 593 /* 594 * Try to execute _DSW first. 595 * 596 * Three agruments are needed for the _DSW object: 597 * Argument 0: enable/disable the wake capabilities 598 * Argument 1: target system state 599 * Argument 2: target device state 600 * When _DSW object is called to disable the wake capabilities, maybe 601 * the first argument is filled. The values of the other two agruments 602 * are meaningless. 603 */ 604 in_arg[0].type = ACPI_TYPE_INTEGER; 605 in_arg[0].integer.value = enable; 606 in_arg[1].type = ACPI_TYPE_INTEGER; 607 in_arg[1].integer.value = sleep_state; 608 in_arg[2].type = ACPI_TYPE_INTEGER; 609 in_arg[2].integer.value = dev_state; 610 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 611 if (ACPI_SUCCESS(status)) { 612 return 0; 613 } else if (status != AE_NOT_FOUND) { 614 printk(KERN_ERR PREFIX "_DSW execution failed\n"); 615 dev->wakeup.flags.valid = 0; 616 return -ENODEV; 617 } 618 619 /* Execute _PSW */ 620 arg_list.count = 1; 621 in_arg[0].integer.value = enable; 622 status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL); 623 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 624 printk(KERN_ERR PREFIX "_PSW execution failed\n"); 625 dev->wakeup.flags.valid = 0; 626 return -ENODEV; 627 } 628 629 return 0; 630 } 631 632 /* 633 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 634 * 1. Power on the power resources required for the wakeup device 635 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 636 * State Wake) for the device, if present 637 */ 638 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 639 { 640 struct acpi_power_resource_entry *entry; 641 int err = 0; 642 643 if (!dev || !dev->wakeup.flags.valid) 644 return -EINVAL; 645 646 mutex_lock(&acpi_device_lock); 647 648 if (dev->wakeup.prepare_count++) 649 goto out; 650 651 list_for_each_entry(entry, &dev->wakeup.resources, node) { 652 struct acpi_power_resource *resource = entry->resource; 653 654 mutex_lock(&resource->resource_lock); 655 656 if (!resource->wakeup_enabled) { 657 err = acpi_power_on_unlocked(resource); 658 if (!err) 659 resource->wakeup_enabled = true; 660 } 661 662 mutex_unlock(&resource->resource_lock); 663 664 if (err) { 665 dev_err(&dev->dev, 666 "Cannot turn wakeup power resources on\n"); 667 dev->wakeup.flags.valid = 0; 668 goto out; 669 } 670 } 671 /* 672 * Passing 3 as the third argument below means the device may be 673 * put into arbitrary power state afterward. 674 */ 675 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 676 if (err) 677 dev->wakeup.prepare_count = 0; 678 679 out: 680 mutex_unlock(&acpi_device_lock); 681 return err; 682 } 683 684 /* 685 * Shutdown a wakeup device, counterpart of above method 686 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 687 * State Wake) for the device, if present 688 * 2. Shutdown down the power resources 689 */ 690 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 691 { 692 struct acpi_power_resource_entry *entry; 693 int err = 0; 694 695 if (!dev || !dev->wakeup.flags.valid) 696 return -EINVAL; 697 698 mutex_lock(&acpi_device_lock); 699 700 if (--dev->wakeup.prepare_count > 0) 701 goto out; 702 703 /* 704 * Executing the code below even if prepare_count is already zero when 705 * the function is called may be useful, for example for initialisation. 706 */ 707 if (dev->wakeup.prepare_count < 0) 708 dev->wakeup.prepare_count = 0; 709 710 err = acpi_device_sleep_wake(dev, 0, 0, 0); 711 if (err) 712 goto out; 713 714 list_for_each_entry(entry, &dev->wakeup.resources, node) { 715 struct acpi_power_resource *resource = entry->resource; 716 717 mutex_lock(&resource->resource_lock); 718 719 if (resource->wakeup_enabled) { 720 err = acpi_power_off_unlocked(resource); 721 if (!err) 722 resource->wakeup_enabled = false; 723 } 724 725 mutex_unlock(&resource->resource_lock); 726 727 if (err) { 728 dev_err(&dev->dev, 729 "Cannot turn wakeup power resources off\n"); 730 dev->wakeup.flags.valid = 0; 731 break; 732 } 733 } 734 735 out: 736 mutex_unlock(&acpi_device_lock); 737 return err; 738 } 739 740 int acpi_power_get_inferred_state(struct acpi_device *device, int *state) 741 { 742 int result = 0; 743 int list_state = 0; 744 int i = 0; 745 746 if (!device || !state) 747 return -EINVAL; 748 749 /* 750 * We know a device's inferred power state when all the resources 751 * required for a given D-state are 'on'. 752 */ 753 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 754 struct list_head *list = &device->power.states[i].resources; 755 756 if (list_empty(list)) 757 continue; 758 759 result = acpi_power_get_list_state(list, &list_state); 760 if (result) 761 return result; 762 763 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 764 *state = i; 765 return 0; 766 } 767 } 768 769 *state = ACPI_STATE_D3; 770 return 0; 771 } 772 773 int acpi_power_on_resources(struct acpi_device *device, int state) 774 { 775 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) 776 return -EINVAL; 777 778 return acpi_power_on_list(&device->power.states[state].resources); 779 } 780 781 int acpi_power_transition(struct acpi_device *device, int state) 782 { 783 int result = 0; 784 785 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 786 return -EINVAL; 787 788 if (device->power.state == state || !device->flags.power_manageable) 789 return 0; 790 791 if ((device->power.state < ACPI_STATE_D0) 792 || (device->power.state > ACPI_STATE_D3_COLD)) 793 return -ENODEV; 794 795 /* TBD: Resources must be ordered. */ 796 797 /* 798 * First we reference all power resources required in the target list 799 * (e.g. so the device doesn't lose power while transitioning). Then, 800 * we dereference all power resources used in the current list. 801 */ 802 if (state < ACPI_STATE_D3_COLD) 803 result = acpi_power_on_list( 804 &device->power.states[state].resources); 805 806 if (!result && device->power.state < ACPI_STATE_D3_COLD) 807 acpi_power_off_list( 808 &device->power.states[device->power.state].resources); 809 810 /* We shouldn't change the state unless the above operations succeed. */ 811 device->power.state = result ? ACPI_STATE_UNKNOWN : state; 812 813 return result; 814 } 815 816 static void acpi_release_power_resource(struct device *dev) 817 { 818 struct acpi_device *device = to_acpi_device(dev); 819 struct acpi_power_resource *resource; 820 821 resource = container_of(device, struct acpi_power_resource, device); 822 823 mutex_lock(&power_resource_list_lock); 824 list_del(&resource->list_node); 825 mutex_unlock(&power_resource_list_lock); 826 827 acpi_free_ids(device); 828 kfree(resource); 829 } 830 831 static ssize_t acpi_power_in_use_show(struct device *dev, 832 struct device_attribute *attr, 833 char *buf) { 834 struct acpi_power_resource *resource; 835 836 resource = to_power_resource(to_acpi_device(dev)); 837 return sprintf(buf, "%u\n", !!resource->ref_count); 838 } 839 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL); 840 841 static void acpi_power_sysfs_remove(struct acpi_device *device) 842 { 843 device_remove_file(&device->dev, &dev_attr_resource_in_use); 844 } 845 846 int acpi_add_power_resource(acpi_handle handle) 847 { 848 struct acpi_power_resource *resource; 849 struct acpi_device *device = NULL; 850 union acpi_object acpi_object; 851 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 852 acpi_status status; 853 int state, result = -ENODEV; 854 855 acpi_bus_get_device(handle, &device); 856 if (device) 857 return 0; 858 859 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 860 if (!resource) 861 return -ENOMEM; 862 863 device = &resource->device; 864 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER, 865 ACPI_STA_DEFAULT); 866 mutex_init(&resource->resource_lock); 867 INIT_LIST_HEAD(&resource->dependent); 868 resource->name = device->pnp.bus_id; 869 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 870 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 871 device->power.state = ACPI_STATE_UNKNOWN; 872 873 /* Evalute the object to get the system level and resource order. */ 874 status = acpi_evaluate_object(handle, NULL, NULL, &buffer); 875 if (ACPI_FAILURE(status)) 876 goto err; 877 878 resource->system_level = acpi_object.power_resource.system_level; 879 resource->order = acpi_object.power_resource.resource_order; 880 881 result = acpi_power_get_state(handle, &state); 882 if (result) 883 goto err; 884 885 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), 886 acpi_device_bid(device), state ? "on" : "off"); 887 888 device->flags.match_driver = true; 889 result = acpi_device_add(device, acpi_release_power_resource); 890 if (result) 891 goto err; 892 893 if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) 894 device->remove = acpi_power_sysfs_remove; 895 896 mutex_lock(&power_resource_list_lock); 897 list_add(&resource->list_node, &acpi_power_resource_list); 898 mutex_unlock(&power_resource_list_lock); 899 acpi_device_add_finalize(device); 900 return 0; 901 902 err: 903 acpi_release_power_resource(&device->dev); 904 return result; 905 } 906 907 #ifdef CONFIG_ACPI_SLEEP 908 void acpi_resume_power_resources(void) 909 { 910 struct acpi_power_resource *resource; 911 912 mutex_lock(&power_resource_list_lock); 913 914 list_for_each_entry(resource, &acpi_power_resource_list, list_node) { 915 int result, state; 916 917 mutex_lock(&resource->resource_lock); 918 919 result = acpi_power_get_state(resource->device.handle, &state); 920 if (result) 921 continue; 922 923 if (state == ACPI_POWER_RESOURCE_STATE_OFF 924 && resource->ref_count) { 925 dev_info(&resource->device.dev, "Turning ON\n"); 926 __acpi_power_on(resource); 927 } else if (state == ACPI_POWER_RESOURCE_STATE_ON 928 && !resource->ref_count) { 929 dev_info(&resource->device.dev, "Turning OFF\n"); 930 __acpi_power_off(resource); 931 } 932 933 mutex_unlock(&resource->resource_lock); 934 } 935 936 mutex_unlock(&power_resource_list_lock); 937 } 938 #endif 939