1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * drivers/acpi/power.c - ACPI Power Resources management. 4 * 5 * Copyright (C) 2001 - 2015 Intel Corp. 6 * Author: Andy Grover <andrew.grover@intel.com> 7 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 8 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 9 */ 10 11 /* 12 * ACPI power-managed devices may be controlled in two ways: 13 * 1. via "Device Specific (D-State) Control" 14 * 2. via "Power Resource Control". 15 * The code below deals with ACPI Power Resources control. 16 * 17 * An ACPI "power resource object" represents a software controllable power 18 * plane, clock plane, or other resource depended on by a device. 19 * 20 * A device may rely on multiple power resources, and a power resource 21 * may be shared by multiple devices. 22 */ 23 24 #define pr_fmt(fmt) "ACPI: PM: " fmt 25 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/sysfs.h> 33 #include <linux/acpi.h> 34 #include "sleep.h" 35 #include "internal.h" 36 37 #define ACPI_POWER_CLASS "power_resource" 38 #define ACPI_POWER_DEVICE_NAME "Power Resource" 39 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 40 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 42 43 struct acpi_power_dependent_device { 44 struct device *dev; 45 struct list_head node; 46 }; 47 48 struct acpi_power_resource { 49 struct acpi_device device; 50 struct list_head list_node; 51 char *name; 52 u32 system_level; 53 u32 order; 54 unsigned int ref_count; 55 u8 state; 56 bool wakeup_enabled; 57 struct mutex resource_lock; 58 struct list_head dependents; 59 }; 60 61 struct acpi_power_resource_entry { 62 struct list_head node; 63 struct acpi_power_resource *resource; 64 }; 65 66 static LIST_HEAD(acpi_power_resource_list); 67 static DEFINE_MUTEX(power_resource_list_lock); 68 69 /* -------------------------------------------------------------------------- 70 Power Resource Management 71 -------------------------------------------------------------------------- */ 72 73 static inline 74 struct acpi_power_resource *to_power_resource(struct acpi_device *device) 75 { 76 return container_of(device, struct acpi_power_resource, device); 77 } 78 79 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) 80 { 81 struct acpi_device *device; 82 83 if (acpi_bus_get_device(handle, &device)) 84 return NULL; 85 86 return to_power_resource(device); 87 } 88 89 static int acpi_power_resources_list_add(acpi_handle handle, 90 struct list_head *list) 91 { 92 struct acpi_power_resource *resource = acpi_power_get_context(handle); 93 struct acpi_power_resource_entry *entry; 94 95 if (!resource || !list) 96 return -EINVAL; 97 98 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 99 if (!entry) 100 return -ENOMEM; 101 102 entry->resource = resource; 103 if (!list_empty(list)) { 104 struct acpi_power_resource_entry *e; 105 106 list_for_each_entry(e, list, node) 107 if (e->resource->order > resource->order) { 108 list_add_tail(&entry->node, &e->node); 109 return 0; 110 } 111 } 112 list_add_tail(&entry->node, list); 113 return 0; 114 } 115 116 void acpi_power_resources_list_free(struct list_head *list) 117 { 118 struct acpi_power_resource_entry *entry, *e; 119 120 list_for_each_entry_safe(entry, e, list, node) { 121 list_del(&entry->node); 122 kfree(entry); 123 } 124 } 125 126 static bool acpi_power_resource_is_dup(union acpi_object *package, 127 unsigned int start, unsigned int i) 128 { 129 acpi_handle rhandle, dup; 130 unsigned int j; 131 132 /* The caller is expected to check the package element types */ 133 rhandle = package->package.elements[i].reference.handle; 134 for (j = start; j < i; j++) { 135 dup = package->package.elements[j].reference.handle; 136 if (dup == rhandle) 137 return true; 138 } 139 140 return false; 141 } 142 143 int acpi_extract_power_resources(union acpi_object *package, unsigned int start, 144 struct list_head *list) 145 { 146 unsigned int i; 147 int err = 0; 148 149 for (i = start; i < package->package.count; i++) { 150 union acpi_object *element = &package->package.elements[i]; 151 struct acpi_device *rdev; 152 acpi_handle rhandle; 153 154 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { 155 err = -ENODATA; 156 break; 157 } 158 rhandle = element->reference.handle; 159 if (!rhandle) { 160 err = -ENODEV; 161 break; 162 } 163 164 /* Some ACPI tables contain duplicate power resource references */ 165 if (acpi_power_resource_is_dup(package, start, i)) 166 continue; 167 168 rdev = acpi_add_power_resource(rhandle); 169 if (!rdev) { 170 err = -ENODEV; 171 break; 172 } 173 err = acpi_power_resources_list_add(rhandle, list); 174 if (err) 175 break; 176 } 177 if (err) 178 acpi_power_resources_list_free(list); 179 180 return err; 181 } 182 183 static int __get_state(acpi_handle handle, u8 *state) 184 { 185 acpi_status status = AE_OK; 186 unsigned long long sta = 0; 187 u8 cur_state; 188 189 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 190 if (ACPI_FAILURE(status)) 191 return -ENODEV; 192 193 cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON; 194 195 acpi_handle_debug(handle, "Power resource is %s\n", 196 cur_state ? "on" : "off"); 197 198 *state = cur_state; 199 return 0; 200 } 201 202 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state) 203 { 204 if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) { 205 int ret; 206 207 ret = __get_state(resource->device.handle, &resource->state); 208 if (ret) 209 return ret; 210 } 211 212 *state = resource->state; 213 return 0; 214 } 215 216 static int acpi_power_get_list_state(struct list_head *list, u8 *state) 217 { 218 struct acpi_power_resource_entry *entry; 219 u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF; 220 221 if (!list || !state) 222 return -EINVAL; 223 224 /* The state of the list is 'on' IFF all resources are 'on'. */ 225 list_for_each_entry(entry, list, node) { 226 struct acpi_power_resource *resource = entry->resource; 227 int result; 228 229 mutex_lock(&resource->resource_lock); 230 result = acpi_power_get_state(resource, &cur_state); 231 mutex_unlock(&resource->resource_lock); 232 if (result) 233 return result; 234 235 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) 236 break; 237 } 238 239 pr_debug("Power resource list is %s\n", cur_state ? "on" : "off"); 240 241 *state = cur_state; 242 return 0; 243 } 244 245 static int 246 acpi_power_resource_add_dependent(struct acpi_power_resource *resource, 247 struct device *dev) 248 { 249 struct acpi_power_dependent_device *dep; 250 int ret = 0; 251 252 mutex_lock(&resource->resource_lock); 253 list_for_each_entry(dep, &resource->dependents, node) { 254 /* Only add it once */ 255 if (dep->dev == dev) 256 goto unlock; 257 } 258 259 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 260 if (!dep) { 261 ret = -ENOMEM; 262 goto unlock; 263 } 264 265 dep->dev = dev; 266 list_add_tail(&dep->node, &resource->dependents); 267 dev_dbg(dev, "added power dependency to [%s]\n", resource->name); 268 269 unlock: 270 mutex_unlock(&resource->resource_lock); 271 return ret; 272 } 273 274 static void 275 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource, 276 struct device *dev) 277 { 278 struct acpi_power_dependent_device *dep; 279 280 mutex_lock(&resource->resource_lock); 281 list_for_each_entry(dep, &resource->dependents, node) { 282 if (dep->dev == dev) { 283 list_del(&dep->node); 284 kfree(dep); 285 dev_dbg(dev, "removed power dependency to [%s]\n", 286 resource->name); 287 break; 288 } 289 } 290 mutex_unlock(&resource->resource_lock); 291 } 292 293 /** 294 * acpi_device_power_add_dependent - Add dependent device of this ACPI device 295 * @adev: ACPI device pointer 296 * @dev: Dependent device 297 * 298 * If @adev has non-empty _PR0 the @dev is added as dependent device to all 299 * power resources returned by it. This means that whenever these power 300 * resources are turned _ON the dependent devices get runtime resumed. This 301 * is needed for devices such as PCI to allow its driver to re-initialize 302 * it after it went to D0uninitialized. 303 * 304 * If @adev does not have _PR0 this does nothing. 305 * 306 * Returns %0 in case of success and negative errno otherwise. 307 */ 308 int acpi_device_power_add_dependent(struct acpi_device *adev, 309 struct device *dev) 310 { 311 struct acpi_power_resource_entry *entry; 312 struct list_head *resources; 313 int ret; 314 315 if (!adev->flags.power_manageable) 316 return 0; 317 318 resources = &adev->power.states[ACPI_STATE_D0].resources; 319 list_for_each_entry(entry, resources, node) { 320 ret = acpi_power_resource_add_dependent(entry->resource, dev); 321 if (ret) 322 goto err; 323 } 324 325 return 0; 326 327 err: 328 list_for_each_entry(entry, resources, node) 329 acpi_power_resource_remove_dependent(entry->resource, dev); 330 331 return ret; 332 } 333 334 /** 335 * acpi_device_power_remove_dependent - Remove dependent device 336 * @adev: ACPI device pointer 337 * @dev: Dependent device 338 * 339 * Does the opposite of acpi_device_power_add_dependent() and removes the 340 * dependent device if it is found. Can be called to @adev that does not 341 * have _PR0 as well. 342 */ 343 void acpi_device_power_remove_dependent(struct acpi_device *adev, 344 struct device *dev) 345 { 346 struct acpi_power_resource_entry *entry; 347 struct list_head *resources; 348 349 if (!adev->flags.power_manageable) 350 return; 351 352 resources = &adev->power.states[ACPI_STATE_D0].resources; 353 list_for_each_entry_reverse(entry, resources, node) 354 acpi_power_resource_remove_dependent(entry->resource, dev); 355 } 356 357 static int __acpi_power_on(struct acpi_power_resource *resource) 358 { 359 struct acpi_power_dependent_device *dep; 360 acpi_status status = AE_OK; 361 362 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); 363 if (ACPI_FAILURE(status)) { 364 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN; 365 return -ENODEV; 366 } 367 368 resource->state = ACPI_POWER_RESOURCE_STATE_ON; 369 370 pr_debug("Power resource [%s] turned on\n", resource->name); 371 372 /* 373 * If there are other dependents on this power resource we need to 374 * resume them now so that their drivers can re-initialize the 375 * hardware properly after it went back to D0. 376 */ 377 if (list_empty(&resource->dependents) || 378 list_is_singular(&resource->dependents)) 379 return 0; 380 381 list_for_each_entry(dep, &resource->dependents, node) { 382 dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n", 383 resource->name); 384 pm_request_resume(dep->dev); 385 } 386 387 return 0; 388 } 389 390 static int acpi_power_on_unlocked(struct acpi_power_resource *resource) 391 { 392 int result = 0; 393 394 if (resource->ref_count++) { 395 pr_debug("Power resource [%s] already on\n", resource->name); 396 } else { 397 result = __acpi_power_on(resource); 398 if (result) 399 resource->ref_count--; 400 } 401 return result; 402 } 403 404 static int acpi_power_on(struct acpi_power_resource *resource) 405 { 406 int result; 407 408 mutex_lock(&resource->resource_lock); 409 result = acpi_power_on_unlocked(resource); 410 mutex_unlock(&resource->resource_lock); 411 return result; 412 } 413 414 static int __acpi_power_off(struct acpi_power_resource *resource) 415 { 416 acpi_status status; 417 418 status = acpi_evaluate_object(resource->device.handle, "_OFF", 419 NULL, NULL); 420 if (ACPI_FAILURE(status)) { 421 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN; 422 return -ENODEV; 423 } 424 425 resource->state = ACPI_POWER_RESOURCE_STATE_OFF; 426 427 pr_debug("Power resource [%s] turned off\n", resource->name); 428 429 return 0; 430 } 431 432 static int acpi_power_off_unlocked(struct acpi_power_resource *resource) 433 { 434 int result = 0; 435 436 if (!resource->ref_count) { 437 pr_debug("Power resource [%s] already off\n", resource->name); 438 return 0; 439 } 440 441 if (--resource->ref_count) { 442 pr_debug("Power resource [%s] still in use\n", resource->name); 443 } else { 444 result = __acpi_power_off(resource); 445 if (result) 446 resource->ref_count++; 447 } 448 return result; 449 } 450 451 static int acpi_power_off(struct acpi_power_resource *resource) 452 { 453 int result; 454 455 mutex_lock(&resource->resource_lock); 456 result = acpi_power_off_unlocked(resource); 457 mutex_unlock(&resource->resource_lock); 458 return result; 459 } 460 461 static int acpi_power_off_list(struct list_head *list) 462 { 463 struct acpi_power_resource_entry *entry; 464 int result = 0; 465 466 list_for_each_entry_reverse(entry, list, node) { 467 result = acpi_power_off(entry->resource); 468 if (result) 469 goto err; 470 } 471 return 0; 472 473 err: 474 list_for_each_entry_continue(entry, list, node) 475 acpi_power_on(entry->resource); 476 477 return result; 478 } 479 480 static int acpi_power_on_list(struct list_head *list) 481 { 482 struct acpi_power_resource_entry *entry; 483 int result = 0; 484 485 list_for_each_entry(entry, list, node) { 486 result = acpi_power_on(entry->resource); 487 if (result) 488 goto err; 489 } 490 return 0; 491 492 err: 493 list_for_each_entry_continue_reverse(entry, list, node) 494 acpi_power_off(entry->resource); 495 496 return result; 497 } 498 499 static struct attribute *attrs[] = { 500 NULL, 501 }; 502 503 static const struct attribute_group attr_groups[] = { 504 [ACPI_STATE_D0] = { 505 .name = "power_resources_D0", 506 .attrs = attrs, 507 }, 508 [ACPI_STATE_D1] = { 509 .name = "power_resources_D1", 510 .attrs = attrs, 511 }, 512 [ACPI_STATE_D2] = { 513 .name = "power_resources_D2", 514 .attrs = attrs, 515 }, 516 [ACPI_STATE_D3_HOT] = { 517 .name = "power_resources_D3hot", 518 .attrs = attrs, 519 }, 520 }; 521 522 static const struct attribute_group wakeup_attr_group = { 523 .name = "power_resources_wakeup", 524 .attrs = attrs, 525 }; 526 527 static void acpi_power_hide_list(struct acpi_device *adev, 528 struct list_head *resources, 529 const struct attribute_group *attr_group) 530 { 531 struct acpi_power_resource_entry *entry; 532 533 if (list_empty(resources)) 534 return; 535 536 list_for_each_entry_reverse(entry, resources, node) { 537 struct acpi_device *res_dev = &entry->resource->device; 538 539 sysfs_remove_link_from_group(&adev->dev.kobj, 540 attr_group->name, 541 dev_name(&res_dev->dev)); 542 } 543 sysfs_remove_group(&adev->dev.kobj, attr_group); 544 } 545 546 static void acpi_power_expose_list(struct acpi_device *adev, 547 struct list_head *resources, 548 const struct attribute_group *attr_group) 549 { 550 struct acpi_power_resource_entry *entry; 551 int ret; 552 553 if (list_empty(resources)) 554 return; 555 556 ret = sysfs_create_group(&adev->dev.kobj, attr_group); 557 if (ret) 558 return; 559 560 list_for_each_entry(entry, resources, node) { 561 struct acpi_device *res_dev = &entry->resource->device; 562 563 ret = sysfs_add_link_to_group(&adev->dev.kobj, 564 attr_group->name, 565 &res_dev->dev.kobj, 566 dev_name(&res_dev->dev)); 567 if (ret) { 568 acpi_power_hide_list(adev, resources, attr_group); 569 break; 570 } 571 } 572 } 573 574 static void acpi_power_expose_hide(struct acpi_device *adev, 575 struct list_head *resources, 576 const struct attribute_group *attr_group, 577 bool expose) 578 { 579 if (expose) 580 acpi_power_expose_list(adev, resources, attr_group); 581 else 582 acpi_power_hide_list(adev, resources, attr_group); 583 } 584 585 void acpi_power_add_remove_device(struct acpi_device *adev, bool add) 586 { 587 int state; 588 589 if (adev->wakeup.flags.valid) 590 acpi_power_expose_hide(adev, &adev->wakeup.resources, 591 &wakeup_attr_group, add); 592 593 if (!adev->power.flags.power_resources) 594 return; 595 596 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) 597 acpi_power_expose_hide(adev, 598 &adev->power.states[state].resources, 599 &attr_groups[state], add); 600 } 601 602 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) 603 { 604 struct acpi_power_resource_entry *entry; 605 int system_level = 5; 606 607 list_for_each_entry(entry, list, node) { 608 struct acpi_power_resource *resource = entry->resource; 609 int result; 610 u8 state; 611 612 mutex_lock(&resource->resource_lock); 613 614 result = acpi_power_get_state(resource, &state); 615 if (result) { 616 mutex_unlock(&resource->resource_lock); 617 return result; 618 } 619 if (state == ACPI_POWER_RESOURCE_STATE_ON) { 620 resource->ref_count++; 621 resource->wakeup_enabled = true; 622 } 623 if (system_level > resource->system_level) 624 system_level = resource->system_level; 625 626 mutex_unlock(&resource->resource_lock); 627 } 628 *system_level_p = system_level; 629 return 0; 630 } 631 632 /* -------------------------------------------------------------------------- 633 Device Power Management 634 -------------------------------------------------------------------------- */ 635 636 /** 637 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 638 * ACPI 3.0) _PSW (Power State Wake) 639 * @dev: Device to handle. 640 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 641 * @sleep_state: Target sleep state of the system. 642 * @dev_state: Target power state of the device. 643 * 644 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 645 * State Wake) for the device, if present. On failure reset the device's 646 * wakeup.flags.valid flag. 647 * 648 * RETURN VALUE: 649 * 0 if either _DSW or _PSW has been successfully executed 650 * 0 if neither _DSW nor _PSW has been found 651 * -ENODEV if the execution of either _DSW or _PSW has failed 652 */ 653 int acpi_device_sleep_wake(struct acpi_device *dev, 654 int enable, int sleep_state, int dev_state) 655 { 656 union acpi_object in_arg[3]; 657 struct acpi_object_list arg_list = { 3, in_arg }; 658 acpi_status status = AE_OK; 659 660 /* 661 * Try to execute _DSW first. 662 * 663 * Three arguments are needed for the _DSW object: 664 * Argument 0: enable/disable the wake capabilities 665 * Argument 1: target system state 666 * Argument 2: target device state 667 * When _DSW object is called to disable the wake capabilities, maybe 668 * the first argument is filled. The values of the other two arguments 669 * are meaningless. 670 */ 671 in_arg[0].type = ACPI_TYPE_INTEGER; 672 in_arg[0].integer.value = enable; 673 in_arg[1].type = ACPI_TYPE_INTEGER; 674 in_arg[1].integer.value = sleep_state; 675 in_arg[2].type = ACPI_TYPE_INTEGER; 676 in_arg[2].integer.value = dev_state; 677 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 678 if (ACPI_SUCCESS(status)) { 679 return 0; 680 } else if (status != AE_NOT_FOUND) { 681 acpi_handle_info(dev->handle, "_DSW execution failed\n"); 682 dev->wakeup.flags.valid = 0; 683 return -ENODEV; 684 } 685 686 /* Execute _PSW */ 687 status = acpi_execute_simple_method(dev->handle, "_PSW", enable); 688 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 689 acpi_handle_info(dev->handle, "_PSW execution failed\n"); 690 dev->wakeup.flags.valid = 0; 691 return -ENODEV; 692 } 693 694 return 0; 695 } 696 697 /* 698 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 699 * 1. Power on the power resources required for the wakeup device 700 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 701 * State Wake) for the device, if present 702 */ 703 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 704 { 705 struct acpi_power_resource_entry *entry; 706 int err = 0; 707 708 if (!dev || !dev->wakeup.flags.valid) 709 return -EINVAL; 710 711 mutex_lock(&acpi_device_lock); 712 713 if (dev->wakeup.prepare_count++) 714 goto out; 715 716 list_for_each_entry(entry, &dev->wakeup.resources, node) { 717 struct acpi_power_resource *resource = entry->resource; 718 719 mutex_lock(&resource->resource_lock); 720 721 if (!resource->wakeup_enabled) { 722 err = acpi_power_on_unlocked(resource); 723 if (!err) 724 resource->wakeup_enabled = true; 725 } 726 727 mutex_unlock(&resource->resource_lock); 728 729 if (err) { 730 dev_err(&dev->dev, 731 "Cannot turn wakeup power resources on\n"); 732 dev->wakeup.flags.valid = 0; 733 goto out; 734 } 735 } 736 /* 737 * Passing 3 as the third argument below means the device may be 738 * put into arbitrary power state afterward. 739 */ 740 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 741 if (err) 742 dev->wakeup.prepare_count = 0; 743 744 out: 745 mutex_unlock(&acpi_device_lock); 746 return err; 747 } 748 749 /* 750 * Shutdown a wakeup device, counterpart of above method 751 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 752 * State Wake) for the device, if present 753 * 2. Shutdown down the power resources 754 */ 755 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 756 { 757 struct acpi_power_resource_entry *entry; 758 int err = 0; 759 760 if (!dev || !dev->wakeup.flags.valid) 761 return -EINVAL; 762 763 mutex_lock(&acpi_device_lock); 764 765 if (--dev->wakeup.prepare_count > 0) 766 goto out; 767 768 /* 769 * Executing the code below even if prepare_count is already zero when 770 * the function is called may be useful, for example for initialisation. 771 */ 772 if (dev->wakeup.prepare_count < 0) 773 dev->wakeup.prepare_count = 0; 774 775 err = acpi_device_sleep_wake(dev, 0, 0, 0); 776 if (err) 777 goto out; 778 779 list_for_each_entry(entry, &dev->wakeup.resources, node) { 780 struct acpi_power_resource *resource = entry->resource; 781 782 mutex_lock(&resource->resource_lock); 783 784 if (resource->wakeup_enabled) { 785 err = acpi_power_off_unlocked(resource); 786 if (!err) 787 resource->wakeup_enabled = false; 788 } 789 790 mutex_unlock(&resource->resource_lock); 791 792 if (err) { 793 dev_err(&dev->dev, 794 "Cannot turn wakeup power resources off\n"); 795 dev->wakeup.flags.valid = 0; 796 break; 797 } 798 } 799 800 out: 801 mutex_unlock(&acpi_device_lock); 802 return err; 803 } 804 805 int acpi_power_get_inferred_state(struct acpi_device *device, int *state) 806 { 807 u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF; 808 int result = 0; 809 int i = 0; 810 811 if (!device || !state) 812 return -EINVAL; 813 814 /* 815 * We know a device's inferred power state when all the resources 816 * required for a given D-state are 'on'. 817 */ 818 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 819 struct list_head *list = &device->power.states[i].resources; 820 821 if (list_empty(list)) 822 continue; 823 824 result = acpi_power_get_list_state(list, &list_state); 825 if (result) 826 return result; 827 828 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 829 *state = i; 830 return 0; 831 } 832 } 833 834 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ? 835 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT; 836 return 0; 837 } 838 839 int acpi_power_on_resources(struct acpi_device *device, int state) 840 { 841 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) 842 return -EINVAL; 843 844 return acpi_power_on_list(&device->power.states[state].resources); 845 } 846 847 int acpi_power_transition(struct acpi_device *device, int state) 848 { 849 int result = 0; 850 851 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 852 return -EINVAL; 853 854 if (device->power.state == state || !device->flags.power_manageable) 855 return 0; 856 857 if ((device->power.state < ACPI_STATE_D0) 858 || (device->power.state > ACPI_STATE_D3_COLD)) 859 return -ENODEV; 860 861 /* 862 * First we reference all power resources required in the target list 863 * (e.g. so the device doesn't lose power while transitioning). Then, 864 * we dereference all power resources used in the current list. 865 */ 866 if (state < ACPI_STATE_D3_COLD) 867 result = acpi_power_on_list( 868 &device->power.states[state].resources); 869 870 if (!result && device->power.state < ACPI_STATE_D3_COLD) 871 acpi_power_off_list( 872 &device->power.states[device->power.state].resources); 873 874 /* We shouldn't change the state unless the above operations succeed. */ 875 device->power.state = result ? ACPI_STATE_UNKNOWN : state; 876 877 return result; 878 } 879 880 static void acpi_release_power_resource(struct device *dev) 881 { 882 struct acpi_device *device = to_acpi_device(dev); 883 struct acpi_power_resource *resource; 884 885 resource = container_of(device, struct acpi_power_resource, device); 886 887 mutex_lock(&power_resource_list_lock); 888 list_del(&resource->list_node); 889 mutex_unlock(&power_resource_list_lock); 890 891 acpi_free_pnp_ids(&device->pnp); 892 kfree(resource); 893 } 894 895 static ssize_t resource_in_use_show(struct device *dev, 896 struct device_attribute *attr, 897 char *buf) 898 { 899 struct acpi_power_resource *resource; 900 901 resource = to_power_resource(to_acpi_device(dev)); 902 return sprintf(buf, "%u\n", !!resource->ref_count); 903 } 904 static DEVICE_ATTR_RO(resource_in_use); 905 906 static void acpi_power_sysfs_remove(struct acpi_device *device) 907 { 908 device_remove_file(&device->dev, &dev_attr_resource_in_use); 909 } 910 911 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource) 912 { 913 mutex_lock(&power_resource_list_lock); 914 915 if (!list_empty(&acpi_power_resource_list)) { 916 struct acpi_power_resource *r; 917 918 list_for_each_entry(r, &acpi_power_resource_list, list_node) 919 if (r->order > resource->order) { 920 list_add_tail(&resource->list_node, &r->list_node); 921 goto out; 922 } 923 } 924 list_add_tail(&resource->list_node, &acpi_power_resource_list); 925 926 out: 927 mutex_unlock(&power_resource_list_lock); 928 } 929 930 struct acpi_device *acpi_add_power_resource(acpi_handle handle) 931 { 932 struct acpi_power_resource *resource; 933 struct acpi_device *device = NULL; 934 union acpi_object acpi_object; 935 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 936 acpi_status status; 937 int result; 938 939 acpi_bus_get_device(handle, &device); 940 if (device) 941 return device; 942 943 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 944 if (!resource) 945 return NULL; 946 947 device = &resource->device; 948 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER); 949 mutex_init(&resource->resource_lock); 950 INIT_LIST_HEAD(&resource->list_node); 951 INIT_LIST_HEAD(&resource->dependents); 952 resource->name = device->pnp.bus_id; 953 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 954 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 955 device->power.state = ACPI_STATE_UNKNOWN; 956 957 /* Evaluate the object to get the system level and resource order. */ 958 status = acpi_evaluate_object(handle, NULL, NULL, &buffer); 959 if (ACPI_FAILURE(status)) 960 goto err; 961 962 resource->system_level = acpi_object.power_resource.system_level; 963 resource->order = acpi_object.power_resource.resource_order; 964 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN; 965 966 pr_info("%s [%s]\n", acpi_device_name(device), acpi_device_bid(device)); 967 968 device->flags.match_driver = true; 969 result = acpi_device_add(device, acpi_release_power_resource); 970 if (result) 971 goto err; 972 973 if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) 974 device->remove = acpi_power_sysfs_remove; 975 976 acpi_power_add_resource_to_list(resource); 977 acpi_device_add_finalize(device); 978 return device; 979 980 err: 981 acpi_release_power_resource(&device->dev); 982 return NULL; 983 } 984 985 #ifdef CONFIG_ACPI_SLEEP 986 void acpi_resume_power_resources(void) 987 { 988 struct acpi_power_resource *resource; 989 990 mutex_lock(&power_resource_list_lock); 991 992 list_for_each_entry(resource, &acpi_power_resource_list, list_node) { 993 int result; 994 u8 state; 995 996 mutex_lock(&resource->resource_lock); 997 998 resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN; 999 result = acpi_power_get_state(resource, &state); 1000 if (result) { 1001 mutex_unlock(&resource->resource_lock); 1002 continue; 1003 } 1004 1005 if (state == ACPI_POWER_RESOURCE_STATE_OFF 1006 && resource->ref_count) { 1007 dev_dbg(&resource->device.dev, "Turning ON\n"); 1008 __acpi_power_on(resource); 1009 } 1010 1011 mutex_unlock(&resource->resource_lock); 1012 } 1013 1014 mutex_unlock(&power_resource_list_lock); 1015 } 1016 #endif 1017 1018 /** 1019 * acpi_turn_off_unused_power_resources - Turn off power resources not in use. 1020 */ 1021 void acpi_turn_off_unused_power_resources(void) 1022 { 1023 struct acpi_power_resource *resource; 1024 1025 mutex_lock(&power_resource_list_lock); 1026 1027 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) { 1028 mutex_lock(&resource->resource_lock); 1029 1030 /* 1031 * Turn off power resources in an unknown state too, because the 1032 * platform firmware on some system expects the OS to turn off 1033 * power resources without any users unconditionally. 1034 */ 1035 if (!resource->ref_count && 1036 resource->state != ACPI_POWER_RESOURCE_STATE_OFF) { 1037 dev_dbg(&resource->device.dev, "Turning OFF\n"); 1038 __acpi_power_off(resource); 1039 } 1040 1041 mutex_unlock(&resource->resource_lock); 1042 } 1043 1044 mutex_unlock(&power_resource_list_lock); 1045 } 1046