xref: /openbmc/linux/drivers/acpi/power.c (revision 8ff374b9)
1 /*
2  *  acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *
7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; either version 2 of the License, or (at
12  *  your option) any later version.
13  *
14  *  This program is distributed in the hope that it will be useful, but
15  *  WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  *  General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22  *
23  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24  */
25 
26 /*
27  * ACPI power-managed devices may be controlled in two ways:
28  * 1. via "Device Specific (D-State) Control"
29  * 2. via "Power Resource Control".
30  * This module is used to manage devices relying on Power Resource Control.
31  *
32  * An ACPI "power resource object" describes a software controllable power
33  * plane, clock plane, or other resource used by a power managed device.
34  * A device may rely on multiple power resources, and a power resource
35  * may be shared by multiple devices.
36  */
37 
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/sysfs.h>
45 #include <acpi/acpi_bus.h>
46 #include <acpi/acpi_drivers.h>
47 #include "sleep.h"
48 #include "internal.h"
49 
50 #define PREFIX "ACPI: "
51 
52 #define _COMPONENT			ACPI_POWER_COMPONENT
53 ACPI_MODULE_NAME("power");
54 #define ACPI_POWER_CLASS		"power_resource"
55 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
56 #define ACPI_POWER_FILE_INFO		"info"
57 #define ACPI_POWER_FILE_STATUS		"state"
58 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
59 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
60 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
61 
62 struct acpi_power_dependent_device {
63 	struct list_head node;
64 	struct acpi_device *adev;
65 	struct work_struct work;
66 };
67 
68 struct acpi_power_resource {
69 	struct acpi_device device;
70 	struct list_head list_node;
71 	struct list_head dependent;
72 	char *name;
73 	u32 system_level;
74 	u32 order;
75 	unsigned int ref_count;
76 	bool wakeup_enabled;
77 	struct mutex resource_lock;
78 };
79 
80 struct acpi_power_resource_entry {
81 	struct list_head node;
82 	struct acpi_power_resource *resource;
83 };
84 
85 static LIST_HEAD(acpi_power_resource_list);
86 static DEFINE_MUTEX(power_resource_list_lock);
87 
88 /* --------------------------------------------------------------------------
89                              Power Resource Management
90    -------------------------------------------------------------------------- */
91 
92 static inline
93 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
94 {
95 	return container_of(device, struct acpi_power_resource, device);
96 }
97 
98 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
99 {
100 	struct acpi_device *device;
101 
102 	if (acpi_bus_get_device(handle, &device))
103 		return NULL;
104 
105 	return to_power_resource(device);
106 }
107 
108 static int acpi_power_resources_list_add(acpi_handle handle,
109 					 struct list_head *list)
110 {
111 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
112 	struct acpi_power_resource_entry *entry;
113 
114 	if (!resource || !list)
115 		return -EINVAL;
116 
117 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
118 	if (!entry)
119 		return -ENOMEM;
120 
121 	entry->resource = resource;
122 	if (!list_empty(list)) {
123 		struct acpi_power_resource_entry *e;
124 
125 		list_for_each_entry(e, list, node)
126 			if (e->resource->order > resource->order) {
127 				list_add_tail(&entry->node, &e->node);
128 				return 0;
129 			}
130 	}
131 	list_add_tail(&entry->node, list);
132 	return 0;
133 }
134 
135 void acpi_power_resources_list_free(struct list_head *list)
136 {
137 	struct acpi_power_resource_entry *entry, *e;
138 
139 	list_for_each_entry_safe(entry, e, list, node) {
140 		list_del(&entry->node);
141 		kfree(entry);
142 	}
143 }
144 
145 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
146 				 struct list_head *list)
147 {
148 	unsigned int i;
149 	int err = 0;
150 
151 	for (i = start; i < package->package.count; i++) {
152 		union acpi_object *element = &package->package.elements[i];
153 		acpi_handle rhandle;
154 
155 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
156 			err = -ENODATA;
157 			break;
158 		}
159 		rhandle = element->reference.handle;
160 		if (!rhandle) {
161 			err = -ENODEV;
162 			break;
163 		}
164 		err = acpi_add_power_resource(rhandle);
165 		if (err)
166 			break;
167 
168 		err = acpi_power_resources_list_add(rhandle, list);
169 		if (err)
170 			break;
171 	}
172 	if (err)
173 		acpi_power_resources_list_free(list);
174 
175 	return err;
176 }
177 
178 static int acpi_power_get_state(acpi_handle handle, int *state)
179 {
180 	acpi_status status = AE_OK;
181 	unsigned long long sta = 0;
182 	char node_name[5];
183 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
184 
185 
186 	if (!handle || !state)
187 		return -EINVAL;
188 
189 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
190 	if (ACPI_FAILURE(status))
191 		return -ENODEV;
192 
193 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
194 			      ACPI_POWER_RESOURCE_STATE_OFF;
195 
196 	acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
197 
198 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
199 			  node_name,
200 				*state ? "on" : "off"));
201 
202 	return 0;
203 }
204 
205 static int acpi_power_get_list_state(struct list_head *list, int *state)
206 {
207 	struct acpi_power_resource_entry *entry;
208 	int cur_state;
209 
210 	if (!list || !state)
211 		return -EINVAL;
212 
213 	/* The state of the list is 'on' IFF all resources are 'on'. */
214 	list_for_each_entry(entry, list, node) {
215 		struct acpi_power_resource *resource = entry->resource;
216 		acpi_handle handle = resource->device.handle;
217 		int result;
218 
219 		mutex_lock(&resource->resource_lock);
220 		result = acpi_power_get_state(handle, &cur_state);
221 		mutex_unlock(&resource->resource_lock);
222 		if (result)
223 			return result;
224 
225 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
226 			break;
227 	}
228 
229 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
230 			  cur_state ? "on" : "off"));
231 
232 	*state = cur_state;
233 	return 0;
234 }
235 
236 static void acpi_power_resume_dependent(struct work_struct *work)
237 {
238 	struct acpi_power_dependent_device *dep;
239 	struct acpi_device_physical_node *pn;
240 	struct acpi_device *adev;
241 	int state;
242 
243 	dep = container_of(work, struct acpi_power_dependent_device, work);
244 	adev = dep->adev;
245 	if (acpi_power_get_inferred_state(adev, &state))
246 		return;
247 
248 	if (state > ACPI_STATE_D0)
249 		return;
250 
251 	mutex_lock(&adev->physical_node_lock);
252 
253 	list_for_each_entry(pn, &adev->physical_node_list, node)
254 		pm_request_resume(pn->dev);
255 
256 	list_for_each_entry(pn, &adev->power_dependent, node)
257 		pm_request_resume(pn->dev);
258 
259 	mutex_unlock(&adev->physical_node_lock);
260 }
261 
262 static int __acpi_power_on(struct acpi_power_resource *resource)
263 {
264 	acpi_status status = AE_OK;
265 
266 	status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
267 	if (ACPI_FAILURE(status))
268 		return -ENODEV;
269 
270 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
271 			  resource->name));
272 
273 	return 0;
274 }
275 
276 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
277 {
278 	int result = 0;
279 
280 	if (resource->ref_count++) {
281 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
282 				  "Power resource [%s] already on\n",
283 				  resource->name));
284 	} else {
285 		result = __acpi_power_on(resource);
286 		if (result) {
287 			resource->ref_count--;
288 		} else {
289 			struct acpi_power_dependent_device *dep;
290 
291 			list_for_each_entry(dep, &resource->dependent, node)
292 				schedule_work(&dep->work);
293 		}
294 	}
295 	return result;
296 }
297 
298 static int acpi_power_on(struct acpi_power_resource *resource)
299 {
300 	int result;
301 
302 	mutex_lock(&resource->resource_lock);
303 	result = acpi_power_on_unlocked(resource);
304 	mutex_unlock(&resource->resource_lock);
305 	return result;
306 }
307 
308 static int __acpi_power_off(struct acpi_power_resource *resource)
309 {
310 	acpi_status status;
311 
312 	status = acpi_evaluate_object(resource->device.handle, "_OFF",
313 				      NULL, NULL);
314 	if (ACPI_FAILURE(status))
315 		return -ENODEV;
316 
317 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
318 			  resource->name));
319 	return 0;
320 }
321 
322 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
323 {
324 	int result = 0;
325 
326 	if (!resource->ref_count) {
327 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
328 				  "Power resource [%s] already off\n",
329 				  resource->name));
330 		return 0;
331 	}
332 
333 	if (--resource->ref_count) {
334 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
335 				  "Power resource [%s] still in use\n",
336 				  resource->name));
337 	} else {
338 		result = __acpi_power_off(resource);
339 		if (result)
340 			resource->ref_count++;
341 	}
342 	return result;
343 }
344 
345 static int acpi_power_off(struct acpi_power_resource *resource)
346 {
347 	int result;
348 
349 	mutex_lock(&resource->resource_lock);
350 	result = acpi_power_off_unlocked(resource);
351 	mutex_unlock(&resource->resource_lock);
352 	return result;
353 }
354 
355 static int acpi_power_off_list(struct list_head *list)
356 {
357 	struct acpi_power_resource_entry *entry;
358 	int result = 0;
359 
360 	list_for_each_entry_reverse(entry, list, node) {
361 		result = acpi_power_off(entry->resource);
362 		if (result)
363 			goto err;
364 	}
365 	return 0;
366 
367  err:
368 	list_for_each_entry_continue(entry, list, node)
369 		acpi_power_on(entry->resource);
370 
371 	return result;
372 }
373 
374 static int acpi_power_on_list(struct list_head *list)
375 {
376 	struct acpi_power_resource_entry *entry;
377 	int result = 0;
378 
379 	list_for_each_entry(entry, list, node) {
380 		result = acpi_power_on(entry->resource);
381 		if (result)
382 			goto err;
383 	}
384 	return 0;
385 
386  err:
387 	list_for_each_entry_continue_reverse(entry, list, node)
388 		acpi_power_off(entry->resource);
389 
390 	return result;
391 }
392 
393 static void acpi_power_add_dependent(struct acpi_power_resource *resource,
394 				     struct acpi_device *adev)
395 {
396 	struct acpi_power_dependent_device *dep;
397 
398 	mutex_lock(&resource->resource_lock);
399 
400 	list_for_each_entry(dep, &resource->dependent, node)
401 		if (dep->adev == adev)
402 			goto out;
403 
404 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
405 	if (!dep)
406 		goto out;
407 
408 	dep->adev = adev;
409 	INIT_WORK(&dep->work, acpi_power_resume_dependent);
410 	list_add_tail(&dep->node, &resource->dependent);
411 
412  out:
413 	mutex_unlock(&resource->resource_lock);
414 }
415 
416 static void acpi_power_remove_dependent(struct acpi_power_resource *resource,
417 					struct acpi_device *adev)
418 {
419 	struct acpi_power_dependent_device *dep;
420 	struct work_struct *work = NULL;
421 
422 	mutex_lock(&resource->resource_lock);
423 
424 	list_for_each_entry(dep, &resource->dependent, node)
425 		if (dep->adev == adev) {
426 			list_del(&dep->node);
427 			work = &dep->work;
428 			break;
429 		}
430 
431 	mutex_unlock(&resource->resource_lock);
432 
433 	if (work) {
434 		cancel_work_sync(work);
435 		kfree(dep);
436 	}
437 }
438 
439 static struct attribute *attrs[] = {
440 	NULL,
441 };
442 
443 static struct attribute_group attr_groups[] = {
444 	[ACPI_STATE_D0] = {
445 		.name = "power_resources_D0",
446 		.attrs = attrs,
447 	},
448 	[ACPI_STATE_D1] = {
449 		.name = "power_resources_D1",
450 		.attrs = attrs,
451 	},
452 	[ACPI_STATE_D2] = {
453 		.name = "power_resources_D2",
454 		.attrs = attrs,
455 	},
456 	[ACPI_STATE_D3_HOT] = {
457 		.name = "power_resources_D3hot",
458 		.attrs = attrs,
459 	},
460 };
461 
462 static struct attribute_group wakeup_attr_group = {
463 	.name = "power_resources_wakeup",
464 	.attrs = attrs,
465 };
466 
467 static void acpi_power_hide_list(struct acpi_device *adev,
468 				 struct list_head *resources,
469 				 struct attribute_group *attr_group)
470 {
471 	struct acpi_power_resource_entry *entry;
472 
473 	if (list_empty(resources))
474 		return;
475 
476 	list_for_each_entry_reverse(entry, resources, node) {
477 		struct acpi_device *res_dev = &entry->resource->device;
478 
479 		sysfs_remove_link_from_group(&adev->dev.kobj,
480 					     attr_group->name,
481 					     dev_name(&res_dev->dev));
482 	}
483 	sysfs_remove_group(&adev->dev.kobj, attr_group);
484 }
485 
486 static void acpi_power_expose_list(struct acpi_device *adev,
487 				   struct list_head *resources,
488 				   struct attribute_group *attr_group)
489 {
490 	struct acpi_power_resource_entry *entry;
491 	int ret;
492 
493 	if (list_empty(resources))
494 		return;
495 
496 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
497 	if (ret)
498 		return;
499 
500 	list_for_each_entry(entry, resources, node) {
501 		struct acpi_device *res_dev = &entry->resource->device;
502 
503 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
504 					      attr_group->name,
505 					      &res_dev->dev.kobj,
506 					      dev_name(&res_dev->dev));
507 		if (ret) {
508 			acpi_power_hide_list(adev, resources, attr_group);
509 			break;
510 		}
511 	}
512 }
513 
514 static void acpi_power_expose_hide(struct acpi_device *adev,
515 				   struct list_head *resources,
516 				   struct attribute_group *attr_group,
517 				   bool expose)
518 {
519 	if (expose)
520 		acpi_power_expose_list(adev, resources, attr_group);
521 	else
522 		acpi_power_hide_list(adev, resources, attr_group);
523 }
524 
525 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
526 {
527 	struct acpi_device_power_state *ps;
528 	struct acpi_power_resource_entry *entry;
529 	int state;
530 
531 	if (adev->wakeup.flags.valid)
532 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
533 				       &wakeup_attr_group, add);
534 
535 	if (!adev->power.flags.power_resources)
536 		return;
537 
538 	ps = &adev->power.states[ACPI_STATE_D0];
539 	list_for_each_entry(entry, &ps->resources, node) {
540 		struct acpi_power_resource *resource = entry->resource;
541 
542 		if (add)
543 			acpi_power_add_dependent(resource, adev);
544 		else
545 			acpi_power_remove_dependent(resource, adev);
546 	}
547 
548 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
549 		acpi_power_expose_hide(adev,
550 				       &adev->power.states[state].resources,
551 				       &attr_groups[state], add);
552 }
553 
554 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
555 {
556 	struct acpi_power_resource_entry *entry;
557 	int system_level = 5;
558 
559 	list_for_each_entry(entry, list, node) {
560 		struct acpi_power_resource *resource = entry->resource;
561 		acpi_handle handle = resource->device.handle;
562 		int result;
563 		int state;
564 
565 		mutex_lock(&resource->resource_lock);
566 
567 		result = acpi_power_get_state(handle, &state);
568 		if (result) {
569 			mutex_unlock(&resource->resource_lock);
570 			return result;
571 		}
572 		if (state == ACPI_POWER_RESOURCE_STATE_ON) {
573 			resource->ref_count++;
574 			resource->wakeup_enabled = true;
575 		}
576 		if (system_level > resource->system_level)
577 			system_level = resource->system_level;
578 
579 		mutex_unlock(&resource->resource_lock);
580 	}
581 	*system_level_p = system_level;
582 	return 0;
583 }
584 
585 /* --------------------------------------------------------------------------
586                              Device Power Management
587    -------------------------------------------------------------------------- */
588 
589 /**
590  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
591  *                          ACPI 3.0) _PSW (Power State Wake)
592  * @dev: Device to handle.
593  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
594  * @sleep_state: Target sleep state of the system.
595  * @dev_state: Target power state of the device.
596  *
597  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
598  * State Wake) for the device, if present.  On failure reset the device's
599  * wakeup.flags.valid flag.
600  *
601  * RETURN VALUE:
602  * 0 if either _DSW or _PSW has been successfully executed
603  * 0 if neither _DSW nor _PSW has been found
604  * -ENODEV if the execution of either _DSW or _PSW has failed
605  */
606 int acpi_device_sleep_wake(struct acpi_device *dev,
607                            int enable, int sleep_state, int dev_state)
608 {
609 	union acpi_object in_arg[3];
610 	struct acpi_object_list arg_list = { 3, in_arg };
611 	acpi_status status = AE_OK;
612 
613 	/*
614 	 * Try to execute _DSW first.
615 	 *
616 	 * Three agruments are needed for the _DSW object:
617 	 * Argument 0: enable/disable the wake capabilities
618 	 * Argument 1: target system state
619 	 * Argument 2: target device state
620 	 * When _DSW object is called to disable the wake capabilities, maybe
621 	 * the first argument is filled. The values of the other two agruments
622 	 * are meaningless.
623 	 */
624 	in_arg[0].type = ACPI_TYPE_INTEGER;
625 	in_arg[0].integer.value = enable;
626 	in_arg[1].type = ACPI_TYPE_INTEGER;
627 	in_arg[1].integer.value = sleep_state;
628 	in_arg[2].type = ACPI_TYPE_INTEGER;
629 	in_arg[2].integer.value = dev_state;
630 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
631 	if (ACPI_SUCCESS(status)) {
632 		return 0;
633 	} else if (status != AE_NOT_FOUND) {
634 		printk(KERN_ERR PREFIX "_DSW execution failed\n");
635 		dev->wakeup.flags.valid = 0;
636 		return -ENODEV;
637 	}
638 
639 	/* Execute _PSW */
640 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
641 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
642 		printk(KERN_ERR PREFIX "_PSW execution failed\n");
643 		dev->wakeup.flags.valid = 0;
644 		return -ENODEV;
645 	}
646 
647 	return 0;
648 }
649 
650 /*
651  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
652  * 1. Power on the power resources required for the wakeup device
653  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
654  *    State Wake) for the device, if present
655  */
656 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
657 {
658 	struct acpi_power_resource_entry *entry;
659 	int err = 0;
660 
661 	if (!dev || !dev->wakeup.flags.valid)
662 		return -EINVAL;
663 
664 	mutex_lock(&acpi_device_lock);
665 
666 	if (dev->wakeup.prepare_count++)
667 		goto out;
668 
669 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
670 		struct acpi_power_resource *resource = entry->resource;
671 
672 		mutex_lock(&resource->resource_lock);
673 
674 		if (!resource->wakeup_enabled) {
675 			err = acpi_power_on_unlocked(resource);
676 			if (!err)
677 				resource->wakeup_enabled = true;
678 		}
679 
680 		mutex_unlock(&resource->resource_lock);
681 
682 		if (err) {
683 			dev_err(&dev->dev,
684 				"Cannot turn wakeup power resources on\n");
685 			dev->wakeup.flags.valid = 0;
686 			goto out;
687 		}
688 	}
689 	/*
690 	 * Passing 3 as the third argument below means the device may be
691 	 * put into arbitrary power state afterward.
692 	 */
693 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
694 	if (err)
695 		dev->wakeup.prepare_count = 0;
696 
697  out:
698 	mutex_unlock(&acpi_device_lock);
699 	return err;
700 }
701 
702 /*
703  * Shutdown a wakeup device, counterpart of above method
704  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
705  *    State Wake) for the device, if present
706  * 2. Shutdown down the power resources
707  */
708 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
709 {
710 	struct acpi_power_resource_entry *entry;
711 	int err = 0;
712 
713 	if (!dev || !dev->wakeup.flags.valid)
714 		return -EINVAL;
715 
716 	mutex_lock(&acpi_device_lock);
717 
718 	if (--dev->wakeup.prepare_count > 0)
719 		goto out;
720 
721 	/*
722 	 * Executing the code below even if prepare_count is already zero when
723 	 * the function is called may be useful, for example for initialisation.
724 	 */
725 	if (dev->wakeup.prepare_count < 0)
726 		dev->wakeup.prepare_count = 0;
727 
728 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
729 	if (err)
730 		goto out;
731 
732 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
733 		struct acpi_power_resource *resource = entry->resource;
734 
735 		mutex_lock(&resource->resource_lock);
736 
737 		if (resource->wakeup_enabled) {
738 			err = acpi_power_off_unlocked(resource);
739 			if (!err)
740 				resource->wakeup_enabled = false;
741 		}
742 
743 		mutex_unlock(&resource->resource_lock);
744 
745 		if (err) {
746 			dev_err(&dev->dev,
747 				"Cannot turn wakeup power resources off\n");
748 			dev->wakeup.flags.valid = 0;
749 			break;
750 		}
751 	}
752 
753  out:
754 	mutex_unlock(&acpi_device_lock);
755 	return err;
756 }
757 
758 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
759 {
760 	int result = 0;
761 	int list_state = 0;
762 	int i = 0;
763 
764 	if (!device || !state)
765 		return -EINVAL;
766 
767 	/*
768 	 * We know a device's inferred power state when all the resources
769 	 * required for a given D-state are 'on'.
770 	 */
771 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
772 		struct list_head *list = &device->power.states[i].resources;
773 
774 		if (list_empty(list))
775 			continue;
776 
777 		result = acpi_power_get_list_state(list, &list_state);
778 		if (result)
779 			return result;
780 
781 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
782 			*state = i;
783 			return 0;
784 		}
785 	}
786 
787 	*state = ACPI_STATE_D3_COLD;
788 	return 0;
789 }
790 
791 int acpi_power_on_resources(struct acpi_device *device, int state)
792 {
793 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
794 		return -EINVAL;
795 
796 	return acpi_power_on_list(&device->power.states[state].resources);
797 }
798 
799 int acpi_power_transition(struct acpi_device *device, int state)
800 {
801 	int result = 0;
802 
803 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
804 		return -EINVAL;
805 
806 	if (device->power.state == state || !device->flags.power_manageable)
807 		return 0;
808 
809 	if ((device->power.state < ACPI_STATE_D0)
810 	    || (device->power.state > ACPI_STATE_D3_COLD))
811 		return -ENODEV;
812 
813 	/* TBD: Resources must be ordered. */
814 
815 	/*
816 	 * First we reference all power resources required in the target list
817 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
818 	 * we dereference all power resources used in the current list.
819 	 */
820 	if (state < ACPI_STATE_D3_COLD)
821 		result = acpi_power_on_list(
822 			&device->power.states[state].resources);
823 
824 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
825 		acpi_power_off_list(
826 			&device->power.states[device->power.state].resources);
827 
828 	/* We shouldn't change the state unless the above operations succeed. */
829 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
830 
831 	return result;
832 }
833 
834 static void acpi_release_power_resource(struct device *dev)
835 {
836 	struct acpi_device *device = to_acpi_device(dev);
837 	struct acpi_power_resource *resource;
838 
839 	resource = container_of(device, struct acpi_power_resource, device);
840 
841 	mutex_lock(&power_resource_list_lock);
842 	list_del(&resource->list_node);
843 	mutex_unlock(&power_resource_list_lock);
844 
845 	acpi_free_pnp_ids(&device->pnp);
846 	kfree(resource);
847 }
848 
849 static ssize_t acpi_power_in_use_show(struct device *dev,
850 				      struct device_attribute *attr,
851 				      char *buf) {
852 	struct acpi_power_resource *resource;
853 
854 	resource = to_power_resource(to_acpi_device(dev));
855 	return sprintf(buf, "%u\n", !!resource->ref_count);
856 }
857 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
858 
859 static void acpi_power_sysfs_remove(struct acpi_device *device)
860 {
861 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
862 }
863 
864 int acpi_add_power_resource(acpi_handle handle)
865 {
866 	struct acpi_power_resource *resource;
867 	struct acpi_device *device = NULL;
868 	union acpi_object acpi_object;
869 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
870 	acpi_status status;
871 	int state, result = -ENODEV;
872 
873 	acpi_bus_get_device(handle, &device);
874 	if (device)
875 		return 0;
876 
877 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
878 	if (!resource)
879 		return -ENOMEM;
880 
881 	device = &resource->device;
882 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
883 				ACPI_STA_DEFAULT);
884 	mutex_init(&resource->resource_lock);
885 	INIT_LIST_HEAD(&resource->dependent);
886 	INIT_LIST_HEAD(&resource->list_node);
887 	resource->name = device->pnp.bus_id;
888 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
889 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
890 	device->power.state = ACPI_STATE_UNKNOWN;
891 
892 	/* Evalute the object to get the system level and resource order. */
893 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
894 	if (ACPI_FAILURE(status))
895 		goto err;
896 
897 	resource->system_level = acpi_object.power_resource.system_level;
898 	resource->order = acpi_object.power_resource.resource_order;
899 
900 	result = acpi_power_get_state(handle, &state);
901 	if (result)
902 		goto err;
903 
904 	printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
905 	       acpi_device_bid(device), state ? "on" : "off");
906 
907 	device->flags.match_driver = true;
908 	result = acpi_device_add(device, acpi_release_power_resource);
909 	if (result)
910 		goto err;
911 
912 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
913 		device->remove = acpi_power_sysfs_remove;
914 
915 	mutex_lock(&power_resource_list_lock);
916 	list_add(&resource->list_node, &acpi_power_resource_list);
917 	mutex_unlock(&power_resource_list_lock);
918 	acpi_device_add_finalize(device);
919 	return 0;
920 
921  err:
922 	acpi_release_power_resource(&device->dev);
923 	return result;
924 }
925 
926 #ifdef CONFIG_ACPI_SLEEP
927 void acpi_resume_power_resources(void)
928 {
929 	struct acpi_power_resource *resource;
930 
931 	mutex_lock(&power_resource_list_lock);
932 
933 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
934 		int result, state;
935 
936 		mutex_lock(&resource->resource_lock);
937 
938 		result = acpi_power_get_state(resource->device.handle, &state);
939 		if (result)
940 			continue;
941 
942 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
943 		    && resource->ref_count) {
944 			dev_info(&resource->device.dev, "Turning ON\n");
945 			__acpi_power_on(resource);
946 		} else if (state == ACPI_POWER_RESOURCE_STATE_ON
947 		    && !resource->ref_count) {
948 			dev_info(&resource->device.dev, "Turning OFF\n");
949 			__acpi_power_off(resource);
950 		}
951 
952 		mutex_unlock(&resource->resource_lock);
953 	}
954 
955 	mutex_unlock(&power_resource_list_lock);
956 }
957 #endif
958