1 /* 2 * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $) 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * 7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or (at 12 * your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write to the Free Software Foundation, Inc., 21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 22 * 23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 24 */ 25 26 /* 27 * ACPI power-managed devices may be controlled in two ways: 28 * 1. via "Device Specific (D-State) Control" 29 * 2. via "Power Resource Control". 30 * This module is used to manage devices relying on Power Resource Control. 31 * 32 * An ACPI "power resource object" describes a software controllable power 33 * plane, clock plane, or other resource used by a power managed device. 34 * A device may rely on multiple power resources, and a power resource 35 * may be shared by multiple devices. 36 */ 37 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/init.h> 41 #include <linux/types.h> 42 #include <linux/slab.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/sysfs.h> 45 #include <linux/acpi.h> 46 #include "sleep.h" 47 #include "internal.h" 48 49 #define PREFIX "ACPI: " 50 51 #define _COMPONENT ACPI_POWER_COMPONENT 52 ACPI_MODULE_NAME("power"); 53 #define ACPI_POWER_CLASS "power_resource" 54 #define ACPI_POWER_DEVICE_NAME "Power Resource" 55 #define ACPI_POWER_FILE_INFO "info" 56 #define ACPI_POWER_FILE_STATUS "state" 57 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 58 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 59 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 60 61 struct acpi_power_resource { 62 struct acpi_device device; 63 struct list_head list_node; 64 char *name; 65 u32 system_level; 66 u32 order; 67 unsigned int ref_count; 68 bool wakeup_enabled; 69 struct mutex resource_lock; 70 }; 71 72 struct acpi_power_resource_entry { 73 struct list_head node; 74 struct acpi_power_resource *resource; 75 }; 76 77 static LIST_HEAD(acpi_power_resource_list); 78 static DEFINE_MUTEX(power_resource_list_lock); 79 80 /* -------------------------------------------------------------------------- 81 Power Resource Management 82 -------------------------------------------------------------------------- */ 83 84 static inline 85 struct acpi_power_resource *to_power_resource(struct acpi_device *device) 86 { 87 return container_of(device, struct acpi_power_resource, device); 88 } 89 90 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) 91 { 92 struct acpi_device *device; 93 94 if (acpi_bus_get_device(handle, &device)) 95 return NULL; 96 97 return to_power_resource(device); 98 } 99 100 static int acpi_power_resources_list_add(acpi_handle handle, 101 struct list_head *list) 102 { 103 struct acpi_power_resource *resource = acpi_power_get_context(handle); 104 struct acpi_power_resource_entry *entry; 105 106 if (!resource || !list) 107 return -EINVAL; 108 109 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 110 if (!entry) 111 return -ENOMEM; 112 113 entry->resource = resource; 114 if (!list_empty(list)) { 115 struct acpi_power_resource_entry *e; 116 117 list_for_each_entry(e, list, node) 118 if (e->resource->order > resource->order) { 119 list_add_tail(&entry->node, &e->node); 120 return 0; 121 } 122 } 123 list_add_tail(&entry->node, list); 124 return 0; 125 } 126 127 void acpi_power_resources_list_free(struct list_head *list) 128 { 129 struct acpi_power_resource_entry *entry, *e; 130 131 list_for_each_entry_safe(entry, e, list, node) { 132 list_del(&entry->node); 133 kfree(entry); 134 } 135 } 136 137 int acpi_extract_power_resources(union acpi_object *package, unsigned int start, 138 struct list_head *list) 139 { 140 unsigned int i; 141 int err = 0; 142 143 for (i = start; i < package->package.count; i++) { 144 union acpi_object *element = &package->package.elements[i]; 145 acpi_handle rhandle; 146 147 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { 148 err = -ENODATA; 149 break; 150 } 151 rhandle = element->reference.handle; 152 if (!rhandle) { 153 err = -ENODEV; 154 break; 155 } 156 err = acpi_add_power_resource(rhandle); 157 if (err) 158 break; 159 160 err = acpi_power_resources_list_add(rhandle, list); 161 if (err) 162 break; 163 } 164 if (err) 165 acpi_power_resources_list_free(list); 166 167 return err; 168 } 169 170 static int acpi_power_get_state(acpi_handle handle, int *state) 171 { 172 acpi_status status = AE_OK; 173 unsigned long long sta = 0; 174 char node_name[5]; 175 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 176 177 178 if (!handle || !state) 179 return -EINVAL; 180 181 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 182 if (ACPI_FAILURE(status)) 183 return -ENODEV; 184 185 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: 186 ACPI_POWER_RESOURCE_STATE_OFF; 187 188 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 189 190 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", 191 node_name, 192 *state ? "on" : "off")); 193 194 return 0; 195 } 196 197 static int acpi_power_get_list_state(struct list_head *list, int *state) 198 { 199 struct acpi_power_resource_entry *entry; 200 int cur_state; 201 202 if (!list || !state) 203 return -EINVAL; 204 205 /* The state of the list is 'on' IFF all resources are 'on'. */ 206 list_for_each_entry(entry, list, node) { 207 struct acpi_power_resource *resource = entry->resource; 208 acpi_handle handle = resource->device.handle; 209 int result; 210 211 mutex_lock(&resource->resource_lock); 212 result = acpi_power_get_state(handle, &cur_state); 213 mutex_unlock(&resource->resource_lock); 214 if (result) 215 return result; 216 217 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) 218 break; 219 } 220 221 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", 222 cur_state ? "on" : "off")); 223 224 *state = cur_state; 225 return 0; 226 } 227 228 static int __acpi_power_on(struct acpi_power_resource *resource) 229 { 230 acpi_status status = AE_OK; 231 232 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); 233 if (ACPI_FAILURE(status)) 234 return -ENODEV; 235 236 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", 237 resource->name)); 238 239 return 0; 240 } 241 242 static int acpi_power_on_unlocked(struct acpi_power_resource *resource) 243 { 244 int result = 0; 245 246 if (resource->ref_count++) { 247 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 248 "Power resource [%s] already on\n", 249 resource->name)); 250 } else { 251 result = __acpi_power_on(resource); 252 if (result) 253 resource->ref_count--; 254 } 255 return result; 256 } 257 258 static int acpi_power_on(struct acpi_power_resource *resource) 259 { 260 int result; 261 262 mutex_lock(&resource->resource_lock); 263 result = acpi_power_on_unlocked(resource); 264 mutex_unlock(&resource->resource_lock); 265 return result; 266 } 267 268 static int __acpi_power_off(struct acpi_power_resource *resource) 269 { 270 acpi_status status; 271 272 status = acpi_evaluate_object(resource->device.handle, "_OFF", 273 NULL, NULL); 274 if (ACPI_FAILURE(status)) 275 return -ENODEV; 276 277 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", 278 resource->name)); 279 return 0; 280 } 281 282 static int acpi_power_off_unlocked(struct acpi_power_resource *resource) 283 { 284 int result = 0; 285 286 if (!resource->ref_count) { 287 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 288 "Power resource [%s] already off\n", 289 resource->name)); 290 return 0; 291 } 292 293 if (--resource->ref_count) { 294 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 295 "Power resource [%s] still in use\n", 296 resource->name)); 297 } else { 298 result = __acpi_power_off(resource); 299 if (result) 300 resource->ref_count++; 301 } 302 return result; 303 } 304 305 static int acpi_power_off(struct acpi_power_resource *resource) 306 { 307 int result; 308 309 mutex_lock(&resource->resource_lock); 310 result = acpi_power_off_unlocked(resource); 311 mutex_unlock(&resource->resource_lock); 312 return result; 313 } 314 315 static int acpi_power_off_list(struct list_head *list) 316 { 317 struct acpi_power_resource_entry *entry; 318 int result = 0; 319 320 list_for_each_entry_reverse(entry, list, node) { 321 result = acpi_power_off(entry->resource); 322 if (result) 323 goto err; 324 } 325 return 0; 326 327 err: 328 list_for_each_entry_continue(entry, list, node) 329 acpi_power_on(entry->resource); 330 331 return result; 332 } 333 334 static int acpi_power_on_list(struct list_head *list) 335 { 336 struct acpi_power_resource_entry *entry; 337 int result = 0; 338 339 list_for_each_entry(entry, list, node) { 340 result = acpi_power_on(entry->resource); 341 if (result) 342 goto err; 343 } 344 return 0; 345 346 err: 347 list_for_each_entry_continue_reverse(entry, list, node) 348 acpi_power_off(entry->resource); 349 350 return result; 351 } 352 353 static struct attribute *attrs[] = { 354 NULL, 355 }; 356 357 static struct attribute_group attr_groups[] = { 358 [ACPI_STATE_D0] = { 359 .name = "power_resources_D0", 360 .attrs = attrs, 361 }, 362 [ACPI_STATE_D1] = { 363 .name = "power_resources_D1", 364 .attrs = attrs, 365 }, 366 [ACPI_STATE_D2] = { 367 .name = "power_resources_D2", 368 .attrs = attrs, 369 }, 370 [ACPI_STATE_D3_HOT] = { 371 .name = "power_resources_D3hot", 372 .attrs = attrs, 373 }, 374 }; 375 376 static struct attribute_group wakeup_attr_group = { 377 .name = "power_resources_wakeup", 378 .attrs = attrs, 379 }; 380 381 static void acpi_power_hide_list(struct acpi_device *adev, 382 struct list_head *resources, 383 struct attribute_group *attr_group) 384 { 385 struct acpi_power_resource_entry *entry; 386 387 if (list_empty(resources)) 388 return; 389 390 list_for_each_entry_reverse(entry, resources, node) { 391 struct acpi_device *res_dev = &entry->resource->device; 392 393 sysfs_remove_link_from_group(&adev->dev.kobj, 394 attr_group->name, 395 dev_name(&res_dev->dev)); 396 } 397 sysfs_remove_group(&adev->dev.kobj, attr_group); 398 } 399 400 static void acpi_power_expose_list(struct acpi_device *adev, 401 struct list_head *resources, 402 struct attribute_group *attr_group) 403 { 404 struct acpi_power_resource_entry *entry; 405 int ret; 406 407 if (list_empty(resources)) 408 return; 409 410 ret = sysfs_create_group(&adev->dev.kobj, attr_group); 411 if (ret) 412 return; 413 414 list_for_each_entry(entry, resources, node) { 415 struct acpi_device *res_dev = &entry->resource->device; 416 417 ret = sysfs_add_link_to_group(&adev->dev.kobj, 418 attr_group->name, 419 &res_dev->dev.kobj, 420 dev_name(&res_dev->dev)); 421 if (ret) { 422 acpi_power_hide_list(adev, resources, attr_group); 423 break; 424 } 425 } 426 } 427 428 static void acpi_power_expose_hide(struct acpi_device *adev, 429 struct list_head *resources, 430 struct attribute_group *attr_group, 431 bool expose) 432 { 433 if (expose) 434 acpi_power_expose_list(adev, resources, attr_group); 435 else 436 acpi_power_hide_list(adev, resources, attr_group); 437 } 438 439 void acpi_power_add_remove_device(struct acpi_device *adev, bool add) 440 { 441 int state; 442 443 if (adev->wakeup.flags.valid) 444 acpi_power_expose_hide(adev, &adev->wakeup.resources, 445 &wakeup_attr_group, add); 446 447 if (!adev->power.flags.power_resources) 448 return; 449 450 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) 451 acpi_power_expose_hide(adev, 452 &adev->power.states[state].resources, 453 &attr_groups[state], add); 454 } 455 456 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) 457 { 458 struct acpi_power_resource_entry *entry; 459 int system_level = 5; 460 461 list_for_each_entry(entry, list, node) { 462 struct acpi_power_resource *resource = entry->resource; 463 acpi_handle handle = resource->device.handle; 464 int result; 465 int state; 466 467 mutex_lock(&resource->resource_lock); 468 469 result = acpi_power_get_state(handle, &state); 470 if (result) { 471 mutex_unlock(&resource->resource_lock); 472 return result; 473 } 474 if (state == ACPI_POWER_RESOURCE_STATE_ON) { 475 resource->ref_count++; 476 resource->wakeup_enabled = true; 477 } 478 if (system_level > resource->system_level) 479 system_level = resource->system_level; 480 481 mutex_unlock(&resource->resource_lock); 482 } 483 *system_level_p = system_level; 484 return 0; 485 } 486 487 /* -------------------------------------------------------------------------- 488 Device Power Management 489 -------------------------------------------------------------------------- */ 490 491 /** 492 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 493 * ACPI 3.0) _PSW (Power State Wake) 494 * @dev: Device to handle. 495 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 496 * @sleep_state: Target sleep state of the system. 497 * @dev_state: Target power state of the device. 498 * 499 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 500 * State Wake) for the device, if present. On failure reset the device's 501 * wakeup.flags.valid flag. 502 * 503 * RETURN VALUE: 504 * 0 if either _DSW or _PSW has been successfully executed 505 * 0 if neither _DSW nor _PSW has been found 506 * -ENODEV if the execution of either _DSW or _PSW has failed 507 */ 508 int acpi_device_sleep_wake(struct acpi_device *dev, 509 int enable, int sleep_state, int dev_state) 510 { 511 union acpi_object in_arg[3]; 512 struct acpi_object_list arg_list = { 3, in_arg }; 513 acpi_status status = AE_OK; 514 515 /* 516 * Try to execute _DSW first. 517 * 518 * Three agruments are needed for the _DSW object: 519 * Argument 0: enable/disable the wake capabilities 520 * Argument 1: target system state 521 * Argument 2: target device state 522 * When _DSW object is called to disable the wake capabilities, maybe 523 * the first argument is filled. The values of the other two agruments 524 * are meaningless. 525 */ 526 in_arg[0].type = ACPI_TYPE_INTEGER; 527 in_arg[0].integer.value = enable; 528 in_arg[1].type = ACPI_TYPE_INTEGER; 529 in_arg[1].integer.value = sleep_state; 530 in_arg[2].type = ACPI_TYPE_INTEGER; 531 in_arg[2].integer.value = dev_state; 532 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 533 if (ACPI_SUCCESS(status)) { 534 return 0; 535 } else if (status != AE_NOT_FOUND) { 536 printk(KERN_ERR PREFIX "_DSW execution failed\n"); 537 dev->wakeup.flags.valid = 0; 538 return -ENODEV; 539 } 540 541 /* Execute _PSW */ 542 status = acpi_execute_simple_method(dev->handle, "_PSW", enable); 543 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 544 printk(KERN_ERR PREFIX "_PSW execution failed\n"); 545 dev->wakeup.flags.valid = 0; 546 return -ENODEV; 547 } 548 549 return 0; 550 } 551 552 /* 553 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 554 * 1. Power on the power resources required for the wakeup device 555 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 556 * State Wake) for the device, if present 557 */ 558 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 559 { 560 struct acpi_power_resource_entry *entry; 561 int err = 0; 562 563 if (!dev || !dev->wakeup.flags.valid) 564 return -EINVAL; 565 566 mutex_lock(&acpi_device_lock); 567 568 if (dev->wakeup.prepare_count++) 569 goto out; 570 571 list_for_each_entry(entry, &dev->wakeup.resources, node) { 572 struct acpi_power_resource *resource = entry->resource; 573 574 mutex_lock(&resource->resource_lock); 575 576 if (!resource->wakeup_enabled) { 577 err = acpi_power_on_unlocked(resource); 578 if (!err) 579 resource->wakeup_enabled = true; 580 } 581 582 mutex_unlock(&resource->resource_lock); 583 584 if (err) { 585 dev_err(&dev->dev, 586 "Cannot turn wakeup power resources on\n"); 587 dev->wakeup.flags.valid = 0; 588 goto out; 589 } 590 } 591 /* 592 * Passing 3 as the third argument below means the device may be 593 * put into arbitrary power state afterward. 594 */ 595 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 596 if (err) 597 dev->wakeup.prepare_count = 0; 598 599 out: 600 mutex_unlock(&acpi_device_lock); 601 return err; 602 } 603 604 /* 605 * Shutdown a wakeup device, counterpart of above method 606 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 607 * State Wake) for the device, if present 608 * 2. Shutdown down the power resources 609 */ 610 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 611 { 612 struct acpi_power_resource_entry *entry; 613 int err = 0; 614 615 if (!dev || !dev->wakeup.flags.valid) 616 return -EINVAL; 617 618 mutex_lock(&acpi_device_lock); 619 620 if (--dev->wakeup.prepare_count > 0) 621 goto out; 622 623 /* 624 * Executing the code below even if prepare_count is already zero when 625 * the function is called may be useful, for example for initialisation. 626 */ 627 if (dev->wakeup.prepare_count < 0) 628 dev->wakeup.prepare_count = 0; 629 630 err = acpi_device_sleep_wake(dev, 0, 0, 0); 631 if (err) 632 goto out; 633 634 list_for_each_entry(entry, &dev->wakeup.resources, node) { 635 struct acpi_power_resource *resource = entry->resource; 636 637 mutex_lock(&resource->resource_lock); 638 639 if (resource->wakeup_enabled) { 640 err = acpi_power_off_unlocked(resource); 641 if (!err) 642 resource->wakeup_enabled = false; 643 } 644 645 mutex_unlock(&resource->resource_lock); 646 647 if (err) { 648 dev_err(&dev->dev, 649 "Cannot turn wakeup power resources off\n"); 650 dev->wakeup.flags.valid = 0; 651 break; 652 } 653 } 654 655 out: 656 mutex_unlock(&acpi_device_lock); 657 return err; 658 } 659 660 int acpi_power_get_inferred_state(struct acpi_device *device, int *state) 661 { 662 int result = 0; 663 int list_state = 0; 664 int i = 0; 665 666 if (!device || !state) 667 return -EINVAL; 668 669 /* 670 * We know a device's inferred power state when all the resources 671 * required for a given D-state are 'on'. 672 */ 673 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 674 struct list_head *list = &device->power.states[i].resources; 675 676 if (list_empty(list)) 677 continue; 678 679 result = acpi_power_get_list_state(list, &list_state); 680 if (result) 681 return result; 682 683 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 684 *state = i; 685 return 0; 686 } 687 } 688 689 *state = ACPI_STATE_D3_COLD; 690 return 0; 691 } 692 693 int acpi_power_on_resources(struct acpi_device *device, int state) 694 { 695 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) 696 return -EINVAL; 697 698 return acpi_power_on_list(&device->power.states[state].resources); 699 } 700 701 int acpi_power_transition(struct acpi_device *device, int state) 702 { 703 int result = 0; 704 705 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 706 return -EINVAL; 707 708 if (device->power.state == state || !device->flags.power_manageable) 709 return 0; 710 711 if ((device->power.state < ACPI_STATE_D0) 712 || (device->power.state > ACPI_STATE_D3_COLD)) 713 return -ENODEV; 714 715 /* TBD: Resources must be ordered. */ 716 717 /* 718 * First we reference all power resources required in the target list 719 * (e.g. so the device doesn't lose power while transitioning). Then, 720 * we dereference all power resources used in the current list. 721 */ 722 if (state < ACPI_STATE_D3_COLD) 723 result = acpi_power_on_list( 724 &device->power.states[state].resources); 725 726 if (!result && device->power.state < ACPI_STATE_D3_COLD) 727 acpi_power_off_list( 728 &device->power.states[device->power.state].resources); 729 730 /* We shouldn't change the state unless the above operations succeed. */ 731 device->power.state = result ? ACPI_STATE_UNKNOWN : state; 732 733 return result; 734 } 735 736 static void acpi_release_power_resource(struct device *dev) 737 { 738 struct acpi_device *device = to_acpi_device(dev); 739 struct acpi_power_resource *resource; 740 741 resource = container_of(device, struct acpi_power_resource, device); 742 743 mutex_lock(&power_resource_list_lock); 744 list_del(&resource->list_node); 745 mutex_unlock(&power_resource_list_lock); 746 747 acpi_free_pnp_ids(&device->pnp); 748 kfree(resource); 749 } 750 751 static ssize_t acpi_power_in_use_show(struct device *dev, 752 struct device_attribute *attr, 753 char *buf) { 754 struct acpi_power_resource *resource; 755 756 resource = to_power_resource(to_acpi_device(dev)); 757 return sprintf(buf, "%u\n", !!resource->ref_count); 758 } 759 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL); 760 761 static void acpi_power_sysfs_remove(struct acpi_device *device) 762 { 763 device_remove_file(&device->dev, &dev_attr_resource_in_use); 764 } 765 766 int acpi_add_power_resource(acpi_handle handle) 767 { 768 struct acpi_power_resource *resource; 769 struct acpi_device *device = NULL; 770 union acpi_object acpi_object; 771 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 772 acpi_status status; 773 int state, result = -ENODEV; 774 775 acpi_bus_get_device(handle, &device); 776 if (device) 777 return 0; 778 779 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 780 if (!resource) 781 return -ENOMEM; 782 783 device = &resource->device; 784 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER, 785 ACPI_STA_DEFAULT); 786 mutex_init(&resource->resource_lock); 787 INIT_LIST_HEAD(&resource->list_node); 788 resource->name = device->pnp.bus_id; 789 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 790 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 791 device->power.state = ACPI_STATE_UNKNOWN; 792 793 /* Evalute the object to get the system level and resource order. */ 794 status = acpi_evaluate_object(handle, NULL, NULL, &buffer); 795 if (ACPI_FAILURE(status)) 796 goto err; 797 798 resource->system_level = acpi_object.power_resource.system_level; 799 resource->order = acpi_object.power_resource.resource_order; 800 801 result = acpi_power_get_state(handle, &state); 802 if (result) 803 goto err; 804 805 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), 806 acpi_device_bid(device), state ? "on" : "off"); 807 808 device->flags.match_driver = true; 809 result = acpi_device_add(device, acpi_release_power_resource); 810 if (result) 811 goto err; 812 813 if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) 814 device->remove = acpi_power_sysfs_remove; 815 816 mutex_lock(&power_resource_list_lock); 817 list_add(&resource->list_node, &acpi_power_resource_list); 818 mutex_unlock(&power_resource_list_lock); 819 acpi_device_add_finalize(device); 820 return 0; 821 822 err: 823 acpi_release_power_resource(&device->dev); 824 return result; 825 } 826 827 #ifdef CONFIG_ACPI_SLEEP 828 void acpi_resume_power_resources(void) 829 { 830 struct acpi_power_resource *resource; 831 832 mutex_lock(&power_resource_list_lock); 833 834 list_for_each_entry(resource, &acpi_power_resource_list, list_node) { 835 int result, state; 836 837 mutex_lock(&resource->resource_lock); 838 839 result = acpi_power_get_state(resource->device.handle, &state); 840 if (result) { 841 mutex_unlock(&resource->resource_lock); 842 continue; 843 } 844 845 if (state == ACPI_POWER_RESOURCE_STATE_OFF 846 && resource->ref_count) { 847 dev_info(&resource->device.dev, "Turning ON\n"); 848 __acpi_power_on(resource); 849 } else if (state == ACPI_POWER_RESOURCE_STATE_ON 850 && !resource->ref_count) { 851 dev_info(&resource->device.dev, "Turning OFF\n"); 852 __acpi_power_off(resource); 853 } 854 855 mutex_unlock(&resource->resource_lock); 856 } 857 858 mutex_unlock(&power_resource_list_lock); 859 } 860 #endif 861