xref: /openbmc/linux/drivers/acpi/power.c (revision 827beb77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/acpi/power.c - ACPI Power Resources management.
4  *
5  * Copyright (C) 2001 - 2015 Intel Corp.
6  * Author: Andy Grover <andrew.grover@intel.com>
7  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9  */
10 
11 /*
12  * ACPI power-managed devices may be controlled in two ways:
13  * 1. via "Device Specific (D-State) Control"
14  * 2. via "Power Resource Control".
15  * The code below deals with ACPI Power Resources control.
16  *
17  * An ACPI "power resource object" represents a software controllable power
18  * plane, clock plane, or other resource depended on by a device.
19  *
20  * A device may rely on multiple power resources, and a power resource
21  * may be shared by multiple devices.
22  */
23 
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sysfs.h>
33 #include <linux/acpi.h>
34 #include "sleep.h"
35 #include "internal.h"
36 
37 #define ACPI_POWER_CLASS		"power_resource"
38 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
39 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
40 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
42 
43 struct acpi_power_dependent_device {
44 	struct device *dev;
45 	struct list_head node;
46 };
47 
48 struct acpi_power_resource {
49 	struct acpi_device device;
50 	struct list_head list_node;
51 	u32 system_level;
52 	u32 order;
53 	unsigned int ref_count;
54 	u8 state;
55 	bool wakeup_enabled;
56 	struct mutex resource_lock;
57 	struct list_head dependents;
58 };
59 
60 struct acpi_power_resource_entry {
61 	struct list_head node;
62 	struct acpi_power_resource *resource;
63 };
64 
65 static LIST_HEAD(acpi_power_resource_list);
66 static DEFINE_MUTEX(power_resource_list_lock);
67 
68 /* --------------------------------------------------------------------------
69                              Power Resource Management
70    -------------------------------------------------------------------------- */
71 
72 static inline const char *resource_dev_name(struct acpi_power_resource *pr)
73 {
74 	return dev_name(&pr->device.dev);
75 }
76 
77 static inline
78 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
79 {
80 	return container_of(device, struct acpi_power_resource, device);
81 }
82 
83 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
84 {
85 	struct acpi_device *device;
86 
87 	if (acpi_bus_get_device(handle, &device))
88 		return NULL;
89 
90 	return to_power_resource(device);
91 }
92 
93 static int acpi_power_resources_list_add(acpi_handle handle,
94 					 struct list_head *list)
95 {
96 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
97 	struct acpi_power_resource_entry *entry;
98 
99 	if (!resource || !list)
100 		return -EINVAL;
101 
102 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
103 	if (!entry)
104 		return -ENOMEM;
105 
106 	entry->resource = resource;
107 	if (!list_empty(list)) {
108 		struct acpi_power_resource_entry *e;
109 
110 		list_for_each_entry(e, list, node)
111 			if (e->resource->order > resource->order) {
112 				list_add_tail(&entry->node, &e->node);
113 				return 0;
114 			}
115 	}
116 	list_add_tail(&entry->node, list);
117 	return 0;
118 }
119 
120 void acpi_power_resources_list_free(struct list_head *list)
121 {
122 	struct acpi_power_resource_entry *entry, *e;
123 
124 	list_for_each_entry_safe(entry, e, list, node) {
125 		list_del(&entry->node);
126 		kfree(entry);
127 	}
128 }
129 
130 static bool acpi_power_resource_is_dup(union acpi_object *package,
131 				       unsigned int start, unsigned int i)
132 {
133 	acpi_handle rhandle, dup;
134 	unsigned int j;
135 
136 	/* The caller is expected to check the package element types */
137 	rhandle = package->package.elements[i].reference.handle;
138 	for (j = start; j < i; j++) {
139 		dup = package->package.elements[j].reference.handle;
140 		if (dup == rhandle)
141 			return true;
142 	}
143 
144 	return false;
145 }
146 
147 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
148 				 struct list_head *list)
149 {
150 	unsigned int i;
151 	int err = 0;
152 
153 	for (i = start; i < package->package.count; i++) {
154 		union acpi_object *element = &package->package.elements[i];
155 		struct acpi_device *rdev;
156 		acpi_handle rhandle;
157 
158 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
159 			err = -ENODATA;
160 			break;
161 		}
162 		rhandle = element->reference.handle;
163 		if (!rhandle) {
164 			err = -ENODEV;
165 			break;
166 		}
167 
168 		/* Some ACPI tables contain duplicate power resource references */
169 		if (acpi_power_resource_is_dup(package, start, i))
170 			continue;
171 
172 		rdev = acpi_add_power_resource(rhandle);
173 		if (!rdev) {
174 			err = -ENODEV;
175 			break;
176 		}
177 		err = acpi_power_resources_list_add(rhandle, list);
178 		if (err)
179 			break;
180 	}
181 	if (err)
182 		acpi_power_resources_list_free(list);
183 
184 	return err;
185 }
186 
187 static int __get_state(acpi_handle handle, u8 *state)
188 {
189 	acpi_status status = AE_OK;
190 	unsigned long long sta = 0;
191 	u8 cur_state;
192 
193 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
194 	if (ACPI_FAILURE(status))
195 		return -ENODEV;
196 
197 	cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON;
198 
199 	acpi_handle_debug(handle, "Power resource is %s\n",
200 			  cur_state ? "on" : "off");
201 
202 	*state = cur_state;
203 	return 0;
204 }
205 
206 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state)
207 {
208 	if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) {
209 		int ret;
210 
211 		ret = __get_state(resource->device.handle, &resource->state);
212 		if (ret)
213 			return ret;
214 	}
215 
216 	*state = resource->state;
217 	return 0;
218 }
219 
220 static int acpi_power_get_list_state(struct list_head *list, u8 *state)
221 {
222 	struct acpi_power_resource_entry *entry;
223 	u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF;
224 
225 	if (!list || !state)
226 		return -EINVAL;
227 
228 	/* The state of the list is 'on' IFF all resources are 'on'. */
229 	list_for_each_entry(entry, list, node) {
230 		struct acpi_power_resource *resource = entry->resource;
231 		int result;
232 
233 		mutex_lock(&resource->resource_lock);
234 		result = acpi_power_get_state(resource, &cur_state);
235 		mutex_unlock(&resource->resource_lock);
236 		if (result)
237 			return result;
238 
239 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
240 			break;
241 	}
242 
243 	pr_debug("Power resource list is %s\n", cur_state ? "on" : "off");
244 
245 	*state = cur_state;
246 	return 0;
247 }
248 
249 static int
250 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
251 				  struct device *dev)
252 {
253 	struct acpi_power_dependent_device *dep;
254 	int ret = 0;
255 
256 	mutex_lock(&resource->resource_lock);
257 	list_for_each_entry(dep, &resource->dependents, node) {
258 		/* Only add it once */
259 		if (dep->dev == dev)
260 			goto unlock;
261 	}
262 
263 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
264 	if (!dep) {
265 		ret = -ENOMEM;
266 		goto unlock;
267 	}
268 
269 	dep->dev = dev;
270 	list_add_tail(&dep->node, &resource->dependents);
271 	dev_dbg(dev, "added power dependency to [%s]\n",
272 		resource_dev_name(resource));
273 
274 unlock:
275 	mutex_unlock(&resource->resource_lock);
276 	return ret;
277 }
278 
279 static void
280 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
281 				     struct device *dev)
282 {
283 	struct acpi_power_dependent_device *dep;
284 
285 	mutex_lock(&resource->resource_lock);
286 	list_for_each_entry(dep, &resource->dependents, node) {
287 		if (dep->dev == dev) {
288 			list_del(&dep->node);
289 			kfree(dep);
290 			dev_dbg(dev, "removed power dependency to [%s]\n",
291 				resource_dev_name(resource));
292 			break;
293 		}
294 	}
295 	mutex_unlock(&resource->resource_lock);
296 }
297 
298 /**
299  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
300  * @adev: ACPI device pointer
301  * @dev: Dependent device
302  *
303  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
304  * power resources returned by it. This means that whenever these power
305  * resources are turned _ON the dependent devices get runtime resumed. This
306  * is needed for devices such as PCI to allow its driver to re-initialize
307  * it after it went to D0uninitialized.
308  *
309  * If @adev does not have _PR0 this does nothing.
310  *
311  * Returns %0 in case of success and negative errno otherwise.
312  */
313 int acpi_device_power_add_dependent(struct acpi_device *adev,
314 				    struct device *dev)
315 {
316 	struct acpi_power_resource_entry *entry;
317 	struct list_head *resources;
318 	int ret;
319 
320 	if (!adev->flags.power_manageable)
321 		return 0;
322 
323 	resources = &adev->power.states[ACPI_STATE_D0].resources;
324 	list_for_each_entry(entry, resources, node) {
325 		ret = acpi_power_resource_add_dependent(entry->resource, dev);
326 		if (ret)
327 			goto err;
328 	}
329 
330 	return 0;
331 
332 err:
333 	list_for_each_entry(entry, resources, node)
334 		acpi_power_resource_remove_dependent(entry->resource, dev);
335 
336 	return ret;
337 }
338 
339 /**
340  * acpi_device_power_remove_dependent - Remove dependent device
341  * @adev: ACPI device pointer
342  * @dev: Dependent device
343  *
344  * Does the opposite of acpi_device_power_add_dependent() and removes the
345  * dependent device if it is found. Can be called to @adev that does not
346  * have _PR0 as well.
347  */
348 void acpi_device_power_remove_dependent(struct acpi_device *adev,
349 					struct device *dev)
350 {
351 	struct acpi_power_resource_entry *entry;
352 	struct list_head *resources;
353 
354 	if (!adev->flags.power_manageable)
355 		return;
356 
357 	resources = &adev->power.states[ACPI_STATE_D0].resources;
358 	list_for_each_entry_reverse(entry, resources, node)
359 		acpi_power_resource_remove_dependent(entry->resource, dev);
360 }
361 
362 static int __acpi_power_on(struct acpi_power_resource *resource)
363 {
364 	acpi_handle handle = resource->device.handle;
365 	struct acpi_power_dependent_device *dep;
366 	acpi_status status = AE_OK;
367 
368 	status = acpi_evaluate_object(handle, "_ON", NULL, NULL);
369 	if (ACPI_FAILURE(status)) {
370 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
371 		return -ENODEV;
372 	}
373 
374 	resource->state = ACPI_POWER_RESOURCE_STATE_ON;
375 
376 	acpi_handle_debug(handle, "Power resource turned on\n");
377 
378 	/*
379 	 * If there are other dependents on this power resource we need to
380 	 * resume them now so that their drivers can re-initialize the
381 	 * hardware properly after it went back to D0.
382 	 */
383 	if (list_empty(&resource->dependents) ||
384 	    list_is_singular(&resource->dependents))
385 		return 0;
386 
387 	list_for_each_entry(dep, &resource->dependents, node) {
388 		dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
389 			resource_dev_name(resource));
390 		pm_request_resume(dep->dev);
391 	}
392 
393 	return 0;
394 }
395 
396 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
397 {
398 	int result = 0;
399 
400 	if (resource->ref_count++) {
401 		acpi_handle_debug(resource->device.handle,
402 				  "Power resource already on\n");
403 	} else {
404 		result = __acpi_power_on(resource);
405 		if (result)
406 			resource->ref_count--;
407 	}
408 	return result;
409 }
410 
411 static int acpi_power_on(struct acpi_power_resource *resource)
412 {
413 	int result;
414 
415 	mutex_lock(&resource->resource_lock);
416 	result = acpi_power_on_unlocked(resource);
417 	mutex_unlock(&resource->resource_lock);
418 	return result;
419 }
420 
421 static int __acpi_power_off(struct acpi_power_resource *resource)
422 {
423 	acpi_handle handle = resource->device.handle;
424 	acpi_status status;
425 
426 	status = acpi_evaluate_object(handle, "_OFF", NULL, NULL);
427 	if (ACPI_FAILURE(status)) {
428 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
429 		return -ENODEV;
430 	}
431 
432 	resource->state = ACPI_POWER_RESOURCE_STATE_OFF;
433 
434 	acpi_handle_debug(handle, "Power resource turned off\n");
435 
436 	return 0;
437 }
438 
439 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
440 {
441 	int result = 0;
442 
443 	if (!resource->ref_count) {
444 		acpi_handle_debug(resource->device.handle,
445 				  "Power resource already off\n");
446 		return 0;
447 	}
448 
449 	if (--resource->ref_count) {
450 		acpi_handle_debug(resource->device.handle,
451 				  "Power resource still in use\n");
452 	} else {
453 		result = __acpi_power_off(resource);
454 		if (result)
455 			resource->ref_count++;
456 	}
457 	return result;
458 }
459 
460 static int acpi_power_off(struct acpi_power_resource *resource)
461 {
462 	int result;
463 
464 	mutex_lock(&resource->resource_lock);
465 	result = acpi_power_off_unlocked(resource);
466 	mutex_unlock(&resource->resource_lock);
467 	return result;
468 }
469 
470 static int acpi_power_off_list(struct list_head *list)
471 {
472 	struct acpi_power_resource_entry *entry;
473 	int result = 0;
474 
475 	list_for_each_entry_reverse(entry, list, node) {
476 		result = acpi_power_off(entry->resource);
477 		if (result)
478 			goto err;
479 	}
480 	return 0;
481 
482  err:
483 	list_for_each_entry_continue(entry, list, node)
484 		acpi_power_on(entry->resource);
485 
486 	return result;
487 }
488 
489 static int acpi_power_on_list(struct list_head *list)
490 {
491 	struct acpi_power_resource_entry *entry;
492 	int result = 0;
493 
494 	list_for_each_entry(entry, list, node) {
495 		result = acpi_power_on(entry->resource);
496 		if (result)
497 			goto err;
498 	}
499 	return 0;
500 
501  err:
502 	list_for_each_entry_continue_reverse(entry, list, node)
503 		acpi_power_off(entry->resource);
504 
505 	return result;
506 }
507 
508 static struct attribute *attrs[] = {
509 	NULL,
510 };
511 
512 static const struct attribute_group attr_groups[] = {
513 	[ACPI_STATE_D0] = {
514 		.name = "power_resources_D0",
515 		.attrs = attrs,
516 	},
517 	[ACPI_STATE_D1] = {
518 		.name = "power_resources_D1",
519 		.attrs = attrs,
520 	},
521 	[ACPI_STATE_D2] = {
522 		.name = "power_resources_D2",
523 		.attrs = attrs,
524 	},
525 	[ACPI_STATE_D3_HOT] = {
526 		.name = "power_resources_D3hot",
527 		.attrs = attrs,
528 	},
529 };
530 
531 static const struct attribute_group wakeup_attr_group = {
532 	.name = "power_resources_wakeup",
533 	.attrs = attrs,
534 };
535 
536 static void acpi_power_hide_list(struct acpi_device *adev,
537 				 struct list_head *resources,
538 				 const struct attribute_group *attr_group)
539 {
540 	struct acpi_power_resource_entry *entry;
541 
542 	if (list_empty(resources))
543 		return;
544 
545 	list_for_each_entry_reverse(entry, resources, node) {
546 		struct acpi_device *res_dev = &entry->resource->device;
547 
548 		sysfs_remove_link_from_group(&adev->dev.kobj,
549 					     attr_group->name,
550 					     dev_name(&res_dev->dev));
551 	}
552 	sysfs_remove_group(&adev->dev.kobj, attr_group);
553 }
554 
555 static void acpi_power_expose_list(struct acpi_device *adev,
556 				   struct list_head *resources,
557 				   const struct attribute_group *attr_group)
558 {
559 	struct acpi_power_resource_entry *entry;
560 	int ret;
561 
562 	if (list_empty(resources))
563 		return;
564 
565 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
566 	if (ret)
567 		return;
568 
569 	list_for_each_entry(entry, resources, node) {
570 		struct acpi_device *res_dev = &entry->resource->device;
571 
572 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
573 					      attr_group->name,
574 					      &res_dev->dev.kobj,
575 					      dev_name(&res_dev->dev));
576 		if (ret) {
577 			acpi_power_hide_list(adev, resources, attr_group);
578 			break;
579 		}
580 	}
581 }
582 
583 static void acpi_power_expose_hide(struct acpi_device *adev,
584 				   struct list_head *resources,
585 				   const struct attribute_group *attr_group,
586 				   bool expose)
587 {
588 	if (expose)
589 		acpi_power_expose_list(adev, resources, attr_group);
590 	else
591 		acpi_power_hide_list(adev, resources, attr_group);
592 }
593 
594 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
595 {
596 	int state;
597 
598 	if (adev->wakeup.flags.valid)
599 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
600 				       &wakeup_attr_group, add);
601 
602 	if (!adev->power.flags.power_resources)
603 		return;
604 
605 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
606 		acpi_power_expose_hide(adev,
607 				       &adev->power.states[state].resources,
608 				       &attr_groups[state], add);
609 }
610 
611 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
612 {
613 	struct acpi_power_resource_entry *entry;
614 	int system_level = 5;
615 
616 	list_for_each_entry(entry, list, node) {
617 		struct acpi_power_resource *resource = entry->resource;
618 		int result;
619 		u8 state;
620 
621 		mutex_lock(&resource->resource_lock);
622 
623 		result = acpi_power_get_state(resource, &state);
624 		if (result) {
625 			mutex_unlock(&resource->resource_lock);
626 			return result;
627 		}
628 		if (state == ACPI_POWER_RESOURCE_STATE_ON) {
629 			resource->ref_count++;
630 			resource->wakeup_enabled = true;
631 		}
632 		if (system_level > resource->system_level)
633 			system_level = resource->system_level;
634 
635 		mutex_unlock(&resource->resource_lock);
636 	}
637 	*system_level_p = system_level;
638 	return 0;
639 }
640 
641 /* --------------------------------------------------------------------------
642                              Device Power Management
643    -------------------------------------------------------------------------- */
644 
645 /**
646  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
647  *                          ACPI 3.0) _PSW (Power State Wake)
648  * @dev: Device to handle.
649  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
650  * @sleep_state: Target sleep state of the system.
651  * @dev_state: Target power state of the device.
652  *
653  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
654  * State Wake) for the device, if present.  On failure reset the device's
655  * wakeup.flags.valid flag.
656  *
657  * RETURN VALUE:
658  * 0 if either _DSW or _PSW has been successfully executed
659  * 0 if neither _DSW nor _PSW has been found
660  * -ENODEV if the execution of either _DSW or _PSW has failed
661  */
662 int acpi_device_sleep_wake(struct acpi_device *dev,
663 			   int enable, int sleep_state, int dev_state)
664 {
665 	union acpi_object in_arg[3];
666 	struct acpi_object_list arg_list = { 3, in_arg };
667 	acpi_status status = AE_OK;
668 
669 	/*
670 	 * Try to execute _DSW first.
671 	 *
672 	 * Three arguments are needed for the _DSW object:
673 	 * Argument 0: enable/disable the wake capabilities
674 	 * Argument 1: target system state
675 	 * Argument 2: target device state
676 	 * When _DSW object is called to disable the wake capabilities, maybe
677 	 * the first argument is filled. The values of the other two arguments
678 	 * are meaningless.
679 	 */
680 	in_arg[0].type = ACPI_TYPE_INTEGER;
681 	in_arg[0].integer.value = enable;
682 	in_arg[1].type = ACPI_TYPE_INTEGER;
683 	in_arg[1].integer.value = sleep_state;
684 	in_arg[2].type = ACPI_TYPE_INTEGER;
685 	in_arg[2].integer.value = dev_state;
686 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
687 	if (ACPI_SUCCESS(status)) {
688 		return 0;
689 	} else if (status != AE_NOT_FOUND) {
690 		acpi_handle_info(dev->handle, "_DSW execution failed\n");
691 		dev->wakeup.flags.valid = 0;
692 		return -ENODEV;
693 	}
694 
695 	/* Execute _PSW */
696 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
697 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
698 		acpi_handle_info(dev->handle, "_PSW execution failed\n");
699 		dev->wakeup.flags.valid = 0;
700 		return -ENODEV;
701 	}
702 
703 	return 0;
704 }
705 
706 /*
707  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
708  * 1. Power on the power resources required for the wakeup device
709  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
710  *    State Wake) for the device, if present
711  */
712 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
713 {
714 	struct acpi_power_resource_entry *entry;
715 	int err = 0;
716 
717 	if (!dev || !dev->wakeup.flags.valid)
718 		return -EINVAL;
719 
720 	mutex_lock(&acpi_device_lock);
721 
722 	if (dev->wakeup.prepare_count++)
723 		goto out;
724 
725 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
726 		struct acpi_power_resource *resource = entry->resource;
727 
728 		mutex_lock(&resource->resource_lock);
729 
730 		if (!resource->wakeup_enabled) {
731 			err = acpi_power_on_unlocked(resource);
732 			if (!err)
733 				resource->wakeup_enabled = true;
734 		}
735 
736 		mutex_unlock(&resource->resource_lock);
737 
738 		if (err) {
739 			dev_err(&dev->dev,
740 				"Cannot turn wakeup power resources on\n");
741 			dev->wakeup.flags.valid = 0;
742 			goto out;
743 		}
744 	}
745 	/*
746 	 * Passing 3 as the third argument below means the device may be
747 	 * put into arbitrary power state afterward.
748 	 */
749 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
750 	if (err)
751 		dev->wakeup.prepare_count = 0;
752 
753  out:
754 	mutex_unlock(&acpi_device_lock);
755 	return err;
756 }
757 
758 /*
759  * Shutdown a wakeup device, counterpart of above method
760  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
761  *    State Wake) for the device, if present
762  * 2. Shutdown down the power resources
763  */
764 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
765 {
766 	struct acpi_power_resource_entry *entry;
767 	int err = 0;
768 
769 	if (!dev || !dev->wakeup.flags.valid)
770 		return -EINVAL;
771 
772 	mutex_lock(&acpi_device_lock);
773 
774 	if (--dev->wakeup.prepare_count > 0)
775 		goto out;
776 
777 	/*
778 	 * Executing the code below even if prepare_count is already zero when
779 	 * the function is called may be useful, for example for initialisation.
780 	 */
781 	if (dev->wakeup.prepare_count < 0)
782 		dev->wakeup.prepare_count = 0;
783 
784 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
785 	if (err)
786 		goto out;
787 
788 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
789 		struct acpi_power_resource *resource = entry->resource;
790 
791 		mutex_lock(&resource->resource_lock);
792 
793 		if (resource->wakeup_enabled) {
794 			err = acpi_power_off_unlocked(resource);
795 			if (!err)
796 				resource->wakeup_enabled = false;
797 		}
798 
799 		mutex_unlock(&resource->resource_lock);
800 
801 		if (err) {
802 			dev_err(&dev->dev,
803 				"Cannot turn wakeup power resources off\n");
804 			dev->wakeup.flags.valid = 0;
805 			break;
806 		}
807 	}
808 
809  out:
810 	mutex_unlock(&acpi_device_lock);
811 	return err;
812 }
813 
814 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
815 {
816 	u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF;
817 	int result = 0;
818 	int i = 0;
819 
820 	if (!device || !state)
821 		return -EINVAL;
822 
823 	/*
824 	 * We know a device's inferred power state when all the resources
825 	 * required for a given D-state are 'on'.
826 	 */
827 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
828 		struct list_head *list = &device->power.states[i].resources;
829 
830 		if (list_empty(list))
831 			continue;
832 
833 		result = acpi_power_get_list_state(list, &list_state);
834 		if (result)
835 			return result;
836 
837 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
838 			*state = i;
839 			return 0;
840 		}
841 	}
842 
843 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
844 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
845 	return 0;
846 }
847 
848 int acpi_power_on_resources(struct acpi_device *device, int state)
849 {
850 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
851 		return -EINVAL;
852 
853 	return acpi_power_on_list(&device->power.states[state].resources);
854 }
855 
856 int acpi_power_transition(struct acpi_device *device, int state)
857 {
858 	int result = 0;
859 
860 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
861 		return -EINVAL;
862 
863 	if (device->power.state == state || !device->flags.power_manageable)
864 		return 0;
865 
866 	if ((device->power.state < ACPI_STATE_D0)
867 	    || (device->power.state > ACPI_STATE_D3_COLD))
868 		return -ENODEV;
869 
870 	/*
871 	 * First we reference all power resources required in the target list
872 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
873 	 * we dereference all power resources used in the current list.
874 	 */
875 	if (state < ACPI_STATE_D3_COLD)
876 		result = acpi_power_on_list(
877 			&device->power.states[state].resources);
878 
879 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
880 		acpi_power_off_list(
881 			&device->power.states[device->power.state].resources);
882 
883 	/* We shouldn't change the state unless the above operations succeed. */
884 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
885 
886 	return result;
887 }
888 
889 static void acpi_release_power_resource(struct device *dev)
890 {
891 	struct acpi_device *device = to_acpi_device(dev);
892 	struct acpi_power_resource *resource;
893 
894 	resource = container_of(device, struct acpi_power_resource, device);
895 
896 	mutex_lock(&power_resource_list_lock);
897 	list_del(&resource->list_node);
898 	mutex_unlock(&power_resource_list_lock);
899 
900 	acpi_free_pnp_ids(&device->pnp);
901 	kfree(resource);
902 }
903 
904 static ssize_t resource_in_use_show(struct device *dev,
905 				    struct device_attribute *attr,
906 				    char *buf)
907 {
908 	struct acpi_power_resource *resource;
909 
910 	resource = to_power_resource(to_acpi_device(dev));
911 	return sprintf(buf, "%u\n", !!resource->ref_count);
912 }
913 static DEVICE_ATTR_RO(resource_in_use);
914 
915 static void acpi_power_sysfs_remove(struct acpi_device *device)
916 {
917 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
918 }
919 
920 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
921 {
922 	mutex_lock(&power_resource_list_lock);
923 
924 	if (!list_empty(&acpi_power_resource_list)) {
925 		struct acpi_power_resource *r;
926 
927 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
928 			if (r->order > resource->order) {
929 				list_add_tail(&resource->list_node, &r->list_node);
930 				goto out;
931 			}
932 	}
933 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
934 
935  out:
936 	mutex_unlock(&power_resource_list_lock);
937 }
938 
939 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
940 {
941 	struct acpi_power_resource *resource;
942 	struct acpi_device *device = NULL;
943 	union acpi_object acpi_object;
944 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
945 	acpi_status status;
946 	int result;
947 
948 	acpi_bus_get_device(handle, &device);
949 	if (device)
950 		return device;
951 
952 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
953 	if (!resource)
954 		return NULL;
955 
956 	device = &resource->device;
957 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER);
958 	mutex_init(&resource->resource_lock);
959 	INIT_LIST_HEAD(&resource->list_node);
960 	INIT_LIST_HEAD(&resource->dependents);
961 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
962 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
963 	device->power.state = ACPI_STATE_UNKNOWN;
964 
965 	/* Evaluate the object to get the system level and resource order. */
966 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
967 	if (ACPI_FAILURE(status))
968 		goto err;
969 
970 	resource->system_level = acpi_object.power_resource.system_level;
971 	resource->order = acpi_object.power_resource.resource_order;
972 	resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
973 
974 	pr_info("%s [%s]\n", acpi_device_name(device), acpi_device_bid(device));
975 
976 	device->flags.match_driver = true;
977 	result = acpi_device_add(device, acpi_release_power_resource);
978 	if (result)
979 		goto err;
980 
981 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
982 		device->remove = acpi_power_sysfs_remove;
983 
984 	acpi_power_add_resource_to_list(resource);
985 	acpi_device_add_finalize(device);
986 	return device;
987 
988  err:
989 	acpi_release_power_resource(&device->dev);
990 	return NULL;
991 }
992 
993 #ifdef CONFIG_ACPI_SLEEP
994 void acpi_resume_power_resources(void)
995 {
996 	struct acpi_power_resource *resource;
997 
998 	mutex_lock(&power_resource_list_lock);
999 
1000 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
1001 		int result;
1002 		u8 state;
1003 
1004 		mutex_lock(&resource->resource_lock);
1005 
1006 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
1007 		result = acpi_power_get_state(resource, &state);
1008 		if (result) {
1009 			mutex_unlock(&resource->resource_lock);
1010 			continue;
1011 		}
1012 
1013 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
1014 		    && resource->ref_count) {
1015 			acpi_handle_debug(resource->device.handle, "Turning ON\n");
1016 			__acpi_power_on(resource);
1017 		}
1018 
1019 		mutex_unlock(&resource->resource_lock);
1020 	}
1021 
1022 	mutex_unlock(&power_resource_list_lock);
1023 }
1024 #endif
1025 
1026 /**
1027  * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1028  */
1029 void acpi_turn_off_unused_power_resources(void)
1030 {
1031 	struct acpi_power_resource *resource;
1032 
1033 	mutex_lock(&power_resource_list_lock);
1034 
1035 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1036 		mutex_lock(&resource->resource_lock);
1037 
1038 		if (!resource->ref_count &&
1039 		    resource->state == ACPI_POWER_RESOURCE_STATE_ON) {
1040 			acpi_handle_debug(resource->device.handle, "Turning OFF\n");
1041 			__acpi_power_off(resource);
1042 		}
1043 
1044 		mutex_unlock(&resource->resource_lock);
1045 	}
1046 
1047 	mutex_unlock(&power_resource_list_lock);
1048 }
1049