1 /* 2 * drivers/acpi/power.c - ACPI Power Resources management. 3 * 4 * Copyright (C) 2001 - 2015 Intel Corp. 5 * Author: Andy Grover <andrew.grover@intel.com> 6 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 8 * 9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or (at 14 * your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 22 */ 23 24 /* 25 * ACPI power-managed devices may be controlled in two ways: 26 * 1. via "Device Specific (D-State) Control" 27 * 2. via "Power Resource Control". 28 * The code below deals with ACPI Power Resources control. 29 * 30 * An ACPI "power resource object" represents a software controllable power 31 * plane, clock plane, or other resource depended on by a device. 32 * 33 * A device may rely on multiple power resources, and a power resource 34 * may be shared by multiple devices. 35 */ 36 37 #include <linux/kernel.h> 38 #include <linux/module.h> 39 #include <linux/init.h> 40 #include <linux/types.h> 41 #include <linux/slab.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/sysfs.h> 44 #include <linux/acpi.h> 45 #include "sleep.h" 46 #include "internal.h" 47 48 #define _COMPONENT ACPI_POWER_COMPONENT 49 ACPI_MODULE_NAME("power"); 50 #define ACPI_POWER_CLASS "power_resource" 51 #define ACPI_POWER_DEVICE_NAME "Power Resource" 52 #define ACPI_POWER_FILE_INFO "info" 53 #define ACPI_POWER_FILE_STATUS "state" 54 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 55 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 56 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 57 58 struct acpi_power_resource { 59 struct acpi_device device; 60 struct list_head list_node; 61 char *name; 62 u32 system_level; 63 u32 order; 64 unsigned int ref_count; 65 bool wakeup_enabled; 66 struct mutex resource_lock; 67 }; 68 69 struct acpi_power_resource_entry { 70 struct list_head node; 71 struct acpi_power_resource *resource; 72 }; 73 74 static LIST_HEAD(acpi_power_resource_list); 75 static DEFINE_MUTEX(power_resource_list_lock); 76 77 /* -------------------------------------------------------------------------- 78 Power Resource Management 79 -------------------------------------------------------------------------- */ 80 81 static inline 82 struct acpi_power_resource *to_power_resource(struct acpi_device *device) 83 { 84 return container_of(device, struct acpi_power_resource, device); 85 } 86 87 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) 88 { 89 struct acpi_device *device; 90 91 if (acpi_bus_get_device(handle, &device)) 92 return NULL; 93 94 return to_power_resource(device); 95 } 96 97 static int acpi_power_resources_list_add(acpi_handle handle, 98 struct list_head *list) 99 { 100 struct acpi_power_resource *resource = acpi_power_get_context(handle); 101 struct acpi_power_resource_entry *entry; 102 103 if (!resource || !list) 104 return -EINVAL; 105 106 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 107 if (!entry) 108 return -ENOMEM; 109 110 entry->resource = resource; 111 if (!list_empty(list)) { 112 struct acpi_power_resource_entry *e; 113 114 list_for_each_entry(e, list, node) 115 if (e->resource->order > resource->order) { 116 list_add_tail(&entry->node, &e->node); 117 return 0; 118 } 119 } 120 list_add_tail(&entry->node, list); 121 return 0; 122 } 123 124 void acpi_power_resources_list_free(struct list_head *list) 125 { 126 struct acpi_power_resource_entry *entry, *e; 127 128 list_for_each_entry_safe(entry, e, list, node) { 129 list_del(&entry->node); 130 kfree(entry); 131 } 132 } 133 134 int acpi_extract_power_resources(union acpi_object *package, unsigned int start, 135 struct list_head *list) 136 { 137 unsigned int i; 138 int err = 0; 139 140 for (i = start; i < package->package.count; i++) { 141 union acpi_object *element = &package->package.elements[i]; 142 acpi_handle rhandle; 143 144 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { 145 err = -ENODATA; 146 break; 147 } 148 rhandle = element->reference.handle; 149 if (!rhandle) { 150 err = -ENODEV; 151 break; 152 } 153 err = acpi_add_power_resource(rhandle); 154 if (err) 155 break; 156 157 err = acpi_power_resources_list_add(rhandle, list); 158 if (err) 159 break; 160 } 161 if (err) 162 acpi_power_resources_list_free(list); 163 164 return err; 165 } 166 167 static int acpi_power_get_state(acpi_handle handle, int *state) 168 { 169 acpi_status status = AE_OK; 170 unsigned long long sta = 0; 171 char node_name[5]; 172 struct acpi_buffer buffer = { sizeof(node_name), node_name }; 173 174 175 if (!handle || !state) 176 return -EINVAL; 177 178 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 179 if (ACPI_FAILURE(status)) 180 return -ENODEV; 181 182 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: 183 ACPI_POWER_RESOURCE_STATE_OFF; 184 185 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); 186 187 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", 188 node_name, 189 *state ? "on" : "off")); 190 191 return 0; 192 } 193 194 static int acpi_power_get_list_state(struct list_head *list, int *state) 195 { 196 struct acpi_power_resource_entry *entry; 197 int cur_state; 198 199 if (!list || !state) 200 return -EINVAL; 201 202 /* The state of the list is 'on' IFF all resources are 'on'. */ 203 list_for_each_entry(entry, list, node) { 204 struct acpi_power_resource *resource = entry->resource; 205 acpi_handle handle = resource->device.handle; 206 int result; 207 208 mutex_lock(&resource->resource_lock); 209 result = acpi_power_get_state(handle, &cur_state); 210 mutex_unlock(&resource->resource_lock); 211 if (result) 212 return result; 213 214 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) 215 break; 216 } 217 218 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", 219 cur_state ? "on" : "off")); 220 221 *state = cur_state; 222 return 0; 223 } 224 225 static int __acpi_power_on(struct acpi_power_resource *resource) 226 { 227 acpi_status status = AE_OK; 228 229 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); 230 if (ACPI_FAILURE(status)) 231 return -ENODEV; 232 233 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", 234 resource->name)); 235 236 return 0; 237 } 238 239 static int acpi_power_on_unlocked(struct acpi_power_resource *resource) 240 { 241 int result = 0; 242 243 if (resource->ref_count++) { 244 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 245 "Power resource [%s] already on\n", 246 resource->name)); 247 } else { 248 result = __acpi_power_on(resource); 249 if (result) 250 resource->ref_count--; 251 } 252 return result; 253 } 254 255 static int acpi_power_on(struct acpi_power_resource *resource) 256 { 257 int result; 258 259 mutex_lock(&resource->resource_lock); 260 result = acpi_power_on_unlocked(resource); 261 mutex_unlock(&resource->resource_lock); 262 return result; 263 } 264 265 static int __acpi_power_off(struct acpi_power_resource *resource) 266 { 267 acpi_status status; 268 269 status = acpi_evaluate_object(resource->device.handle, "_OFF", 270 NULL, NULL); 271 if (ACPI_FAILURE(status)) 272 return -ENODEV; 273 274 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", 275 resource->name)); 276 return 0; 277 } 278 279 static int acpi_power_off_unlocked(struct acpi_power_resource *resource) 280 { 281 int result = 0; 282 283 if (!resource->ref_count) { 284 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 285 "Power resource [%s] already off\n", 286 resource->name)); 287 return 0; 288 } 289 290 if (--resource->ref_count) { 291 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 292 "Power resource [%s] still in use\n", 293 resource->name)); 294 } else { 295 result = __acpi_power_off(resource); 296 if (result) 297 resource->ref_count++; 298 } 299 return result; 300 } 301 302 static int acpi_power_off(struct acpi_power_resource *resource) 303 { 304 int result; 305 306 mutex_lock(&resource->resource_lock); 307 result = acpi_power_off_unlocked(resource); 308 mutex_unlock(&resource->resource_lock); 309 return result; 310 } 311 312 static int acpi_power_off_list(struct list_head *list) 313 { 314 struct acpi_power_resource_entry *entry; 315 int result = 0; 316 317 list_for_each_entry_reverse(entry, list, node) { 318 result = acpi_power_off(entry->resource); 319 if (result) 320 goto err; 321 } 322 return 0; 323 324 err: 325 list_for_each_entry_continue(entry, list, node) 326 acpi_power_on(entry->resource); 327 328 return result; 329 } 330 331 static int acpi_power_on_list(struct list_head *list) 332 { 333 struct acpi_power_resource_entry *entry; 334 int result = 0; 335 336 list_for_each_entry(entry, list, node) { 337 result = acpi_power_on(entry->resource); 338 if (result) 339 goto err; 340 } 341 return 0; 342 343 err: 344 list_for_each_entry_continue_reverse(entry, list, node) 345 acpi_power_off(entry->resource); 346 347 return result; 348 } 349 350 static struct attribute *attrs[] = { 351 NULL, 352 }; 353 354 static struct attribute_group attr_groups[] = { 355 [ACPI_STATE_D0] = { 356 .name = "power_resources_D0", 357 .attrs = attrs, 358 }, 359 [ACPI_STATE_D1] = { 360 .name = "power_resources_D1", 361 .attrs = attrs, 362 }, 363 [ACPI_STATE_D2] = { 364 .name = "power_resources_D2", 365 .attrs = attrs, 366 }, 367 [ACPI_STATE_D3_HOT] = { 368 .name = "power_resources_D3hot", 369 .attrs = attrs, 370 }, 371 }; 372 373 static struct attribute_group wakeup_attr_group = { 374 .name = "power_resources_wakeup", 375 .attrs = attrs, 376 }; 377 378 static void acpi_power_hide_list(struct acpi_device *adev, 379 struct list_head *resources, 380 struct attribute_group *attr_group) 381 { 382 struct acpi_power_resource_entry *entry; 383 384 if (list_empty(resources)) 385 return; 386 387 list_for_each_entry_reverse(entry, resources, node) { 388 struct acpi_device *res_dev = &entry->resource->device; 389 390 sysfs_remove_link_from_group(&adev->dev.kobj, 391 attr_group->name, 392 dev_name(&res_dev->dev)); 393 } 394 sysfs_remove_group(&adev->dev.kobj, attr_group); 395 } 396 397 static void acpi_power_expose_list(struct acpi_device *adev, 398 struct list_head *resources, 399 struct attribute_group *attr_group) 400 { 401 struct acpi_power_resource_entry *entry; 402 int ret; 403 404 if (list_empty(resources)) 405 return; 406 407 ret = sysfs_create_group(&adev->dev.kobj, attr_group); 408 if (ret) 409 return; 410 411 list_for_each_entry(entry, resources, node) { 412 struct acpi_device *res_dev = &entry->resource->device; 413 414 ret = sysfs_add_link_to_group(&adev->dev.kobj, 415 attr_group->name, 416 &res_dev->dev.kobj, 417 dev_name(&res_dev->dev)); 418 if (ret) { 419 acpi_power_hide_list(adev, resources, attr_group); 420 break; 421 } 422 } 423 } 424 425 static void acpi_power_expose_hide(struct acpi_device *adev, 426 struct list_head *resources, 427 struct attribute_group *attr_group, 428 bool expose) 429 { 430 if (expose) 431 acpi_power_expose_list(adev, resources, attr_group); 432 else 433 acpi_power_hide_list(adev, resources, attr_group); 434 } 435 436 void acpi_power_add_remove_device(struct acpi_device *adev, bool add) 437 { 438 int state; 439 440 if (adev->wakeup.flags.valid) 441 acpi_power_expose_hide(adev, &adev->wakeup.resources, 442 &wakeup_attr_group, add); 443 444 if (!adev->power.flags.power_resources) 445 return; 446 447 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) 448 acpi_power_expose_hide(adev, 449 &adev->power.states[state].resources, 450 &attr_groups[state], add); 451 } 452 453 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) 454 { 455 struct acpi_power_resource_entry *entry; 456 int system_level = 5; 457 458 list_for_each_entry(entry, list, node) { 459 struct acpi_power_resource *resource = entry->resource; 460 acpi_handle handle = resource->device.handle; 461 int result; 462 int state; 463 464 mutex_lock(&resource->resource_lock); 465 466 result = acpi_power_get_state(handle, &state); 467 if (result) { 468 mutex_unlock(&resource->resource_lock); 469 return result; 470 } 471 if (state == ACPI_POWER_RESOURCE_STATE_ON) { 472 resource->ref_count++; 473 resource->wakeup_enabled = true; 474 } 475 if (system_level > resource->system_level) 476 system_level = resource->system_level; 477 478 mutex_unlock(&resource->resource_lock); 479 } 480 *system_level_p = system_level; 481 return 0; 482 } 483 484 /* -------------------------------------------------------------------------- 485 Device Power Management 486 -------------------------------------------------------------------------- */ 487 488 /** 489 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 490 * ACPI 3.0) _PSW (Power State Wake) 491 * @dev: Device to handle. 492 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 493 * @sleep_state: Target sleep state of the system. 494 * @dev_state: Target power state of the device. 495 * 496 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 497 * State Wake) for the device, if present. On failure reset the device's 498 * wakeup.flags.valid flag. 499 * 500 * RETURN VALUE: 501 * 0 if either _DSW or _PSW has been successfully executed 502 * 0 if neither _DSW nor _PSW has been found 503 * -ENODEV if the execution of either _DSW or _PSW has failed 504 */ 505 int acpi_device_sleep_wake(struct acpi_device *dev, 506 int enable, int sleep_state, int dev_state) 507 { 508 union acpi_object in_arg[3]; 509 struct acpi_object_list arg_list = { 3, in_arg }; 510 acpi_status status = AE_OK; 511 512 /* 513 * Try to execute _DSW first. 514 * 515 * Three agruments are needed for the _DSW object: 516 * Argument 0: enable/disable the wake capabilities 517 * Argument 1: target system state 518 * Argument 2: target device state 519 * When _DSW object is called to disable the wake capabilities, maybe 520 * the first argument is filled. The values of the other two agruments 521 * are meaningless. 522 */ 523 in_arg[0].type = ACPI_TYPE_INTEGER; 524 in_arg[0].integer.value = enable; 525 in_arg[1].type = ACPI_TYPE_INTEGER; 526 in_arg[1].integer.value = sleep_state; 527 in_arg[2].type = ACPI_TYPE_INTEGER; 528 in_arg[2].integer.value = dev_state; 529 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 530 if (ACPI_SUCCESS(status)) { 531 return 0; 532 } else if (status != AE_NOT_FOUND) { 533 printk(KERN_ERR PREFIX "_DSW execution failed\n"); 534 dev->wakeup.flags.valid = 0; 535 return -ENODEV; 536 } 537 538 /* Execute _PSW */ 539 status = acpi_execute_simple_method(dev->handle, "_PSW", enable); 540 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 541 printk(KERN_ERR PREFIX "_PSW execution failed\n"); 542 dev->wakeup.flags.valid = 0; 543 return -ENODEV; 544 } 545 546 return 0; 547 } 548 549 /* 550 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 551 * 1. Power on the power resources required for the wakeup device 552 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 553 * State Wake) for the device, if present 554 */ 555 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 556 { 557 struct acpi_power_resource_entry *entry; 558 int err = 0; 559 560 if (!dev || !dev->wakeup.flags.valid) 561 return -EINVAL; 562 563 mutex_lock(&acpi_device_lock); 564 565 if (dev->wakeup.prepare_count++) 566 goto out; 567 568 list_for_each_entry(entry, &dev->wakeup.resources, node) { 569 struct acpi_power_resource *resource = entry->resource; 570 571 mutex_lock(&resource->resource_lock); 572 573 if (!resource->wakeup_enabled) { 574 err = acpi_power_on_unlocked(resource); 575 if (!err) 576 resource->wakeup_enabled = true; 577 } 578 579 mutex_unlock(&resource->resource_lock); 580 581 if (err) { 582 dev_err(&dev->dev, 583 "Cannot turn wakeup power resources on\n"); 584 dev->wakeup.flags.valid = 0; 585 goto out; 586 } 587 } 588 /* 589 * Passing 3 as the third argument below means the device may be 590 * put into arbitrary power state afterward. 591 */ 592 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 593 if (err) 594 dev->wakeup.prepare_count = 0; 595 596 out: 597 mutex_unlock(&acpi_device_lock); 598 return err; 599 } 600 601 /* 602 * Shutdown a wakeup device, counterpart of above method 603 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 604 * State Wake) for the device, if present 605 * 2. Shutdown down the power resources 606 */ 607 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 608 { 609 struct acpi_power_resource_entry *entry; 610 int err = 0; 611 612 if (!dev || !dev->wakeup.flags.valid) 613 return -EINVAL; 614 615 mutex_lock(&acpi_device_lock); 616 617 if (--dev->wakeup.prepare_count > 0) 618 goto out; 619 620 /* 621 * Executing the code below even if prepare_count is already zero when 622 * the function is called may be useful, for example for initialisation. 623 */ 624 if (dev->wakeup.prepare_count < 0) 625 dev->wakeup.prepare_count = 0; 626 627 err = acpi_device_sleep_wake(dev, 0, 0, 0); 628 if (err) 629 goto out; 630 631 list_for_each_entry(entry, &dev->wakeup.resources, node) { 632 struct acpi_power_resource *resource = entry->resource; 633 634 mutex_lock(&resource->resource_lock); 635 636 if (resource->wakeup_enabled) { 637 err = acpi_power_off_unlocked(resource); 638 if (!err) 639 resource->wakeup_enabled = false; 640 } 641 642 mutex_unlock(&resource->resource_lock); 643 644 if (err) { 645 dev_err(&dev->dev, 646 "Cannot turn wakeup power resources off\n"); 647 dev->wakeup.flags.valid = 0; 648 break; 649 } 650 } 651 652 out: 653 mutex_unlock(&acpi_device_lock); 654 return err; 655 } 656 657 int acpi_power_get_inferred_state(struct acpi_device *device, int *state) 658 { 659 int result = 0; 660 int list_state = 0; 661 int i = 0; 662 663 if (!device || !state) 664 return -EINVAL; 665 666 /* 667 * We know a device's inferred power state when all the resources 668 * required for a given D-state are 'on'. 669 */ 670 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 671 struct list_head *list = &device->power.states[i].resources; 672 673 if (list_empty(list)) 674 continue; 675 676 result = acpi_power_get_list_state(list, &list_state); 677 if (result) 678 return result; 679 680 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 681 *state = i; 682 return 0; 683 } 684 } 685 686 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ? 687 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT; 688 return 0; 689 } 690 691 int acpi_power_on_resources(struct acpi_device *device, int state) 692 { 693 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) 694 return -EINVAL; 695 696 return acpi_power_on_list(&device->power.states[state].resources); 697 } 698 699 int acpi_power_transition(struct acpi_device *device, int state) 700 { 701 int result = 0; 702 703 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 704 return -EINVAL; 705 706 if (device->power.state == state || !device->flags.power_manageable) 707 return 0; 708 709 if ((device->power.state < ACPI_STATE_D0) 710 || (device->power.state > ACPI_STATE_D3_COLD)) 711 return -ENODEV; 712 713 /* 714 * First we reference all power resources required in the target list 715 * (e.g. so the device doesn't lose power while transitioning). Then, 716 * we dereference all power resources used in the current list. 717 */ 718 if (state < ACPI_STATE_D3_COLD) 719 result = acpi_power_on_list( 720 &device->power.states[state].resources); 721 722 if (!result && device->power.state < ACPI_STATE_D3_COLD) 723 acpi_power_off_list( 724 &device->power.states[device->power.state].resources); 725 726 /* We shouldn't change the state unless the above operations succeed. */ 727 device->power.state = result ? ACPI_STATE_UNKNOWN : state; 728 729 return result; 730 } 731 732 static void acpi_release_power_resource(struct device *dev) 733 { 734 struct acpi_device *device = to_acpi_device(dev); 735 struct acpi_power_resource *resource; 736 737 resource = container_of(device, struct acpi_power_resource, device); 738 739 mutex_lock(&power_resource_list_lock); 740 list_del(&resource->list_node); 741 mutex_unlock(&power_resource_list_lock); 742 743 acpi_free_pnp_ids(&device->pnp); 744 kfree(resource); 745 } 746 747 static ssize_t acpi_power_in_use_show(struct device *dev, 748 struct device_attribute *attr, 749 char *buf) { 750 struct acpi_power_resource *resource; 751 752 resource = to_power_resource(to_acpi_device(dev)); 753 return sprintf(buf, "%u\n", !!resource->ref_count); 754 } 755 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL); 756 757 static void acpi_power_sysfs_remove(struct acpi_device *device) 758 { 759 device_remove_file(&device->dev, &dev_attr_resource_in_use); 760 } 761 762 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource) 763 { 764 mutex_lock(&power_resource_list_lock); 765 766 if (!list_empty(&acpi_power_resource_list)) { 767 struct acpi_power_resource *r; 768 769 list_for_each_entry(r, &acpi_power_resource_list, list_node) 770 if (r->order > resource->order) { 771 list_add_tail(&resource->list_node, &r->list_node); 772 goto out; 773 } 774 } 775 list_add_tail(&resource->list_node, &acpi_power_resource_list); 776 777 out: 778 mutex_unlock(&power_resource_list_lock); 779 } 780 781 int acpi_add_power_resource(acpi_handle handle) 782 { 783 struct acpi_power_resource *resource; 784 struct acpi_device *device = NULL; 785 union acpi_object acpi_object; 786 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 787 acpi_status status; 788 int state, result = -ENODEV; 789 790 acpi_bus_get_device(handle, &device); 791 if (device) 792 return 0; 793 794 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 795 if (!resource) 796 return -ENOMEM; 797 798 device = &resource->device; 799 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER, 800 ACPI_STA_DEFAULT); 801 mutex_init(&resource->resource_lock); 802 INIT_LIST_HEAD(&resource->list_node); 803 resource->name = device->pnp.bus_id; 804 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 805 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 806 device->power.state = ACPI_STATE_UNKNOWN; 807 808 /* Evalute the object to get the system level and resource order. */ 809 status = acpi_evaluate_object(handle, NULL, NULL, &buffer); 810 if (ACPI_FAILURE(status)) 811 goto err; 812 813 resource->system_level = acpi_object.power_resource.system_level; 814 resource->order = acpi_object.power_resource.resource_order; 815 816 result = acpi_power_get_state(handle, &state); 817 if (result) 818 goto err; 819 820 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), 821 acpi_device_bid(device), state ? "on" : "off"); 822 823 device->flags.match_driver = true; 824 result = acpi_device_add(device, acpi_release_power_resource); 825 if (result) 826 goto err; 827 828 if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) 829 device->remove = acpi_power_sysfs_remove; 830 831 acpi_power_add_resource_to_list(resource); 832 acpi_device_add_finalize(device); 833 return 0; 834 835 err: 836 acpi_release_power_resource(&device->dev); 837 return result; 838 } 839 840 #ifdef CONFIG_ACPI_SLEEP 841 void acpi_resume_power_resources(void) 842 { 843 struct acpi_power_resource *resource; 844 845 mutex_lock(&power_resource_list_lock); 846 847 list_for_each_entry(resource, &acpi_power_resource_list, list_node) { 848 int result, state; 849 850 mutex_lock(&resource->resource_lock); 851 852 result = acpi_power_get_state(resource->device.handle, &state); 853 if (result) { 854 mutex_unlock(&resource->resource_lock); 855 continue; 856 } 857 858 if (state == ACPI_POWER_RESOURCE_STATE_OFF 859 && resource->ref_count) { 860 dev_info(&resource->device.dev, "Turning ON\n"); 861 __acpi_power_on(resource); 862 } 863 864 mutex_unlock(&resource->resource_lock); 865 } 866 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) { 867 int result, state; 868 869 mutex_lock(&resource->resource_lock); 870 871 result = acpi_power_get_state(resource->device.handle, &state); 872 if (result) { 873 mutex_unlock(&resource->resource_lock); 874 continue; 875 } 876 877 if (state == ACPI_POWER_RESOURCE_STATE_ON 878 && !resource->ref_count) { 879 dev_info(&resource->device.dev, "Turning OFF\n"); 880 __acpi_power_off(resource); 881 } 882 883 mutex_unlock(&resource->resource_lock); 884 } 885 886 mutex_unlock(&power_resource_list_lock); 887 } 888 #endif 889