xref: /openbmc/linux/drivers/acpi/power.c (revision 384b77fd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/acpi/power.c - ACPI Power Resources management.
4  *
5  * Copyright (C) 2001 - 2015 Intel Corp.
6  * Author: Andy Grover <andrew.grover@intel.com>
7  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9  */
10 
11 /*
12  * ACPI power-managed devices may be controlled in two ways:
13  * 1. via "Device Specific (D-State) Control"
14  * 2. via "Power Resource Control".
15  * The code below deals with ACPI Power Resources control.
16  *
17  * An ACPI "power resource object" represents a software controllable power
18  * plane, clock plane, or other resource depended on by a device.
19  *
20  * A device may rely on multiple power resources, and a power resource
21  * may be shared by multiple devices.
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sysfs.h>
31 #include <linux/acpi.h>
32 #include "sleep.h"
33 #include "internal.h"
34 
35 #define _COMPONENT			ACPI_POWER_COMPONENT
36 ACPI_MODULE_NAME("power");
37 #define ACPI_POWER_CLASS		"power_resource"
38 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
39 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
40 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
42 
43 struct acpi_power_dependent_device {
44 	struct device *dev;
45 	struct list_head node;
46 };
47 
48 struct acpi_power_resource {
49 	struct acpi_device device;
50 	struct list_head list_node;
51 	char *name;
52 	u32 system_level;
53 	u32 order;
54 	unsigned int ref_count;
55 	bool wakeup_enabled;
56 	struct mutex resource_lock;
57 	struct list_head dependents;
58 };
59 
60 struct acpi_power_resource_entry {
61 	struct list_head node;
62 	struct acpi_power_resource *resource;
63 };
64 
65 static LIST_HEAD(acpi_power_resource_list);
66 static DEFINE_MUTEX(power_resource_list_lock);
67 
68 /* --------------------------------------------------------------------------
69                              Power Resource Management
70    -------------------------------------------------------------------------- */
71 
72 static inline
73 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
74 {
75 	return container_of(device, struct acpi_power_resource, device);
76 }
77 
78 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
79 {
80 	struct acpi_device *device;
81 
82 	if (acpi_bus_get_device(handle, &device))
83 		return NULL;
84 
85 	return to_power_resource(device);
86 }
87 
88 static int acpi_power_resources_list_add(acpi_handle handle,
89 					 struct list_head *list)
90 {
91 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
92 	struct acpi_power_resource_entry *entry;
93 
94 	if (!resource || !list)
95 		return -EINVAL;
96 
97 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
98 	if (!entry)
99 		return -ENOMEM;
100 
101 	entry->resource = resource;
102 	if (!list_empty(list)) {
103 		struct acpi_power_resource_entry *e;
104 
105 		list_for_each_entry(e, list, node)
106 			if (e->resource->order > resource->order) {
107 				list_add_tail(&entry->node, &e->node);
108 				return 0;
109 			}
110 	}
111 	list_add_tail(&entry->node, list);
112 	return 0;
113 }
114 
115 void acpi_power_resources_list_free(struct list_head *list)
116 {
117 	struct acpi_power_resource_entry *entry, *e;
118 
119 	list_for_each_entry_safe(entry, e, list, node) {
120 		list_del(&entry->node);
121 		kfree(entry);
122 	}
123 }
124 
125 static bool acpi_power_resource_is_dup(union acpi_object *package,
126 				       unsigned int start, unsigned int i)
127 {
128 	acpi_handle rhandle, dup;
129 	unsigned int j;
130 
131 	/* The caller is expected to check the package element types */
132 	rhandle = package->package.elements[i].reference.handle;
133 	for (j = start; j < i; j++) {
134 		dup = package->package.elements[j].reference.handle;
135 		if (dup == rhandle)
136 			return true;
137 	}
138 
139 	return false;
140 }
141 
142 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
143 				 struct list_head *list)
144 {
145 	unsigned int i;
146 	int err = 0;
147 
148 	for (i = start; i < package->package.count; i++) {
149 		union acpi_object *element = &package->package.elements[i];
150 		acpi_handle rhandle;
151 
152 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
153 			err = -ENODATA;
154 			break;
155 		}
156 		rhandle = element->reference.handle;
157 		if (!rhandle) {
158 			err = -ENODEV;
159 			break;
160 		}
161 
162 		/* Some ACPI tables contain duplicate power resource references */
163 		if (acpi_power_resource_is_dup(package, start, i))
164 			continue;
165 
166 		err = acpi_add_power_resource(rhandle);
167 		if (err)
168 			break;
169 
170 		err = acpi_power_resources_list_add(rhandle, list);
171 		if (err)
172 			break;
173 	}
174 	if (err)
175 		acpi_power_resources_list_free(list);
176 
177 	return err;
178 }
179 
180 static int acpi_power_get_state(acpi_handle handle, int *state)
181 {
182 	acpi_status status = AE_OK;
183 	unsigned long long sta = 0;
184 	char node_name[5];
185 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
186 
187 
188 	if (!handle || !state)
189 		return -EINVAL;
190 
191 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
192 	if (ACPI_FAILURE(status))
193 		return -ENODEV;
194 
195 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
196 			      ACPI_POWER_RESOURCE_STATE_OFF;
197 
198 	acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
199 
200 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
201 			  node_name,
202 				*state ? "on" : "off"));
203 
204 	return 0;
205 }
206 
207 static int acpi_power_get_list_state(struct list_head *list, int *state)
208 {
209 	struct acpi_power_resource_entry *entry;
210 	int cur_state;
211 
212 	if (!list || !state)
213 		return -EINVAL;
214 
215 	/* The state of the list is 'on' IFF all resources are 'on'. */
216 	cur_state = 0;
217 	list_for_each_entry(entry, list, node) {
218 		struct acpi_power_resource *resource = entry->resource;
219 		acpi_handle handle = resource->device.handle;
220 		int result;
221 
222 		mutex_lock(&resource->resource_lock);
223 		result = acpi_power_get_state(handle, &cur_state);
224 		mutex_unlock(&resource->resource_lock);
225 		if (result)
226 			return result;
227 
228 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
229 			break;
230 	}
231 
232 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
233 			  cur_state ? "on" : "off"));
234 
235 	*state = cur_state;
236 	return 0;
237 }
238 
239 static int
240 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
241 				  struct device *dev)
242 {
243 	struct acpi_power_dependent_device *dep;
244 	int ret = 0;
245 
246 	mutex_lock(&resource->resource_lock);
247 	list_for_each_entry(dep, &resource->dependents, node) {
248 		/* Only add it once */
249 		if (dep->dev == dev)
250 			goto unlock;
251 	}
252 
253 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
254 	if (!dep) {
255 		ret = -ENOMEM;
256 		goto unlock;
257 	}
258 
259 	dep->dev = dev;
260 	list_add_tail(&dep->node, &resource->dependents);
261 	dev_dbg(dev, "added power dependency to [%s]\n", resource->name);
262 
263 unlock:
264 	mutex_unlock(&resource->resource_lock);
265 	return ret;
266 }
267 
268 static void
269 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
270 				     struct device *dev)
271 {
272 	struct acpi_power_dependent_device *dep;
273 
274 	mutex_lock(&resource->resource_lock);
275 	list_for_each_entry(dep, &resource->dependents, node) {
276 		if (dep->dev == dev) {
277 			list_del(&dep->node);
278 			kfree(dep);
279 			dev_dbg(dev, "removed power dependency to [%s]\n",
280 				resource->name);
281 			break;
282 		}
283 	}
284 	mutex_unlock(&resource->resource_lock);
285 }
286 
287 /**
288  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
289  * @adev: ACPI device pointer
290  * @dev: Dependent device
291  *
292  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
293  * power resources returned by it. This means that whenever these power
294  * resources are turned _ON the dependent devices get runtime resumed. This
295  * is needed for devices such as PCI to allow its driver to re-initialize
296  * it after it went to D0uninitialized.
297  *
298  * If @adev does not have _PR0 this does nothing.
299  *
300  * Returns %0 in case of success and negative errno otherwise.
301  */
302 int acpi_device_power_add_dependent(struct acpi_device *adev,
303 				    struct device *dev)
304 {
305 	struct acpi_power_resource_entry *entry;
306 	struct list_head *resources;
307 	int ret;
308 
309 	if (!adev->flags.power_manageable)
310 		return 0;
311 
312 	resources = &adev->power.states[ACPI_STATE_D0].resources;
313 	list_for_each_entry(entry, resources, node) {
314 		ret = acpi_power_resource_add_dependent(entry->resource, dev);
315 		if (ret)
316 			goto err;
317 	}
318 
319 	return 0;
320 
321 err:
322 	list_for_each_entry(entry, resources, node)
323 		acpi_power_resource_remove_dependent(entry->resource, dev);
324 
325 	return ret;
326 }
327 
328 /**
329  * acpi_device_power_remove_dependent - Remove dependent device
330  * @adev: ACPI device pointer
331  * @dev: Dependent device
332  *
333  * Does the opposite of acpi_device_power_add_dependent() and removes the
334  * dependent device if it is found. Can be called to @adev that does not
335  * have _PR0 as well.
336  */
337 void acpi_device_power_remove_dependent(struct acpi_device *adev,
338 					struct device *dev)
339 {
340 	struct acpi_power_resource_entry *entry;
341 	struct list_head *resources;
342 
343 	if (!adev->flags.power_manageable)
344 		return;
345 
346 	resources = &adev->power.states[ACPI_STATE_D0].resources;
347 	list_for_each_entry_reverse(entry, resources, node)
348 		acpi_power_resource_remove_dependent(entry->resource, dev);
349 }
350 
351 static int __acpi_power_on(struct acpi_power_resource *resource)
352 {
353 	struct acpi_power_dependent_device *dep;
354 	acpi_status status = AE_OK;
355 
356 	status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
357 	if (ACPI_FAILURE(status))
358 		return -ENODEV;
359 
360 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
361 			  resource->name));
362 
363 	/*
364 	 * If there are other dependents on this power resource we need to
365 	 * resume them now so that their drivers can re-initialize the
366 	 * hardware properly after it went back to D0.
367 	 */
368 	if (list_empty(&resource->dependents) ||
369 	    list_is_singular(&resource->dependents))
370 		return 0;
371 
372 	list_for_each_entry(dep, &resource->dependents, node) {
373 		dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
374 			resource->name);
375 		pm_request_resume(dep->dev);
376 	}
377 
378 	return 0;
379 }
380 
381 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
382 {
383 	int result = 0;
384 
385 	if (resource->ref_count++) {
386 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
387 				  "Power resource [%s] already on\n",
388 				  resource->name));
389 	} else {
390 		result = __acpi_power_on(resource);
391 		if (result)
392 			resource->ref_count--;
393 	}
394 	return result;
395 }
396 
397 static int acpi_power_on(struct acpi_power_resource *resource)
398 {
399 	int result;
400 
401 	mutex_lock(&resource->resource_lock);
402 	result = acpi_power_on_unlocked(resource);
403 	mutex_unlock(&resource->resource_lock);
404 	return result;
405 }
406 
407 static int __acpi_power_off(struct acpi_power_resource *resource)
408 {
409 	acpi_status status;
410 
411 	status = acpi_evaluate_object(resource->device.handle, "_OFF",
412 				      NULL, NULL);
413 	if (ACPI_FAILURE(status))
414 		return -ENODEV;
415 
416 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
417 			  resource->name));
418 	return 0;
419 }
420 
421 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
422 {
423 	int result = 0;
424 
425 	if (!resource->ref_count) {
426 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
427 				  "Power resource [%s] already off\n",
428 				  resource->name));
429 		return 0;
430 	}
431 
432 	if (--resource->ref_count) {
433 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
434 				  "Power resource [%s] still in use\n",
435 				  resource->name));
436 	} else {
437 		result = __acpi_power_off(resource);
438 		if (result)
439 			resource->ref_count++;
440 	}
441 	return result;
442 }
443 
444 static int acpi_power_off(struct acpi_power_resource *resource)
445 {
446 	int result;
447 
448 	mutex_lock(&resource->resource_lock);
449 	result = acpi_power_off_unlocked(resource);
450 	mutex_unlock(&resource->resource_lock);
451 	return result;
452 }
453 
454 static int acpi_power_off_list(struct list_head *list)
455 {
456 	struct acpi_power_resource_entry *entry;
457 	int result = 0;
458 
459 	list_for_each_entry_reverse(entry, list, node) {
460 		result = acpi_power_off(entry->resource);
461 		if (result)
462 			goto err;
463 	}
464 	return 0;
465 
466  err:
467 	list_for_each_entry_continue(entry, list, node)
468 		acpi_power_on(entry->resource);
469 
470 	return result;
471 }
472 
473 static int acpi_power_on_list(struct list_head *list)
474 {
475 	struct acpi_power_resource_entry *entry;
476 	int result = 0;
477 
478 	list_for_each_entry(entry, list, node) {
479 		result = acpi_power_on(entry->resource);
480 		if (result)
481 			goto err;
482 	}
483 	return 0;
484 
485  err:
486 	list_for_each_entry_continue_reverse(entry, list, node)
487 		acpi_power_off(entry->resource);
488 
489 	return result;
490 }
491 
492 static struct attribute *attrs[] = {
493 	NULL,
494 };
495 
496 static const struct attribute_group attr_groups[] = {
497 	[ACPI_STATE_D0] = {
498 		.name = "power_resources_D0",
499 		.attrs = attrs,
500 	},
501 	[ACPI_STATE_D1] = {
502 		.name = "power_resources_D1",
503 		.attrs = attrs,
504 	},
505 	[ACPI_STATE_D2] = {
506 		.name = "power_resources_D2",
507 		.attrs = attrs,
508 	},
509 	[ACPI_STATE_D3_HOT] = {
510 		.name = "power_resources_D3hot",
511 		.attrs = attrs,
512 	},
513 };
514 
515 static const struct attribute_group wakeup_attr_group = {
516 	.name = "power_resources_wakeup",
517 	.attrs = attrs,
518 };
519 
520 static void acpi_power_hide_list(struct acpi_device *adev,
521 				 struct list_head *resources,
522 				 const struct attribute_group *attr_group)
523 {
524 	struct acpi_power_resource_entry *entry;
525 
526 	if (list_empty(resources))
527 		return;
528 
529 	list_for_each_entry_reverse(entry, resources, node) {
530 		struct acpi_device *res_dev = &entry->resource->device;
531 
532 		sysfs_remove_link_from_group(&adev->dev.kobj,
533 					     attr_group->name,
534 					     dev_name(&res_dev->dev));
535 	}
536 	sysfs_remove_group(&adev->dev.kobj, attr_group);
537 }
538 
539 static void acpi_power_expose_list(struct acpi_device *adev,
540 				   struct list_head *resources,
541 				   const struct attribute_group *attr_group)
542 {
543 	struct acpi_power_resource_entry *entry;
544 	int ret;
545 
546 	if (list_empty(resources))
547 		return;
548 
549 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
550 	if (ret)
551 		return;
552 
553 	list_for_each_entry(entry, resources, node) {
554 		struct acpi_device *res_dev = &entry->resource->device;
555 
556 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
557 					      attr_group->name,
558 					      &res_dev->dev.kobj,
559 					      dev_name(&res_dev->dev));
560 		if (ret) {
561 			acpi_power_hide_list(adev, resources, attr_group);
562 			break;
563 		}
564 	}
565 }
566 
567 static void acpi_power_expose_hide(struct acpi_device *adev,
568 				   struct list_head *resources,
569 				   const struct attribute_group *attr_group,
570 				   bool expose)
571 {
572 	if (expose)
573 		acpi_power_expose_list(adev, resources, attr_group);
574 	else
575 		acpi_power_hide_list(adev, resources, attr_group);
576 }
577 
578 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
579 {
580 	int state;
581 
582 	if (adev->wakeup.flags.valid)
583 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
584 				       &wakeup_attr_group, add);
585 
586 	if (!adev->power.flags.power_resources)
587 		return;
588 
589 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
590 		acpi_power_expose_hide(adev,
591 				       &adev->power.states[state].resources,
592 				       &attr_groups[state], add);
593 }
594 
595 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
596 {
597 	struct acpi_power_resource_entry *entry;
598 	int system_level = 5;
599 
600 	list_for_each_entry(entry, list, node) {
601 		struct acpi_power_resource *resource = entry->resource;
602 		acpi_handle handle = resource->device.handle;
603 		int result;
604 		int state;
605 
606 		mutex_lock(&resource->resource_lock);
607 
608 		result = acpi_power_get_state(handle, &state);
609 		if (result) {
610 			mutex_unlock(&resource->resource_lock);
611 			return result;
612 		}
613 		if (state == ACPI_POWER_RESOURCE_STATE_ON) {
614 			resource->ref_count++;
615 			resource->wakeup_enabled = true;
616 		}
617 		if (system_level > resource->system_level)
618 			system_level = resource->system_level;
619 
620 		mutex_unlock(&resource->resource_lock);
621 	}
622 	*system_level_p = system_level;
623 	return 0;
624 }
625 
626 /* --------------------------------------------------------------------------
627                              Device Power Management
628    -------------------------------------------------------------------------- */
629 
630 /**
631  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
632  *                          ACPI 3.0) _PSW (Power State Wake)
633  * @dev: Device to handle.
634  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
635  * @sleep_state: Target sleep state of the system.
636  * @dev_state: Target power state of the device.
637  *
638  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
639  * State Wake) for the device, if present.  On failure reset the device's
640  * wakeup.flags.valid flag.
641  *
642  * RETURN VALUE:
643  * 0 if either _DSW or _PSW has been successfully executed
644  * 0 if neither _DSW nor _PSW has been found
645  * -ENODEV if the execution of either _DSW or _PSW has failed
646  */
647 int acpi_device_sleep_wake(struct acpi_device *dev,
648 			   int enable, int sleep_state, int dev_state)
649 {
650 	union acpi_object in_arg[3];
651 	struct acpi_object_list arg_list = { 3, in_arg };
652 	acpi_status status = AE_OK;
653 
654 	/*
655 	 * Try to execute _DSW first.
656 	 *
657 	 * Three arguments are needed for the _DSW object:
658 	 * Argument 0: enable/disable the wake capabilities
659 	 * Argument 1: target system state
660 	 * Argument 2: target device state
661 	 * When _DSW object is called to disable the wake capabilities, maybe
662 	 * the first argument is filled. The values of the other two arguments
663 	 * are meaningless.
664 	 */
665 	in_arg[0].type = ACPI_TYPE_INTEGER;
666 	in_arg[0].integer.value = enable;
667 	in_arg[1].type = ACPI_TYPE_INTEGER;
668 	in_arg[1].integer.value = sleep_state;
669 	in_arg[2].type = ACPI_TYPE_INTEGER;
670 	in_arg[2].integer.value = dev_state;
671 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
672 	if (ACPI_SUCCESS(status)) {
673 		return 0;
674 	} else if (status != AE_NOT_FOUND) {
675 		printk(KERN_ERR PREFIX "_DSW execution failed\n");
676 		dev->wakeup.flags.valid = 0;
677 		return -ENODEV;
678 	}
679 
680 	/* Execute _PSW */
681 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
682 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
683 		printk(KERN_ERR PREFIX "_PSW execution failed\n");
684 		dev->wakeup.flags.valid = 0;
685 		return -ENODEV;
686 	}
687 
688 	return 0;
689 }
690 
691 /*
692  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
693  * 1. Power on the power resources required for the wakeup device
694  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
695  *    State Wake) for the device, if present
696  */
697 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
698 {
699 	struct acpi_power_resource_entry *entry;
700 	int err = 0;
701 
702 	if (!dev || !dev->wakeup.flags.valid)
703 		return -EINVAL;
704 
705 	mutex_lock(&acpi_device_lock);
706 
707 	if (dev->wakeup.prepare_count++)
708 		goto out;
709 
710 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
711 		struct acpi_power_resource *resource = entry->resource;
712 
713 		mutex_lock(&resource->resource_lock);
714 
715 		if (!resource->wakeup_enabled) {
716 			err = acpi_power_on_unlocked(resource);
717 			if (!err)
718 				resource->wakeup_enabled = true;
719 		}
720 
721 		mutex_unlock(&resource->resource_lock);
722 
723 		if (err) {
724 			dev_err(&dev->dev,
725 				"Cannot turn wakeup power resources on\n");
726 			dev->wakeup.flags.valid = 0;
727 			goto out;
728 		}
729 	}
730 	/*
731 	 * Passing 3 as the third argument below means the device may be
732 	 * put into arbitrary power state afterward.
733 	 */
734 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
735 	if (err)
736 		dev->wakeup.prepare_count = 0;
737 
738  out:
739 	mutex_unlock(&acpi_device_lock);
740 	return err;
741 }
742 
743 /*
744  * Shutdown a wakeup device, counterpart of above method
745  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
746  *    State Wake) for the device, if present
747  * 2. Shutdown down the power resources
748  */
749 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
750 {
751 	struct acpi_power_resource_entry *entry;
752 	int err = 0;
753 
754 	if (!dev || !dev->wakeup.flags.valid)
755 		return -EINVAL;
756 
757 	mutex_lock(&acpi_device_lock);
758 
759 	if (--dev->wakeup.prepare_count > 0)
760 		goto out;
761 
762 	/*
763 	 * Executing the code below even if prepare_count is already zero when
764 	 * the function is called may be useful, for example for initialisation.
765 	 */
766 	if (dev->wakeup.prepare_count < 0)
767 		dev->wakeup.prepare_count = 0;
768 
769 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
770 	if (err)
771 		goto out;
772 
773 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
774 		struct acpi_power_resource *resource = entry->resource;
775 
776 		mutex_lock(&resource->resource_lock);
777 
778 		if (resource->wakeup_enabled) {
779 			err = acpi_power_off_unlocked(resource);
780 			if (!err)
781 				resource->wakeup_enabled = false;
782 		}
783 
784 		mutex_unlock(&resource->resource_lock);
785 
786 		if (err) {
787 			dev_err(&dev->dev,
788 				"Cannot turn wakeup power resources off\n");
789 			dev->wakeup.flags.valid = 0;
790 			break;
791 		}
792 	}
793 
794  out:
795 	mutex_unlock(&acpi_device_lock);
796 	return err;
797 }
798 
799 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
800 {
801 	int result = 0;
802 	int list_state = 0;
803 	int i = 0;
804 
805 	if (!device || !state)
806 		return -EINVAL;
807 
808 	/*
809 	 * We know a device's inferred power state when all the resources
810 	 * required for a given D-state are 'on'.
811 	 */
812 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
813 		struct list_head *list = &device->power.states[i].resources;
814 
815 		if (list_empty(list))
816 			continue;
817 
818 		result = acpi_power_get_list_state(list, &list_state);
819 		if (result)
820 			return result;
821 
822 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
823 			*state = i;
824 			return 0;
825 		}
826 	}
827 
828 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
829 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
830 	return 0;
831 }
832 
833 int acpi_power_on_resources(struct acpi_device *device, int state)
834 {
835 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
836 		return -EINVAL;
837 
838 	return acpi_power_on_list(&device->power.states[state].resources);
839 }
840 
841 int acpi_power_transition(struct acpi_device *device, int state)
842 {
843 	int result = 0;
844 
845 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
846 		return -EINVAL;
847 
848 	if (device->power.state == state || !device->flags.power_manageable)
849 		return 0;
850 
851 	if ((device->power.state < ACPI_STATE_D0)
852 	    || (device->power.state > ACPI_STATE_D3_COLD))
853 		return -ENODEV;
854 
855 	/*
856 	 * First we reference all power resources required in the target list
857 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
858 	 * we dereference all power resources used in the current list.
859 	 */
860 	if (state < ACPI_STATE_D3_COLD)
861 		result = acpi_power_on_list(
862 			&device->power.states[state].resources);
863 
864 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
865 		acpi_power_off_list(
866 			&device->power.states[device->power.state].resources);
867 
868 	/* We shouldn't change the state unless the above operations succeed. */
869 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
870 
871 	return result;
872 }
873 
874 static void acpi_release_power_resource(struct device *dev)
875 {
876 	struct acpi_device *device = to_acpi_device(dev);
877 	struct acpi_power_resource *resource;
878 
879 	resource = container_of(device, struct acpi_power_resource, device);
880 
881 	mutex_lock(&power_resource_list_lock);
882 	list_del(&resource->list_node);
883 	mutex_unlock(&power_resource_list_lock);
884 
885 	acpi_free_pnp_ids(&device->pnp);
886 	kfree(resource);
887 }
888 
889 static ssize_t acpi_power_in_use_show(struct device *dev,
890 				      struct device_attribute *attr,
891 				      char *buf) {
892 	struct acpi_power_resource *resource;
893 
894 	resource = to_power_resource(to_acpi_device(dev));
895 	return sprintf(buf, "%u\n", !!resource->ref_count);
896 }
897 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
898 
899 static void acpi_power_sysfs_remove(struct acpi_device *device)
900 {
901 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
902 }
903 
904 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
905 {
906 	mutex_lock(&power_resource_list_lock);
907 
908 	if (!list_empty(&acpi_power_resource_list)) {
909 		struct acpi_power_resource *r;
910 
911 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
912 			if (r->order > resource->order) {
913 				list_add_tail(&resource->list_node, &r->list_node);
914 				goto out;
915 			}
916 	}
917 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
918 
919  out:
920 	mutex_unlock(&power_resource_list_lock);
921 }
922 
923 int acpi_add_power_resource(acpi_handle handle)
924 {
925 	struct acpi_power_resource *resource;
926 	struct acpi_device *device = NULL;
927 	union acpi_object acpi_object;
928 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
929 	acpi_status status;
930 	int state, result = -ENODEV;
931 
932 	acpi_bus_get_device(handle, &device);
933 	if (device)
934 		return 0;
935 
936 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
937 	if (!resource)
938 		return -ENOMEM;
939 
940 	device = &resource->device;
941 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
942 				ACPI_STA_DEFAULT, NULL);
943 	mutex_init(&resource->resource_lock);
944 	INIT_LIST_HEAD(&resource->list_node);
945 	INIT_LIST_HEAD(&resource->dependents);
946 	resource->name = device->pnp.bus_id;
947 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
948 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
949 	device->power.state = ACPI_STATE_UNKNOWN;
950 
951 	/* Evalute the object to get the system level and resource order. */
952 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
953 	if (ACPI_FAILURE(status))
954 		goto err;
955 
956 	resource->system_level = acpi_object.power_resource.system_level;
957 	resource->order = acpi_object.power_resource.resource_order;
958 
959 	result = acpi_power_get_state(handle, &state);
960 	if (result)
961 		goto err;
962 
963 	printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
964 	       acpi_device_bid(device), state ? "on" : "off");
965 
966 	device->flags.match_driver = true;
967 	result = acpi_device_add(device, acpi_release_power_resource);
968 	if (result)
969 		goto err;
970 
971 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
972 		device->remove = acpi_power_sysfs_remove;
973 
974 	acpi_power_add_resource_to_list(resource);
975 	acpi_device_add_finalize(device);
976 	return 0;
977 
978  err:
979 	acpi_release_power_resource(&device->dev);
980 	return result;
981 }
982 
983 #ifdef CONFIG_ACPI_SLEEP
984 void acpi_resume_power_resources(void)
985 {
986 	struct acpi_power_resource *resource;
987 
988 	mutex_lock(&power_resource_list_lock);
989 
990 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
991 		int result, state;
992 
993 		mutex_lock(&resource->resource_lock);
994 
995 		result = acpi_power_get_state(resource->device.handle, &state);
996 		if (result) {
997 			mutex_unlock(&resource->resource_lock);
998 			continue;
999 		}
1000 
1001 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
1002 		    && resource->ref_count) {
1003 			dev_info(&resource->device.dev, "Turning ON\n");
1004 			__acpi_power_on(resource);
1005 		}
1006 
1007 		mutex_unlock(&resource->resource_lock);
1008 	}
1009 
1010 	mutex_unlock(&power_resource_list_lock);
1011 }
1012 
1013 void acpi_turn_off_unused_power_resources(void)
1014 {
1015 	struct acpi_power_resource *resource;
1016 
1017 	mutex_lock(&power_resource_list_lock);
1018 
1019 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1020 		int result, state;
1021 
1022 		mutex_lock(&resource->resource_lock);
1023 
1024 		result = acpi_power_get_state(resource->device.handle, &state);
1025 		if (result) {
1026 			mutex_unlock(&resource->resource_lock);
1027 			continue;
1028 		}
1029 
1030 		if (state == ACPI_POWER_RESOURCE_STATE_ON
1031 		    && !resource->ref_count) {
1032 			dev_info(&resource->device.dev, "Turning OFF\n");
1033 			__acpi_power_off(resource);
1034 		}
1035 
1036 		mutex_unlock(&resource->resource_lock);
1037 	}
1038 
1039 	mutex_unlock(&power_resource_list_lock);
1040 }
1041 #endif
1042