xref: /openbmc/linux/drivers/acpi/power.c (revision 171ec346)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/acpi/power.c - ACPI Power Resources management.
4  *
5  * Copyright (C) 2001 - 2015 Intel Corp.
6  * Author: Andy Grover <andrew.grover@intel.com>
7  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9  */
10 
11 /*
12  * ACPI power-managed devices may be controlled in two ways:
13  * 1. via "Device Specific (D-State) Control"
14  * 2. via "Power Resource Control".
15  * The code below deals with ACPI Power Resources control.
16  *
17  * An ACPI "power resource object" represents a software controllable power
18  * plane, clock plane, or other resource depended on by a device.
19  *
20  * A device may rely on multiple power resources, and a power resource
21  * may be shared by multiple devices.
22  */
23 
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sysfs.h>
33 #include <linux/acpi.h>
34 #include "sleep.h"
35 #include "internal.h"
36 
37 #define ACPI_POWER_CLASS		"power_resource"
38 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
39 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
40 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
42 
43 struct acpi_power_dependent_device {
44 	struct device *dev;
45 	struct list_head node;
46 };
47 
48 struct acpi_power_resource {
49 	struct acpi_device device;
50 	struct list_head list_node;
51 	char *name;
52 	u32 system_level;
53 	u32 order;
54 	unsigned int ref_count;
55 	unsigned int users;
56 	bool wakeup_enabled;
57 	struct mutex resource_lock;
58 	struct list_head dependents;
59 };
60 
61 struct acpi_power_resource_entry {
62 	struct list_head node;
63 	struct acpi_power_resource *resource;
64 };
65 
66 static LIST_HEAD(acpi_power_resource_list);
67 static DEFINE_MUTEX(power_resource_list_lock);
68 
69 /* --------------------------------------------------------------------------
70                              Power Resource Management
71    -------------------------------------------------------------------------- */
72 
73 static inline
74 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
75 {
76 	return container_of(device, struct acpi_power_resource, device);
77 }
78 
79 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
80 {
81 	struct acpi_device *device;
82 
83 	if (acpi_bus_get_device(handle, &device))
84 		return NULL;
85 
86 	return to_power_resource(device);
87 }
88 
89 static int acpi_power_resources_list_add(acpi_handle handle,
90 					 struct list_head *list)
91 {
92 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
93 	struct acpi_power_resource_entry *entry;
94 
95 	if (!resource || !list)
96 		return -EINVAL;
97 
98 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
99 	if (!entry)
100 		return -ENOMEM;
101 
102 	entry->resource = resource;
103 	if (!list_empty(list)) {
104 		struct acpi_power_resource_entry *e;
105 
106 		list_for_each_entry(e, list, node)
107 			if (e->resource->order > resource->order) {
108 				list_add_tail(&entry->node, &e->node);
109 				return 0;
110 			}
111 	}
112 	list_add_tail(&entry->node, list);
113 	return 0;
114 }
115 
116 void acpi_power_resources_list_free(struct list_head *list)
117 {
118 	struct acpi_power_resource_entry *entry, *e;
119 
120 	list_for_each_entry_safe(entry, e, list, node) {
121 		list_del(&entry->node);
122 		kfree(entry);
123 	}
124 }
125 
126 static bool acpi_power_resource_is_dup(union acpi_object *package,
127 				       unsigned int start, unsigned int i)
128 {
129 	acpi_handle rhandle, dup;
130 	unsigned int j;
131 
132 	/* The caller is expected to check the package element types */
133 	rhandle = package->package.elements[i].reference.handle;
134 	for (j = start; j < i; j++) {
135 		dup = package->package.elements[j].reference.handle;
136 		if (dup == rhandle)
137 			return true;
138 	}
139 
140 	return false;
141 }
142 
143 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
144 				 struct list_head *list)
145 {
146 	unsigned int i;
147 	int err = 0;
148 
149 	for (i = start; i < package->package.count; i++) {
150 		union acpi_object *element = &package->package.elements[i];
151 		struct acpi_device *rdev;
152 		acpi_handle rhandle;
153 
154 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
155 			err = -ENODATA;
156 			break;
157 		}
158 		rhandle = element->reference.handle;
159 		if (!rhandle) {
160 			err = -ENODEV;
161 			break;
162 		}
163 
164 		/* Some ACPI tables contain duplicate power resource references */
165 		if (acpi_power_resource_is_dup(package, start, i))
166 			continue;
167 
168 		rdev = acpi_add_power_resource(rhandle);
169 		if (!rdev) {
170 			err = -ENODEV;
171 			break;
172 		}
173 		err = acpi_power_resources_list_add(rhandle, list);
174 		if (err)
175 			break;
176 
177 		to_power_resource(rdev)->users++;
178 	}
179 	if (err)
180 		acpi_power_resources_list_free(list);
181 
182 	return err;
183 }
184 
185 static int acpi_power_get_state(acpi_handle handle, int *state)
186 {
187 	acpi_status status = AE_OK;
188 	unsigned long long sta = 0;
189 
190 	if (!handle || !state)
191 		return -EINVAL;
192 
193 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
194 	if (ACPI_FAILURE(status))
195 		return -ENODEV;
196 
197 	*state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
198 			      ACPI_POWER_RESOURCE_STATE_OFF;
199 
200 	acpi_handle_debug(handle, "Power resource is %s\n",
201 			  *state ? "on" : "off");
202 
203 	return 0;
204 }
205 
206 static int acpi_power_get_list_state(struct list_head *list, int *state)
207 {
208 	struct acpi_power_resource_entry *entry;
209 	int cur_state;
210 
211 	if (!list || !state)
212 		return -EINVAL;
213 
214 	/* The state of the list is 'on' IFF all resources are 'on'. */
215 	cur_state = 0;
216 	list_for_each_entry(entry, list, node) {
217 		struct acpi_power_resource *resource = entry->resource;
218 		acpi_handle handle = resource->device.handle;
219 		int result;
220 
221 		mutex_lock(&resource->resource_lock);
222 		result = acpi_power_get_state(handle, &cur_state);
223 		mutex_unlock(&resource->resource_lock);
224 		if (result)
225 			return result;
226 
227 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
228 			break;
229 	}
230 
231 	pr_debug("Power resource list is %s\n", cur_state ? "on" : "off");
232 
233 	*state = cur_state;
234 	return 0;
235 }
236 
237 static int
238 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
239 				  struct device *dev)
240 {
241 	struct acpi_power_dependent_device *dep;
242 	int ret = 0;
243 
244 	mutex_lock(&resource->resource_lock);
245 	list_for_each_entry(dep, &resource->dependents, node) {
246 		/* Only add it once */
247 		if (dep->dev == dev)
248 			goto unlock;
249 	}
250 
251 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
252 	if (!dep) {
253 		ret = -ENOMEM;
254 		goto unlock;
255 	}
256 
257 	dep->dev = dev;
258 	list_add_tail(&dep->node, &resource->dependents);
259 	dev_dbg(dev, "added power dependency to [%s]\n", resource->name);
260 
261 unlock:
262 	mutex_unlock(&resource->resource_lock);
263 	return ret;
264 }
265 
266 static void
267 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
268 				     struct device *dev)
269 {
270 	struct acpi_power_dependent_device *dep;
271 
272 	mutex_lock(&resource->resource_lock);
273 	list_for_each_entry(dep, &resource->dependents, node) {
274 		if (dep->dev == dev) {
275 			list_del(&dep->node);
276 			kfree(dep);
277 			dev_dbg(dev, "removed power dependency to [%s]\n",
278 				resource->name);
279 			break;
280 		}
281 	}
282 	mutex_unlock(&resource->resource_lock);
283 }
284 
285 /**
286  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
287  * @adev: ACPI device pointer
288  * @dev: Dependent device
289  *
290  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
291  * power resources returned by it. This means that whenever these power
292  * resources are turned _ON the dependent devices get runtime resumed. This
293  * is needed for devices such as PCI to allow its driver to re-initialize
294  * it after it went to D0uninitialized.
295  *
296  * If @adev does not have _PR0 this does nothing.
297  *
298  * Returns %0 in case of success and negative errno otherwise.
299  */
300 int acpi_device_power_add_dependent(struct acpi_device *adev,
301 				    struct device *dev)
302 {
303 	struct acpi_power_resource_entry *entry;
304 	struct list_head *resources;
305 	int ret;
306 
307 	if (!adev->flags.power_manageable)
308 		return 0;
309 
310 	resources = &adev->power.states[ACPI_STATE_D0].resources;
311 	list_for_each_entry(entry, resources, node) {
312 		ret = acpi_power_resource_add_dependent(entry->resource, dev);
313 		if (ret)
314 			goto err;
315 	}
316 
317 	return 0;
318 
319 err:
320 	list_for_each_entry(entry, resources, node)
321 		acpi_power_resource_remove_dependent(entry->resource, dev);
322 
323 	return ret;
324 }
325 
326 /**
327  * acpi_device_power_remove_dependent - Remove dependent device
328  * @adev: ACPI device pointer
329  * @dev: Dependent device
330  *
331  * Does the opposite of acpi_device_power_add_dependent() and removes the
332  * dependent device if it is found. Can be called to @adev that does not
333  * have _PR0 as well.
334  */
335 void acpi_device_power_remove_dependent(struct acpi_device *adev,
336 					struct device *dev)
337 {
338 	struct acpi_power_resource_entry *entry;
339 	struct list_head *resources;
340 
341 	if (!adev->flags.power_manageable)
342 		return;
343 
344 	resources = &adev->power.states[ACPI_STATE_D0].resources;
345 	list_for_each_entry_reverse(entry, resources, node)
346 		acpi_power_resource_remove_dependent(entry->resource, dev);
347 }
348 
349 static int __acpi_power_on(struct acpi_power_resource *resource)
350 {
351 	struct acpi_power_dependent_device *dep;
352 	acpi_status status = AE_OK;
353 
354 	status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
355 	if (ACPI_FAILURE(status))
356 		return -ENODEV;
357 
358 	pr_debug("Power resource [%s] turned on\n", resource->name);
359 
360 	/*
361 	 * If there are other dependents on this power resource we need to
362 	 * resume them now so that their drivers can re-initialize the
363 	 * hardware properly after it went back to D0.
364 	 */
365 	if (list_empty(&resource->dependents) ||
366 	    list_is_singular(&resource->dependents))
367 		return 0;
368 
369 	list_for_each_entry(dep, &resource->dependents, node) {
370 		dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
371 			resource->name);
372 		pm_request_resume(dep->dev);
373 	}
374 
375 	return 0;
376 }
377 
378 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
379 {
380 	int result = 0;
381 
382 	if (resource->ref_count++) {
383 		pr_debug("Power resource [%s] already on\n", resource->name);
384 	} else {
385 		result = __acpi_power_on(resource);
386 		if (result)
387 			resource->ref_count--;
388 	}
389 	return result;
390 }
391 
392 static int acpi_power_on(struct acpi_power_resource *resource)
393 {
394 	int result;
395 
396 	mutex_lock(&resource->resource_lock);
397 	result = acpi_power_on_unlocked(resource);
398 	mutex_unlock(&resource->resource_lock);
399 	return result;
400 }
401 
402 static int __acpi_power_off(struct acpi_power_resource *resource)
403 {
404 	acpi_status status;
405 
406 	status = acpi_evaluate_object(resource->device.handle, "_OFF",
407 				      NULL, NULL);
408 	if (ACPI_FAILURE(status))
409 		return -ENODEV;
410 
411 	pr_debug("Power resource [%s] turned off\n", resource->name);
412 
413 	return 0;
414 }
415 
416 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
417 {
418 	int result = 0;
419 
420 	if (!resource->ref_count) {
421 		pr_debug("Power resource [%s] already off\n", resource->name);
422 		return 0;
423 	}
424 
425 	if (--resource->ref_count) {
426 		pr_debug("Power resource [%s] still in use\n", resource->name);
427 	} else {
428 		result = __acpi_power_off(resource);
429 		if (result)
430 			resource->ref_count++;
431 	}
432 	return result;
433 }
434 
435 static int acpi_power_off(struct acpi_power_resource *resource)
436 {
437 	int result;
438 
439 	mutex_lock(&resource->resource_lock);
440 	result = acpi_power_off_unlocked(resource);
441 	mutex_unlock(&resource->resource_lock);
442 	return result;
443 }
444 
445 static int acpi_power_off_list(struct list_head *list)
446 {
447 	struct acpi_power_resource_entry *entry;
448 	int result = 0;
449 
450 	list_for_each_entry_reverse(entry, list, node) {
451 		result = acpi_power_off(entry->resource);
452 		if (result)
453 			goto err;
454 	}
455 	return 0;
456 
457  err:
458 	list_for_each_entry_continue(entry, list, node)
459 		acpi_power_on(entry->resource);
460 
461 	return result;
462 }
463 
464 static int acpi_power_on_list(struct list_head *list)
465 {
466 	struct acpi_power_resource_entry *entry;
467 	int result = 0;
468 
469 	list_for_each_entry(entry, list, node) {
470 		result = acpi_power_on(entry->resource);
471 		if (result)
472 			goto err;
473 	}
474 	return 0;
475 
476  err:
477 	list_for_each_entry_continue_reverse(entry, list, node)
478 		acpi_power_off(entry->resource);
479 
480 	return result;
481 }
482 
483 static struct attribute *attrs[] = {
484 	NULL,
485 };
486 
487 static const struct attribute_group attr_groups[] = {
488 	[ACPI_STATE_D0] = {
489 		.name = "power_resources_D0",
490 		.attrs = attrs,
491 	},
492 	[ACPI_STATE_D1] = {
493 		.name = "power_resources_D1",
494 		.attrs = attrs,
495 	},
496 	[ACPI_STATE_D2] = {
497 		.name = "power_resources_D2",
498 		.attrs = attrs,
499 	},
500 	[ACPI_STATE_D3_HOT] = {
501 		.name = "power_resources_D3hot",
502 		.attrs = attrs,
503 	},
504 };
505 
506 static const struct attribute_group wakeup_attr_group = {
507 	.name = "power_resources_wakeup",
508 	.attrs = attrs,
509 };
510 
511 static void acpi_power_hide_list(struct acpi_device *adev,
512 				 struct list_head *resources,
513 				 const struct attribute_group *attr_group)
514 {
515 	struct acpi_power_resource_entry *entry;
516 
517 	if (list_empty(resources))
518 		return;
519 
520 	list_for_each_entry_reverse(entry, resources, node) {
521 		struct acpi_device *res_dev = &entry->resource->device;
522 
523 		sysfs_remove_link_from_group(&adev->dev.kobj,
524 					     attr_group->name,
525 					     dev_name(&res_dev->dev));
526 	}
527 	sysfs_remove_group(&adev->dev.kobj, attr_group);
528 }
529 
530 static void acpi_power_expose_list(struct acpi_device *adev,
531 				   struct list_head *resources,
532 				   const struct attribute_group *attr_group)
533 {
534 	struct acpi_power_resource_entry *entry;
535 	int ret;
536 
537 	if (list_empty(resources))
538 		return;
539 
540 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
541 	if (ret)
542 		return;
543 
544 	list_for_each_entry(entry, resources, node) {
545 		struct acpi_device *res_dev = &entry->resource->device;
546 
547 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
548 					      attr_group->name,
549 					      &res_dev->dev.kobj,
550 					      dev_name(&res_dev->dev));
551 		if (ret) {
552 			acpi_power_hide_list(adev, resources, attr_group);
553 			break;
554 		}
555 	}
556 }
557 
558 static void acpi_power_expose_hide(struct acpi_device *adev,
559 				   struct list_head *resources,
560 				   const struct attribute_group *attr_group,
561 				   bool expose)
562 {
563 	if (expose)
564 		acpi_power_expose_list(adev, resources, attr_group);
565 	else
566 		acpi_power_hide_list(adev, resources, attr_group);
567 }
568 
569 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
570 {
571 	int state;
572 
573 	if (adev->wakeup.flags.valid)
574 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
575 				       &wakeup_attr_group, add);
576 
577 	if (!adev->power.flags.power_resources)
578 		return;
579 
580 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
581 		acpi_power_expose_hide(adev,
582 				       &adev->power.states[state].resources,
583 				       &attr_groups[state], add);
584 }
585 
586 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
587 {
588 	struct acpi_power_resource_entry *entry;
589 	int system_level = 5;
590 
591 	list_for_each_entry(entry, list, node) {
592 		struct acpi_power_resource *resource = entry->resource;
593 		acpi_handle handle = resource->device.handle;
594 		int result;
595 		int state;
596 
597 		mutex_lock(&resource->resource_lock);
598 
599 		result = acpi_power_get_state(handle, &state);
600 		if (result) {
601 			mutex_unlock(&resource->resource_lock);
602 			return result;
603 		}
604 		if (state == ACPI_POWER_RESOURCE_STATE_ON) {
605 			resource->ref_count++;
606 			resource->wakeup_enabled = true;
607 		}
608 		if (system_level > resource->system_level)
609 			system_level = resource->system_level;
610 
611 		mutex_unlock(&resource->resource_lock);
612 	}
613 	*system_level_p = system_level;
614 	return 0;
615 }
616 
617 /* --------------------------------------------------------------------------
618                              Device Power Management
619    -------------------------------------------------------------------------- */
620 
621 /**
622  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
623  *                          ACPI 3.0) _PSW (Power State Wake)
624  * @dev: Device to handle.
625  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
626  * @sleep_state: Target sleep state of the system.
627  * @dev_state: Target power state of the device.
628  *
629  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
630  * State Wake) for the device, if present.  On failure reset the device's
631  * wakeup.flags.valid flag.
632  *
633  * RETURN VALUE:
634  * 0 if either _DSW or _PSW has been successfully executed
635  * 0 if neither _DSW nor _PSW has been found
636  * -ENODEV if the execution of either _DSW or _PSW has failed
637  */
638 int acpi_device_sleep_wake(struct acpi_device *dev,
639 			   int enable, int sleep_state, int dev_state)
640 {
641 	union acpi_object in_arg[3];
642 	struct acpi_object_list arg_list = { 3, in_arg };
643 	acpi_status status = AE_OK;
644 
645 	/*
646 	 * Try to execute _DSW first.
647 	 *
648 	 * Three arguments are needed for the _DSW object:
649 	 * Argument 0: enable/disable the wake capabilities
650 	 * Argument 1: target system state
651 	 * Argument 2: target device state
652 	 * When _DSW object is called to disable the wake capabilities, maybe
653 	 * the first argument is filled. The values of the other two arguments
654 	 * are meaningless.
655 	 */
656 	in_arg[0].type = ACPI_TYPE_INTEGER;
657 	in_arg[0].integer.value = enable;
658 	in_arg[1].type = ACPI_TYPE_INTEGER;
659 	in_arg[1].integer.value = sleep_state;
660 	in_arg[2].type = ACPI_TYPE_INTEGER;
661 	in_arg[2].integer.value = dev_state;
662 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
663 	if (ACPI_SUCCESS(status)) {
664 		return 0;
665 	} else if (status != AE_NOT_FOUND) {
666 		acpi_handle_info(dev->handle, "_DSW execution failed\n");
667 		dev->wakeup.flags.valid = 0;
668 		return -ENODEV;
669 	}
670 
671 	/* Execute _PSW */
672 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
673 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
674 		acpi_handle_info(dev->handle, "_PSW execution failed\n");
675 		dev->wakeup.flags.valid = 0;
676 		return -ENODEV;
677 	}
678 
679 	return 0;
680 }
681 
682 /*
683  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
684  * 1. Power on the power resources required for the wakeup device
685  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
686  *    State Wake) for the device, if present
687  */
688 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
689 {
690 	struct acpi_power_resource_entry *entry;
691 	int err = 0;
692 
693 	if (!dev || !dev->wakeup.flags.valid)
694 		return -EINVAL;
695 
696 	mutex_lock(&acpi_device_lock);
697 
698 	if (dev->wakeup.prepare_count++)
699 		goto out;
700 
701 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
702 		struct acpi_power_resource *resource = entry->resource;
703 
704 		mutex_lock(&resource->resource_lock);
705 
706 		if (!resource->wakeup_enabled) {
707 			err = acpi_power_on_unlocked(resource);
708 			if (!err)
709 				resource->wakeup_enabled = true;
710 		}
711 
712 		mutex_unlock(&resource->resource_lock);
713 
714 		if (err) {
715 			dev_err(&dev->dev,
716 				"Cannot turn wakeup power resources on\n");
717 			dev->wakeup.flags.valid = 0;
718 			goto out;
719 		}
720 	}
721 	/*
722 	 * Passing 3 as the third argument below means the device may be
723 	 * put into arbitrary power state afterward.
724 	 */
725 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
726 	if (err)
727 		dev->wakeup.prepare_count = 0;
728 
729  out:
730 	mutex_unlock(&acpi_device_lock);
731 	return err;
732 }
733 
734 /*
735  * Shutdown a wakeup device, counterpart of above method
736  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
737  *    State Wake) for the device, if present
738  * 2. Shutdown down the power resources
739  */
740 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
741 {
742 	struct acpi_power_resource_entry *entry;
743 	int err = 0;
744 
745 	if (!dev || !dev->wakeup.flags.valid)
746 		return -EINVAL;
747 
748 	mutex_lock(&acpi_device_lock);
749 
750 	if (--dev->wakeup.prepare_count > 0)
751 		goto out;
752 
753 	/*
754 	 * Executing the code below even if prepare_count is already zero when
755 	 * the function is called may be useful, for example for initialisation.
756 	 */
757 	if (dev->wakeup.prepare_count < 0)
758 		dev->wakeup.prepare_count = 0;
759 
760 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
761 	if (err)
762 		goto out;
763 
764 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
765 		struct acpi_power_resource *resource = entry->resource;
766 
767 		mutex_lock(&resource->resource_lock);
768 
769 		if (resource->wakeup_enabled) {
770 			err = acpi_power_off_unlocked(resource);
771 			if (!err)
772 				resource->wakeup_enabled = false;
773 		}
774 
775 		mutex_unlock(&resource->resource_lock);
776 
777 		if (err) {
778 			dev_err(&dev->dev,
779 				"Cannot turn wakeup power resources off\n");
780 			dev->wakeup.flags.valid = 0;
781 			break;
782 		}
783 	}
784 
785  out:
786 	mutex_unlock(&acpi_device_lock);
787 	return err;
788 }
789 
790 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
791 {
792 	int result = 0;
793 	int list_state = 0;
794 	int i = 0;
795 
796 	if (!device || !state)
797 		return -EINVAL;
798 
799 	/*
800 	 * We know a device's inferred power state when all the resources
801 	 * required for a given D-state are 'on'.
802 	 */
803 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
804 		struct list_head *list = &device->power.states[i].resources;
805 
806 		if (list_empty(list))
807 			continue;
808 
809 		result = acpi_power_get_list_state(list, &list_state);
810 		if (result)
811 			return result;
812 
813 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
814 			*state = i;
815 			return 0;
816 		}
817 	}
818 
819 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
820 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
821 	return 0;
822 }
823 
824 int acpi_power_on_resources(struct acpi_device *device, int state)
825 {
826 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
827 		return -EINVAL;
828 
829 	return acpi_power_on_list(&device->power.states[state].resources);
830 }
831 
832 int acpi_power_transition(struct acpi_device *device, int state)
833 {
834 	int result = 0;
835 
836 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
837 		return -EINVAL;
838 
839 	if (device->power.state == state || !device->flags.power_manageable)
840 		return 0;
841 
842 	if ((device->power.state < ACPI_STATE_D0)
843 	    || (device->power.state > ACPI_STATE_D3_COLD))
844 		return -ENODEV;
845 
846 	/*
847 	 * First we reference all power resources required in the target list
848 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
849 	 * we dereference all power resources used in the current list.
850 	 */
851 	if (state < ACPI_STATE_D3_COLD)
852 		result = acpi_power_on_list(
853 			&device->power.states[state].resources);
854 
855 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
856 		acpi_power_off_list(
857 			&device->power.states[device->power.state].resources);
858 
859 	/* We shouldn't change the state unless the above operations succeed. */
860 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
861 
862 	return result;
863 }
864 
865 static void acpi_release_power_resource(struct device *dev)
866 {
867 	struct acpi_device *device = to_acpi_device(dev);
868 	struct acpi_power_resource *resource;
869 
870 	resource = container_of(device, struct acpi_power_resource, device);
871 
872 	mutex_lock(&power_resource_list_lock);
873 	list_del(&resource->list_node);
874 	mutex_unlock(&power_resource_list_lock);
875 
876 	acpi_free_pnp_ids(&device->pnp);
877 	kfree(resource);
878 }
879 
880 static ssize_t resource_in_use_show(struct device *dev,
881 				    struct device_attribute *attr,
882 				    char *buf)
883 {
884 	struct acpi_power_resource *resource;
885 
886 	resource = to_power_resource(to_acpi_device(dev));
887 	return sprintf(buf, "%u\n", !!resource->ref_count);
888 }
889 static DEVICE_ATTR_RO(resource_in_use);
890 
891 static void acpi_power_sysfs_remove(struct acpi_device *device)
892 {
893 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
894 }
895 
896 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
897 {
898 	mutex_lock(&power_resource_list_lock);
899 
900 	if (!list_empty(&acpi_power_resource_list)) {
901 		struct acpi_power_resource *r;
902 
903 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
904 			if (r->order > resource->order) {
905 				list_add_tail(&resource->list_node, &r->list_node);
906 				goto out;
907 			}
908 	}
909 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
910 
911  out:
912 	mutex_unlock(&power_resource_list_lock);
913 }
914 
915 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
916 {
917 	struct acpi_power_resource *resource;
918 	struct acpi_device *device = NULL;
919 	union acpi_object acpi_object;
920 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
921 	acpi_status status;
922 	int state, result = -ENODEV;
923 
924 	acpi_bus_get_device(handle, &device);
925 	if (device)
926 		return device;
927 
928 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
929 	if (!resource)
930 		return NULL;
931 
932 	device = &resource->device;
933 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER);
934 	mutex_init(&resource->resource_lock);
935 	INIT_LIST_HEAD(&resource->list_node);
936 	INIT_LIST_HEAD(&resource->dependents);
937 	resource->name = device->pnp.bus_id;
938 	strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
939 	strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
940 	device->power.state = ACPI_STATE_UNKNOWN;
941 
942 	/* Evaluate the object to get the system level and resource order. */
943 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
944 	if (ACPI_FAILURE(status))
945 		goto err;
946 
947 	resource->system_level = acpi_object.power_resource.system_level;
948 	resource->order = acpi_object.power_resource.resource_order;
949 
950 	result = acpi_power_get_state(handle, &state);
951 	if (result)
952 		goto err;
953 
954 	pr_info("%s [%s] (%s)\n", acpi_device_name(device),
955 		acpi_device_bid(device), state ? "on" : "off");
956 
957 	device->flags.match_driver = true;
958 	result = acpi_device_add(device, acpi_release_power_resource);
959 	if (result)
960 		goto err;
961 
962 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
963 		device->remove = acpi_power_sysfs_remove;
964 
965 	acpi_power_add_resource_to_list(resource);
966 	acpi_device_add_finalize(device);
967 	return device;
968 
969  err:
970 	acpi_release_power_resource(&device->dev);
971 	return NULL;
972 }
973 
974 #ifdef CONFIG_ACPI_SLEEP
975 void acpi_resume_power_resources(void)
976 {
977 	struct acpi_power_resource *resource;
978 
979 	mutex_lock(&power_resource_list_lock);
980 
981 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
982 		int result, state;
983 
984 		mutex_lock(&resource->resource_lock);
985 
986 		result = acpi_power_get_state(resource->device.handle, &state);
987 		if (result) {
988 			mutex_unlock(&resource->resource_lock);
989 			continue;
990 		}
991 
992 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
993 		    && resource->ref_count) {
994 			dev_info(&resource->device.dev, "Turning ON\n");
995 			__acpi_power_on(resource);
996 		}
997 
998 		mutex_unlock(&resource->resource_lock);
999 	}
1000 
1001 	mutex_unlock(&power_resource_list_lock);
1002 }
1003 #endif
1004 
1005 static void acpi_power_turn_off_if_unused(struct acpi_power_resource *resource,
1006 				       bool init)
1007 {
1008 	if (resource->ref_count > 0)
1009 		return;
1010 
1011 	if (init) {
1012 		if (resource->users > 0)
1013 			return;
1014 	} else {
1015 		int result, state;
1016 
1017 		result = acpi_power_get_state(resource->device.handle, &state);
1018 		if (result || state == ACPI_POWER_RESOURCE_STATE_OFF)
1019 			return;
1020 	}
1021 
1022 	dev_info(&resource->device.dev, "Turning OFF\n");
1023 	__acpi_power_off(resource);
1024 }
1025 
1026 /**
1027  * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1028  * @init: Control switch.
1029  *
1030  * If @ainit is set, unconditionally turn off all of the ACPI power resources
1031  * without any users.
1032  *
1033  * Otherwise, turn off all ACPI power resources without active references (that
1034  * is, the ones that should be "off" at the moment) that are "on".
1035  */
1036 void acpi_turn_off_unused_power_resources(bool init)
1037 {
1038 	struct acpi_power_resource *resource;
1039 
1040 	mutex_lock(&power_resource_list_lock);
1041 
1042 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1043 		mutex_lock(&resource->resource_lock);
1044 
1045 		acpi_power_turn_off_if_unused(resource, init);
1046 
1047 		mutex_unlock(&resource->resource_lock);
1048 	}
1049 
1050 	mutex_unlock(&power_resource_list_lock);
1051 }
1052