1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * drivers/acpi/power.c - ACPI Power Resources management. 4 * 5 * Copyright (C) 2001 - 2015 Intel Corp. 6 * Author: Andy Grover <andrew.grover@intel.com> 7 * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 8 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 9 */ 10 11 /* 12 * ACPI power-managed devices may be controlled in two ways: 13 * 1. via "Device Specific (D-State) Control" 14 * 2. via "Power Resource Control". 15 * The code below deals with ACPI Power Resources control. 16 * 17 * An ACPI "power resource object" represents a software controllable power 18 * plane, clock plane, or other resource depended on by a device. 19 * 20 * A device may rely on multiple power resources, and a power resource 21 * may be shared by multiple devices. 22 */ 23 24 #define pr_fmt(fmt) "ACPI: PM: " fmt 25 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/sysfs.h> 33 #include <linux/acpi.h> 34 #include "sleep.h" 35 #include "internal.h" 36 37 #define ACPI_POWER_CLASS "power_resource" 38 #define ACPI_POWER_DEVICE_NAME "Power Resource" 39 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 40 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 41 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF 42 43 struct acpi_power_dependent_device { 44 struct device *dev; 45 struct list_head node; 46 }; 47 48 struct acpi_power_resource { 49 struct acpi_device device; 50 struct list_head list_node; 51 char *name; 52 u32 system_level; 53 u32 order; 54 unsigned int ref_count; 55 unsigned int users; 56 bool wakeup_enabled; 57 struct mutex resource_lock; 58 struct list_head dependents; 59 }; 60 61 struct acpi_power_resource_entry { 62 struct list_head node; 63 struct acpi_power_resource *resource; 64 }; 65 66 static LIST_HEAD(acpi_power_resource_list); 67 static DEFINE_MUTEX(power_resource_list_lock); 68 69 /* -------------------------------------------------------------------------- 70 Power Resource Management 71 -------------------------------------------------------------------------- */ 72 73 static inline 74 struct acpi_power_resource *to_power_resource(struct acpi_device *device) 75 { 76 return container_of(device, struct acpi_power_resource, device); 77 } 78 79 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) 80 { 81 struct acpi_device *device; 82 83 if (acpi_bus_get_device(handle, &device)) 84 return NULL; 85 86 return to_power_resource(device); 87 } 88 89 static int acpi_power_resources_list_add(acpi_handle handle, 90 struct list_head *list) 91 { 92 struct acpi_power_resource *resource = acpi_power_get_context(handle); 93 struct acpi_power_resource_entry *entry; 94 95 if (!resource || !list) 96 return -EINVAL; 97 98 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 99 if (!entry) 100 return -ENOMEM; 101 102 entry->resource = resource; 103 if (!list_empty(list)) { 104 struct acpi_power_resource_entry *e; 105 106 list_for_each_entry(e, list, node) 107 if (e->resource->order > resource->order) { 108 list_add_tail(&entry->node, &e->node); 109 return 0; 110 } 111 } 112 list_add_tail(&entry->node, list); 113 return 0; 114 } 115 116 void acpi_power_resources_list_free(struct list_head *list) 117 { 118 struct acpi_power_resource_entry *entry, *e; 119 120 list_for_each_entry_safe(entry, e, list, node) { 121 list_del(&entry->node); 122 kfree(entry); 123 } 124 } 125 126 static bool acpi_power_resource_is_dup(union acpi_object *package, 127 unsigned int start, unsigned int i) 128 { 129 acpi_handle rhandle, dup; 130 unsigned int j; 131 132 /* The caller is expected to check the package element types */ 133 rhandle = package->package.elements[i].reference.handle; 134 for (j = start; j < i; j++) { 135 dup = package->package.elements[j].reference.handle; 136 if (dup == rhandle) 137 return true; 138 } 139 140 return false; 141 } 142 143 int acpi_extract_power_resources(union acpi_object *package, unsigned int start, 144 struct list_head *list) 145 { 146 unsigned int i; 147 int err = 0; 148 149 for (i = start; i < package->package.count; i++) { 150 union acpi_object *element = &package->package.elements[i]; 151 struct acpi_device *rdev; 152 acpi_handle rhandle; 153 154 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { 155 err = -ENODATA; 156 break; 157 } 158 rhandle = element->reference.handle; 159 if (!rhandle) { 160 err = -ENODEV; 161 break; 162 } 163 164 /* Some ACPI tables contain duplicate power resource references */ 165 if (acpi_power_resource_is_dup(package, start, i)) 166 continue; 167 168 rdev = acpi_add_power_resource(rhandle); 169 if (!rdev) { 170 err = -ENODEV; 171 break; 172 } 173 err = acpi_power_resources_list_add(rhandle, list); 174 if (err) 175 break; 176 177 to_power_resource(rdev)->users++; 178 } 179 if (err) 180 acpi_power_resources_list_free(list); 181 182 return err; 183 } 184 185 static int acpi_power_get_state(acpi_handle handle, int *state) 186 { 187 acpi_status status = AE_OK; 188 unsigned long long sta = 0; 189 190 if (!handle || !state) 191 return -EINVAL; 192 193 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 194 if (ACPI_FAILURE(status)) 195 return -ENODEV; 196 197 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: 198 ACPI_POWER_RESOURCE_STATE_OFF; 199 200 acpi_handle_debug(handle, "Power resource is %s\n", 201 *state ? "on" : "off"); 202 203 return 0; 204 } 205 206 static int acpi_power_get_list_state(struct list_head *list, int *state) 207 { 208 struct acpi_power_resource_entry *entry; 209 int cur_state; 210 211 if (!list || !state) 212 return -EINVAL; 213 214 /* The state of the list is 'on' IFF all resources are 'on'. */ 215 cur_state = 0; 216 list_for_each_entry(entry, list, node) { 217 struct acpi_power_resource *resource = entry->resource; 218 acpi_handle handle = resource->device.handle; 219 int result; 220 221 mutex_lock(&resource->resource_lock); 222 result = acpi_power_get_state(handle, &cur_state); 223 mutex_unlock(&resource->resource_lock); 224 if (result) 225 return result; 226 227 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) 228 break; 229 } 230 231 pr_debug("Power resource list is %s\n", cur_state ? "on" : "off"); 232 233 *state = cur_state; 234 return 0; 235 } 236 237 static int 238 acpi_power_resource_add_dependent(struct acpi_power_resource *resource, 239 struct device *dev) 240 { 241 struct acpi_power_dependent_device *dep; 242 int ret = 0; 243 244 mutex_lock(&resource->resource_lock); 245 list_for_each_entry(dep, &resource->dependents, node) { 246 /* Only add it once */ 247 if (dep->dev == dev) 248 goto unlock; 249 } 250 251 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 252 if (!dep) { 253 ret = -ENOMEM; 254 goto unlock; 255 } 256 257 dep->dev = dev; 258 list_add_tail(&dep->node, &resource->dependents); 259 dev_dbg(dev, "added power dependency to [%s]\n", resource->name); 260 261 unlock: 262 mutex_unlock(&resource->resource_lock); 263 return ret; 264 } 265 266 static void 267 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource, 268 struct device *dev) 269 { 270 struct acpi_power_dependent_device *dep; 271 272 mutex_lock(&resource->resource_lock); 273 list_for_each_entry(dep, &resource->dependents, node) { 274 if (dep->dev == dev) { 275 list_del(&dep->node); 276 kfree(dep); 277 dev_dbg(dev, "removed power dependency to [%s]\n", 278 resource->name); 279 break; 280 } 281 } 282 mutex_unlock(&resource->resource_lock); 283 } 284 285 /** 286 * acpi_device_power_add_dependent - Add dependent device of this ACPI device 287 * @adev: ACPI device pointer 288 * @dev: Dependent device 289 * 290 * If @adev has non-empty _PR0 the @dev is added as dependent device to all 291 * power resources returned by it. This means that whenever these power 292 * resources are turned _ON the dependent devices get runtime resumed. This 293 * is needed for devices such as PCI to allow its driver to re-initialize 294 * it after it went to D0uninitialized. 295 * 296 * If @adev does not have _PR0 this does nothing. 297 * 298 * Returns %0 in case of success and negative errno otherwise. 299 */ 300 int acpi_device_power_add_dependent(struct acpi_device *adev, 301 struct device *dev) 302 { 303 struct acpi_power_resource_entry *entry; 304 struct list_head *resources; 305 int ret; 306 307 if (!adev->flags.power_manageable) 308 return 0; 309 310 resources = &adev->power.states[ACPI_STATE_D0].resources; 311 list_for_each_entry(entry, resources, node) { 312 ret = acpi_power_resource_add_dependent(entry->resource, dev); 313 if (ret) 314 goto err; 315 } 316 317 return 0; 318 319 err: 320 list_for_each_entry(entry, resources, node) 321 acpi_power_resource_remove_dependent(entry->resource, dev); 322 323 return ret; 324 } 325 326 /** 327 * acpi_device_power_remove_dependent - Remove dependent device 328 * @adev: ACPI device pointer 329 * @dev: Dependent device 330 * 331 * Does the opposite of acpi_device_power_add_dependent() and removes the 332 * dependent device if it is found. Can be called to @adev that does not 333 * have _PR0 as well. 334 */ 335 void acpi_device_power_remove_dependent(struct acpi_device *adev, 336 struct device *dev) 337 { 338 struct acpi_power_resource_entry *entry; 339 struct list_head *resources; 340 341 if (!adev->flags.power_manageable) 342 return; 343 344 resources = &adev->power.states[ACPI_STATE_D0].resources; 345 list_for_each_entry_reverse(entry, resources, node) 346 acpi_power_resource_remove_dependent(entry->resource, dev); 347 } 348 349 static int __acpi_power_on(struct acpi_power_resource *resource) 350 { 351 struct acpi_power_dependent_device *dep; 352 acpi_status status = AE_OK; 353 354 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); 355 if (ACPI_FAILURE(status)) 356 return -ENODEV; 357 358 pr_debug("Power resource [%s] turned on\n", resource->name); 359 360 /* 361 * If there are other dependents on this power resource we need to 362 * resume them now so that their drivers can re-initialize the 363 * hardware properly after it went back to D0. 364 */ 365 if (list_empty(&resource->dependents) || 366 list_is_singular(&resource->dependents)) 367 return 0; 368 369 list_for_each_entry(dep, &resource->dependents, node) { 370 dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n", 371 resource->name); 372 pm_request_resume(dep->dev); 373 } 374 375 return 0; 376 } 377 378 static int acpi_power_on_unlocked(struct acpi_power_resource *resource) 379 { 380 int result = 0; 381 382 if (resource->ref_count++) { 383 pr_debug("Power resource [%s] already on\n", resource->name); 384 } else { 385 result = __acpi_power_on(resource); 386 if (result) 387 resource->ref_count--; 388 } 389 return result; 390 } 391 392 static int acpi_power_on(struct acpi_power_resource *resource) 393 { 394 int result; 395 396 mutex_lock(&resource->resource_lock); 397 result = acpi_power_on_unlocked(resource); 398 mutex_unlock(&resource->resource_lock); 399 return result; 400 } 401 402 static int __acpi_power_off(struct acpi_power_resource *resource) 403 { 404 acpi_status status; 405 406 status = acpi_evaluate_object(resource->device.handle, "_OFF", 407 NULL, NULL); 408 if (ACPI_FAILURE(status)) 409 return -ENODEV; 410 411 pr_debug("Power resource [%s] turned off\n", resource->name); 412 413 return 0; 414 } 415 416 static int acpi_power_off_unlocked(struct acpi_power_resource *resource) 417 { 418 int result = 0; 419 420 if (!resource->ref_count) { 421 pr_debug("Power resource [%s] already off\n", resource->name); 422 return 0; 423 } 424 425 if (--resource->ref_count) { 426 pr_debug("Power resource [%s] still in use\n", resource->name); 427 } else { 428 result = __acpi_power_off(resource); 429 if (result) 430 resource->ref_count++; 431 } 432 return result; 433 } 434 435 static int acpi_power_off(struct acpi_power_resource *resource) 436 { 437 int result; 438 439 mutex_lock(&resource->resource_lock); 440 result = acpi_power_off_unlocked(resource); 441 mutex_unlock(&resource->resource_lock); 442 return result; 443 } 444 445 static int acpi_power_off_list(struct list_head *list) 446 { 447 struct acpi_power_resource_entry *entry; 448 int result = 0; 449 450 list_for_each_entry_reverse(entry, list, node) { 451 result = acpi_power_off(entry->resource); 452 if (result) 453 goto err; 454 } 455 return 0; 456 457 err: 458 list_for_each_entry_continue(entry, list, node) 459 acpi_power_on(entry->resource); 460 461 return result; 462 } 463 464 static int acpi_power_on_list(struct list_head *list) 465 { 466 struct acpi_power_resource_entry *entry; 467 int result = 0; 468 469 list_for_each_entry(entry, list, node) { 470 result = acpi_power_on(entry->resource); 471 if (result) 472 goto err; 473 } 474 return 0; 475 476 err: 477 list_for_each_entry_continue_reverse(entry, list, node) 478 acpi_power_off(entry->resource); 479 480 return result; 481 } 482 483 static struct attribute *attrs[] = { 484 NULL, 485 }; 486 487 static const struct attribute_group attr_groups[] = { 488 [ACPI_STATE_D0] = { 489 .name = "power_resources_D0", 490 .attrs = attrs, 491 }, 492 [ACPI_STATE_D1] = { 493 .name = "power_resources_D1", 494 .attrs = attrs, 495 }, 496 [ACPI_STATE_D2] = { 497 .name = "power_resources_D2", 498 .attrs = attrs, 499 }, 500 [ACPI_STATE_D3_HOT] = { 501 .name = "power_resources_D3hot", 502 .attrs = attrs, 503 }, 504 }; 505 506 static const struct attribute_group wakeup_attr_group = { 507 .name = "power_resources_wakeup", 508 .attrs = attrs, 509 }; 510 511 static void acpi_power_hide_list(struct acpi_device *adev, 512 struct list_head *resources, 513 const struct attribute_group *attr_group) 514 { 515 struct acpi_power_resource_entry *entry; 516 517 if (list_empty(resources)) 518 return; 519 520 list_for_each_entry_reverse(entry, resources, node) { 521 struct acpi_device *res_dev = &entry->resource->device; 522 523 sysfs_remove_link_from_group(&adev->dev.kobj, 524 attr_group->name, 525 dev_name(&res_dev->dev)); 526 } 527 sysfs_remove_group(&adev->dev.kobj, attr_group); 528 } 529 530 static void acpi_power_expose_list(struct acpi_device *adev, 531 struct list_head *resources, 532 const struct attribute_group *attr_group) 533 { 534 struct acpi_power_resource_entry *entry; 535 int ret; 536 537 if (list_empty(resources)) 538 return; 539 540 ret = sysfs_create_group(&adev->dev.kobj, attr_group); 541 if (ret) 542 return; 543 544 list_for_each_entry(entry, resources, node) { 545 struct acpi_device *res_dev = &entry->resource->device; 546 547 ret = sysfs_add_link_to_group(&adev->dev.kobj, 548 attr_group->name, 549 &res_dev->dev.kobj, 550 dev_name(&res_dev->dev)); 551 if (ret) { 552 acpi_power_hide_list(adev, resources, attr_group); 553 break; 554 } 555 } 556 } 557 558 static void acpi_power_expose_hide(struct acpi_device *adev, 559 struct list_head *resources, 560 const struct attribute_group *attr_group, 561 bool expose) 562 { 563 if (expose) 564 acpi_power_expose_list(adev, resources, attr_group); 565 else 566 acpi_power_hide_list(adev, resources, attr_group); 567 } 568 569 void acpi_power_add_remove_device(struct acpi_device *adev, bool add) 570 { 571 int state; 572 573 if (adev->wakeup.flags.valid) 574 acpi_power_expose_hide(adev, &adev->wakeup.resources, 575 &wakeup_attr_group, add); 576 577 if (!adev->power.flags.power_resources) 578 return; 579 580 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) 581 acpi_power_expose_hide(adev, 582 &adev->power.states[state].resources, 583 &attr_groups[state], add); 584 } 585 586 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) 587 { 588 struct acpi_power_resource_entry *entry; 589 int system_level = 5; 590 591 list_for_each_entry(entry, list, node) { 592 struct acpi_power_resource *resource = entry->resource; 593 acpi_handle handle = resource->device.handle; 594 int result; 595 int state; 596 597 mutex_lock(&resource->resource_lock); 598 599 result = acpi_power_get_state(handle, &state); 600 if (result) { 601 mutex_unlock(&resource->resource_lock); 602 return result; 603 } 604 if (state == ACPI_POWER_RESOURCE_STATE_ON) { 605 resource->ref_count++; 606 resource->wakeup_enabled = true; 607 } 608 if (system_level > resource->system_level) 609 system_level = resource->system_level; 610 611 mutex_unlock(&resource->resource_lock); 612 } 613 *system_level_p = system_level; 614 return 0; 615 } 616 617 /* -------------------------------------------------------------------------- 618 Device Power Management 619 -------------------------------------------------------------------------- */ 620 621 /** 622 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in 623 * ACPI 3.0) _PSW (Power State Wake) 624 * @dev: Device to handle. 625 * @enable: 0 - disable, 1 - enable the wake capabilities of the device. 626 * @sleep_state: Target sleep state of the system. 627 * @dev_state: Target power state of the device. 628 * 629 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 630 * State Wake) for the device, if present. On failure reset the device's 631 * wakeup.flags.valid flag. 632 * 633 * RETURN VALUE: 634 * 0 if either _DSW or _PSW has been successfully executed 635 * 0 if neither _DSW nor _PSW has been found 636 * -ENODEV if the execution of either _DSW or _PSW has failed 637 */ 638 int acpi_device_sleep_wake(struct acpi_device *dev, 639 int enable, int sleep_state, int dev_state) 640 { 641 union acpi_object in_arg[3]; 642 struct acpi_object_list arg_list = { 3, in_arg }; 643 acpi_status status = AE_OK; 644 645 /* 646 * Try to execute _DSW first. 647 * 648 * Three arguments are needed for the _DSW object: 649 * Argument 0: enable/disable the wake capabilities 650 * Argument 1: target system state 651 * Argument 2: target device state 652 * When _DSW object is called to disable the wake capabilities, maybe 653 * the first argument is filled. The values of the other two arguments 654 * are meaningless. 655 */ 656 in_arg[0].type = ACPI_TYPE_INTEGER; 657 in_arg[0].integer.value = enable; 658 in_arg[1].type = ACPI_TYPE_INTEGER; 659 in_arg[1].integer.value = sleep_state; 660 in_arg[2].type = ACPI_TYPE_INTEGER; 661 in_arg[2].integer.value = dev_state; 662 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); 663 if (ACPI_SUCCESS(status)) { 664 return 0; 665 } else if (status != AE_NOT_FOUND) { 666 acpi_handle_info(dev->handle, "_DSW execution failed\n"); 667 dev->wakeup.flags.valid = 0; 668 return -ENODEV; 669 } 670 671 /* Execute _PSW */ 672 status = acpi_execute_simple_method(dev->handle, "_PSW", enable); 673 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { 674 acpi_handle_info(dev->handle, "_PSW execution failed\n"); 675 dev->wakeup.flags.valid = 0; 676 return -ENODEV; 677 } 678 679 return 0; 680 } 681 682 /* 683 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): 684 * 1. Power on the power resources required for the wakeup device 685 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 686 * State Wake) for the device, if present 687 */ 688 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) 689 { 690 struct acpi_power_resource_entry *entry; 691 int err = 0; 692 693 if (!dev || !dev->wakeup.flags.valid) 694 return -EINVAL; 695 696 mutex_lock(&acpi_device_lock); 697 698 if (dev->wakeup.prepare_count++) 699 goto out; 700 701 list_for_each_entry(entry, &dev->wakeup.resources, node) { 702 struct acpi_power_resource *resource = entry->resource; 703 704 mutex_lock(&resource->resource_lock); 705 706 if (!resource->wakeup_enabled) { 707 err = acpi_power_on_unlocked(resource); 708 if (!err) 709 resource->wakeup_enabled = true; 710 } 711 712 mutex_unlock(&resource->resource_lock); 713 714 if (err) { 715 dev_err(&dev->dev, 716 "Cannot turn wakeup power resources on\n"); 717 dev->wakeup.flags.valid = 0; 718 goto out; 719 } 720 } 721 /* 722 * Passing 3 as the third argument below means the device may be 723 * put into arbitrary power state afterward. 724 */ 725 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); 726 if (err) 727 dev->wakeup.prepare_count = 0; 728 729 out: 730 mutex_unlock(&acpi_device_lock); 731 return err; 732 } 733 734 /* 735 * Shutdown a wakeup device, counterpart of above method 736 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power 737 * State Wake) for the device, if present 738 * 2. Shutdown down the power resources 739 */ 740 int acpi_disable_wakeup_device_power(struct acpi_device *dev) 741 { 742 struct acpi_power_resource_entry *entry; 743 int err = 0; 744 745 if (!dev || !dev->wakeup.flags.valid) 746 return -EINVAL; 747 748 mutex_lock(&acpi_device_lock); 749 750 if (--dev->wakeup.prepare_count > 0) 751 goto out; 752 753 /* 754 * Executing the code below even if prepare_count is already zero when 755 * the function is called may be useful, for example for initialisation. 756 */ 757 if (dev->wakeup.prepare_count < 0) 758 dev->wakeup.prepare_count = 0; 759 760 err = acpi_device_sleep_wake(dev, 0, 0, 0); 761 if (err) 762 goto out; 763 764 list_for_each_entry(entry, &dev->wakeup.resources, node) { 765 struct acpi_power_resource *resource = entry->resource; 766 767 mutex_lock(&resource->resource_lock); 768 769 if (resource->wakeup_enabled) { 770 err = acpi_power_off_unlocked(resource); 771 if (!err) 772 resource->wakeup_enabled = false; 773 } 774 775 mutex_unlock(&resource->resource_lock); 776 777 if (err) { 778 dev_err(&dev->dev, 779 "Cannot turn wakeup power resources off\n"); 780 dev->wakeup.flags.valid = 0; 781 break; 782 } 783 } 784 785 out: 786 mutex_unlock(&acpi_device_lock); 787 return err; 788 } 789 790 int acpi_power_get_inferred_state(struct acpi_device *device, int *state) 791 { 792 int result = 0; 793 int list_state = 0; 794 int i = 0; 795 796 if (!device || !state) 797 return -EINVAL; 798 799 /* 800 * We know a device's inferred power state when all the resources 801 * required for a given D-state are 'on'. 802 */ 803 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 804 struct list_head *list = &device->power.states[i].resources; 805 806 if (list_empty(list)) 807 continue; 808 809 result = acpi_power_get_list_state(list, &list_state); 810 if (result) 811 return result; 812 813 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { 814 *state = i; 815 return 0; 816 } 817 } 818 819 *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ? 820 ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT; 821 return 0; 822 } 823 824 int acpi_power_on_resources(struct acpi_device *device, int state) 825 { 826 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) 827 return -EINVAL; 828 829 return acpi_power_on_list(&device->power.states[state].resources); 830 } 831 832 int acpi_power_transition(struct acpi_device *device, int state) 833 { 834 int result = 0; 835 836 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) 837 return -EINVAL; 838 839 if (device->power.state == state || !device->flags.power_manageable) 840 return 0; 841 842 if ((device->power.state < ACPI_STATE_D0) 843 || (device->power.state > ACPI_STATE_D3_COLD)) 844 return -ENODEV; 845 846 /* 847 * First we reference all power resources required in the target list 848 * (e.g. so the device doesn't lose power while transitioning). Then, 849 * we dereference all power resources used in the current list. 850 */ 851 if (state < ACPI_STATE_D3_COLD) 852 result = acpi_power_on_list( 853 &device->power.states[state].resources); 854 855 if (!result && device->power.state < ACPI_STATE_D3_COLD) 856 acpi_power_off_list( 857 &device->power.states[device->power.state].resources); 858 859 /* We shouldn't change the state unless the above operations succeed. */ 860 device->power.state = result ? ACPI_STATE_UNKNOWN : state; 861 862 return result; 863 } 864 865 static void acpi_release_power_resource(struct device *dev) 866 { 867 struct acpi_device *device = to_acpi_device(dev); 868 struct acpi_power_resource *resource; 869 870 resource = container_of(device, struct acpi_power_resource, device); 871 872 mutex_lock(&power_resource_list_lock); 873 list_del(&resource->list_node); 874 mutex_unlock(&power_resource_list_lock); 875 876 acpi_free_pnp_ids(&device->pnp); 877 kfree(resource); 878 } 879 880 static ssize_t resource_in_use_show(struct device *dev, 881 struct device_attribute *attr, 882 char *buf) 883 { 884 struct acpi_power_resource *resource; 885 886 resource = to_power_resource(to_acpi_device(dev)); 887 return sprintf(buf, "%u\n", !!resource->ref_count); 888 } 889 static DEVICE_ATTR_RO(resource_in_use); 890 891 static void acpi_power_sysfs_remove(struct acpi_device *device) 892 { 893 device_remove_file(&device->dev, &dev_attr_resource_in_use); 894 } 895 896 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource) 897 { 898 mutex_lock(&power_resource_list_lock); 899 900 if (!list_empty(&acpi_power_resource_list)) { 901 struct acpi_power_resource *r; 902 903 list_for_each_entry(r, &acpi_power_resource_list, list_node) 904 if (r->order > resource->order) { 905 list_add_tail(&resource->list_node, &r->list_node); 906 goto out; 907 } 908 } 909 list_add_tail(&resource->list_node, &acpi_power_resource_list); 910 911 out: 912 mutex_unlock(&power_resource_list_lock); 913 } 914 915 struct acpi_device *acpi_add_power_resource(acpi_handle handle) 916 { 917 struct acpi_power_resource *resource; 918 struct acpi_device *device = NULL; 919 union acpi_object acpi_object; 920 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; 921 acpi_status status; 922 int state, result = -ENODEV; 923 924 acpi_bus_get_device(handle, &device); 925 if (device) 926 return device; 927 928 resource = kzalloc(sizeof(*resource), GFP_KERNEL); 929 if (!resource) 930 return NULL; 931 932 device = &resource->device; 933 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER); 934 mutex_init(&resource->resource_lock); 935 INIT_LIST_HEAD(&resource->list_node); 936 INIT_LIST_HEAD(&resource->dependents); 937 resource->name = device->pnp.bus_id; 938 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); 939 strcpy(acpi_device_class(device), ACPI_POWER_CLASS); 940 device->power.state = ACPI_STATE_UNKNOWN; 941 942 /* Evaluate the object to get the system level and resource order. */ 943 status = acpi_evaluate_object(handle, NULL, NULL, &buffer); 944 if (ACPI_FAILURE(status)) 945 goto err; 946 947 resource->system_level = acpi_object.power_resource.system_level; 948 resource->order = acpi_object.power_resource.resource_order; 949 950 result = acpi_power_get_state(handle, &state); 951 if (result) 952 goto err; 953 954 pr_info("%s [%s] (%s)\n", acpi_device_name(device), 955 acpi_device_bid(device), state ? "on" : "off"); 956 957 device->flags.match_driver = true; 958 result = acpi_device_add(device, acpi_release_power_resource); 959 if (result) 960 goto err; 961 962 if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) 963 device->remove = acpi_power_sysfs_remove; 964 965 acpi_power_add_resource_to_list(resource); 966 acpi_device_add_finalize(device); 967 return device; 968 969 err: 970 acpi_release_power_resource(&device->dev); 971 return NULL; 972 } 973 974 #ifdef CONFIG_ACPI_SLEEP 975 void acpi_resume_power_resources(void) 976 { 977 struct acpi_power_resource *resource; 978 979 mutex_lock(&power_resource_list_lock); 980 981 list_for_each_entry(resource, &acpi_power_resource_list, list_node) { 982 int result, state; 983 984 mutex_lock(&resource->resource_lock); 985 986 result = acpi_power_get_state(resource->device.handle, &state); 987 if (result) { 988 mutex_unlock(&resource->resource_lock); 989 continue; 990 } 991 992 if (state == ACPI_POWER_RESOURCE_STATE_OFF 993 && resource->ref_count) { 994 dev_info(&resource->device.dev, "Turning ON\n"); 995 __acpi_power_on(resource); 996 } 997 998 mutex_unlock(&resource->resource_lock); 999 } 1000 1001 mutex_unlock(&power_resource_list_lock); 1002 } 1003 #endif 1004 1005 static void acpi_power_turn_off_if_unused(struct acpi_power_resource *resource, 1006 bool init) 1007 { 1008 if (resource->ref_count > 0) 1009 return; 1010 1011 if (init) { 1012 if (resource->users > 0) 1013 return; 1014 } else { 1015 int result, state; 1016 1017 result = acpi_power_get_state(resource->device.handle, &state); 1018 if (result || state == ACPI_POWER_RESOURCE_STATE_OFF) 1019 return; 1020 } 1021 1022 dev_info(&resource->device.dev, "Turning OFF\n"); 1023 __acpi_power_off(resource); 1024 } 1025 1026 /** 1027 * acpi_turn_off_unused_power_resources - Turn off power resources not in use. 1028 * @init: Control switch. 1029 * 1030 * If @ainit is set, unconditionally turn off all of the ACPI power resources 1031 * without any users. 1032 * 1033 * Otherwise, turn off all ACPI power resources without active references (that 1034 * is, the ones that should be "off" at the moment) that are "on". 1035 */ 1036 void acpi_turn_off_unused_power_resources(bool init) 1037 { 1038 struct acpi_power_resource *resource; 1039 1040 mutex_lock(&power_resource_list_lock); 1041 1042 list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) { 1043 mutex_lock(&resource->resource_lock); 1044 1045 acpi_power_turn_off_if_unused(resource, init); 1046 1047 mutex_unlock(&resource->resource_lock); 1048 } 1049 1050 mutex_unlock(&power_resource_list_lock); 1051 } 1052