xref: /openbmc/linux/drivers/acpi/pmic/intel_pmic.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pmic.c - Intel PMIC operation region driver
4  *
5  * Copyright (C) 2014 Intel Corporation. All rights reserved.
6  */
7 
8 #include <linux/export.h>
9 #include <linux/acpi.h>
10 #include <linux/mfd/intel_soc_pmic.h>
11 #include <linux/regmap.h>
12 #include <acpi/acpi_lpat.h>
13 #include "intel_pmic.h"
14 
15 #define PMIC_POWER_OPREGION_ID		0x8d
16 #define PMIC_THERMAL_OPREGION_ID	0x8c
17 #define PMIC_REGS_OPREGION_ID		0x8f
18 
19 struct intel_pmic_regs_handler_ctx {
20 	unsigned int val;
21 	u16 addr;
22 };
23 
24 struct intel_pmic_opregion {
25 	struct mutex lock;
26 	struct acpi_lpat_conversion_table *lpat_table;
27 	struct regmap *regmap;
28 	struct intel_pmic_opregion_data *data;
29 	struct intel_pmic_regs_handler_ctx ctx;
30 };
31 
32 static struct intel_pmic_opregion *intel_pmic_opregion;
33 
34 static int pmic_get_reg_bit(int address, struct pmic_table *table,
35 			    int count, int *reg, int *bit)
36 {
37 	int i;
38 
39 	for (i = 0; i < count; i++) {
40 		if (table[i].address == address) {
41 			*reg = table[i].reg;
42 			if (bit)
43 				*bit = table[i].bit;
44 			return 0;
45 		}
46 	}
47 	return -ENOENT;
48 }
49 
50 static acpi_status intel_pmic_power_handler(u32 function,
51 		acpi_physical_address address, u32 bits, u64 *value64,
52 		void *handler_context, void *region_context)
53 {
54 	struct intel_pmic_opregion *opregion = region_context;
55 	struct regmap *regmap = opregion->regmap;
56 	struct intel_pmic_opregion_data *d = opregion->data;
57 	int reg, bit, result;
58 
59 	if (bits != 32 || !value64)
60 		return AE_BAD_PARAMETER;
61 
62 	if (function == ACPI_WRITE && !(*value64 == 0 || *value64 == 1))
63 		return AE_BAD_PARAMETER;
64 
65 	result = pmic_get_reg_bit(address, d->power_table,
66 				  d->power_table_count, &reg, &bit);
67 	if (result == -ENOENT)
68 		return AE_BAD_PARAMETER;
69 
70 	mutex_lock(&opregion->lock);
71 
72 	result = function == ACPI_READ ?
73 		d->get_power(regmap, reg, bit, value64) :
74 		d->update_power(regmap, reg, bit, *value64 == 1);
75 
76 	mutex_unlock(&opregion->lock);
77 
78 	return result ? AE_ERROR : AE_OK;
79 }
80 
81 static int pmic_read_temp(struct intel_pmic_opregion *opregion,
82 			  int reg, u64 *value)
83 {
84 	int raw_temp, temp;
85 
86 	if (!opregion->data->get_raw_temp)
87 		return -ENXIO;
88 
89 	raw_temp = opregion->data->get_raw_temp(opregion->regmap, reg);
90 	if (raw_temp < 0)
91 		return raw_temp;
92 
93 	if (!opregion->lpat_table) {
94 		*value = raw_temp;
95 		return 0;
96 	}
97 
98 	temp = acpi_lpat_raw_to_temp(opregion->lpat_table, raw_temp);
99 	if (temp < 0)
100 		return temp;
101 
102 	*value = temp;
103 	return 0;
104 }
105 
106 static int pmic_thermal_temp(struct intel_pmic_opregion *opregion, int reg,
107 			     u32 function, u64 *value)
108 {
109 	return function == ACPI_READ ?
110 		pmic_read_temp(opregion, reg, value) : -EINVAL;
111 }
112 
113 static int pmic_thermal_aux(struct intel_pmic_opregion *opregion, int reg,
114 			    u32 function, u64 *value)
115 {
116 	int raw_temp;
117 
118 	if (function == ACPI_READ)
119 		return pmic_read_temp(opregion, reg, value);
120 
121 	if (!opregion->data->update_aux)
122 		return -ENXIO;
123 
124 	if (opregion->lpat_table) {
125 		raw_temp = acpi_lpat_temp_to_raw(opregion->lpat_table, *value);
126 		if (raw_temp < 0)
127 			return raw_temp;
128 	} else {
129 		raw_temp = *value;
130 	}
131 
132 	return opregion->data->update_aux(opregion->regmap, reg, raw_temp);
133 }
134 
135 static int pmic_thermal_pen(struct intel_pmic_opregion *opregion, int reg,
136 			    int bit, u32 function, u64 *value)
137 {
138 	struct intel_pmic_opregion_data *d = opregion->data;
139 	struct regmap *regmap = opregion->regmap;
140 
141 	if (!d->get_policy || !d->update_policy)
142 		return -ENXIO;
143 
144 	if (function == ACPI_READ)
145 		return d->get_policy(regmap, reg, bit, value);
146 
147 	if (*value != 0 && *value != 1)
148 		return -EINVAL;
149 
150 	return d->update_policy(regmap, reg, bit, *value);
151 }
152 
153 static bool pmic_thermal_is_temp(int address)
154 {
155 	return (address <= 0x3c) && !(address % 12);
156 }
157 
158 static bool pmic_thermal_is_aux(int address)
159 {
160 	return (address >= 4 && address <= 0x40 && !((address - 4) % 12)) ||
161 	       (address >= 8 && address <= 0x44 && !((address - 8) % 12));
162 }
163 
164 static bool pmic_thermal_is_pen(int address)
165 {
166 	return address >= 0x48 && address <= 0x5c;
167 }
168 
169 static acpi_status intel_pmic_thermal_handler(u32 function,
170 		acpi_physical_address address, u32 bits, u64 *value64,
171 		void *handler_context, void *region_context)
172 {
173 	struct intel_pmic_opregion *opregion = region_context;
174 	struct intel_pmic_opregion_data *d = opregion->data;
175 	int reg, bit, result;
176 
177 	if (bits != 32 || !value64)
178 		return AE_BAD_PARAMETER;
179 
180 	result = pmic_get_reg_bit(address, d->thermal_table,
181 				  d->thermal_table_count, &reg, &bit);
182 	if (result == -ENOENT)
183 		return AE_BAD_PARAMETER;
184 
185 	mutex_lock(&opregion->lock);
186 
187 	if (pmic_thermal_is_temp(address))
188 		result = pmic_thermal_temp(opregion, reg, function, value64);
189 	else if (pmic_thermal_is_aux(address))
190 		result = pmic_thermal_aux(opregion, reg, function, value64);
191 	else if (pmic_thermal_is_pen(address))
192 		result = pmic_thermal_pen(opregion, reg, bit,
193 						function, value64);
194 	else
195 		result = -EINVAL;
196 
197 	mutex_unlock(&opregion->lock);
198 
199 	if (result < 0) {
200 		if (result == -EINVAL)
201 			return AE_BAD_PARAMETER;
202 		else
203 			return AE_ERROR;
204 	}
205 
206 	return AE_OK;
207 }
208 
209 static acpi_status intel_pmic_regs_handler(u32 function,
210 		acpi_physical_address address, u32 bits, u64 *value64,
211 		void *handler_context, void *region_context)
212 {
213 	struct intel_pmic_opregion *opregion = region_context;
214 	int result = 0;
215 
216 	switch (address) {
217 	case 0:
218 		return AE_OK;
219 	case 1:
220 		opregion->ctx.addr |= (*value64 & 0xff) << 8;
221 		return AE_OK;
222 	case 2:
223 		opregion->ctx.addr |= *value64 & 0xff;
224 		return AE_OK;
225 	case 3:
226 		opregion->ctx.val = *value64 & 0xff;
227 		return AE_OK;
228 	case 4:
229 		if (*value64) {
230 			result = regmap_write(opregion->regmap, opregion->ctx.addr,
231 					      opregion->ctx.val);
232 		} else {
233 			result = regmap_read(opregion->regmap, opregion->ctx.addr,
234 					     &opregion->ctx.val);
235 			if (result == 0)
236 				*value64 = opregion->ctx.val;
237 		}
238 		memset(&opregion->ctx, 0x00, sizeof(opregion->ctx));
239 	}
240 
241 	if (result < 0) {
242 		if (result == -EINVAL)
243 			return AE_BAD_PARAMETER;
244 		else
245 			return AE_ERROR;
246 	}
247 
248 	return AE_OK;
249 }
250 
251 int intel_pmic_install_opregion_handler(struct device *dev, acpi_handle handle,
252 					struct regmap *regmap,
253 					struct intel_pmic_opregion_data *d)
254 {
255 	acpi_status status = AE_OK;
256 	struct intel_pmic_opregion *opregion;
257 	int ret;
258 
259 	if (!dev || !regmap || !d)
260 		return -EINVAL;
261 
262 	if (!handle)
263 		return -ENODEV;
264 
265 	opregion = devm_kzalloc(dev, sizeof(*opregion), GFP_KERNEL);
266 	if (!opregion)
267 		return -ENOMEM;
268 
269 	mutex_init(&opregion->lock);
270 	opregion->regmap = regmap;
271 	opregion->lpat_table = acpi_lpat_get_conversion_table(handle);
272 
273 	if (d->power_table_count)
274 		status = acpi_install_address_space_handler(handle,
275 						    PMIC_POWER_OPREGION_ID,
276 						    intel_pmic_power_handler,
277 						    NULL, opregion);
278 	if (ACPI_FAILURE(status)) {
279 		ret = -ENODEV;
280 		goto out_error;
281 	}
282 
283 	if (d->thermal_table_count)
284 		status = acpi_install_address_space_handler(handle,
285 						    PMIC_THERMAL_OPREGION_ID,
286 						    intel_pmic_thermal_handler,
287 						    NULL, opregion);
288 	if (ACPI_FAILURE(status)) {
289 		ret = -ENODEV;
290 		goto out_remove_power_handler;
291 	}
292 
293 	status = acpi_install_address_space_handler(handle,
294 			PMIC_REGS_OPREGION_ID, intel_pmic_regs_handler, NULL,
295 			opregion);
296 	if (ACPI_FAILURE(status)) {
297 		ret = -ENODEV;
298 		goto out_remove_thermal_handler;
299 	}
300 
301 	opregion->data = d;
302 	intel_pmic_opregion = opregion;
303 	return 0;
304 
305 out_remove_thermal_handler:
306 	if (d->thermal_table_count)
307 		acpi_remove_address_space_handler(handle,
308 						  PMIC_THERMAL_OPREGION_ID,
309 						  intel_pmic_thermal_handler);
310 
311 out_remove_power_handler:
312 	if (d->power_table_count)
313 		acpi_remove_address_space_handler(handle,
314 						  PMIC_POWER_OPREGION_ID,
315 						  intel_pmic_power_handler);
316 
317 out_error:
318 	acpi_lpat_free_conversion_table(opregion->lpat_table);
319 	return ret;
320 }
321 EXPORT_SYMBOL_GPL(intel_pmic_install_opregion_handler);
322 
323 /**
324  * intel_soc_pmic_exec_mipi_pmic_seq_element - Execute PMIC MIPI sequence
325  * @i2c_address:  I2C client address for the PMIC
326  * @reg_address:  PMIC register address
327  * @value:        New value for the register bits to change
328  * @mask:         Mask indicating which register bits to change
329  *
330  * DSI LCD panels describe an initialization sequence in the i915 VBT (Video
331  * BIOS Tables) using so called MIPI sequences. One possible element in these
332  * sequences is a PMIC specific element of 15 bytes.
333  *
334  * This function executes these PMIC specific elements sending the embedded
335  * commands to the PMIC.
336  *
337  * Return 0 on success, < 0 on failure.
338  */
339 int intel_soc_pmic_exec_mipi_pmic_seq_element(u16 i2c_address, u32 reg_address,
340 					      u32 value, u32 mask)
341 {
342 	struct intel_pmic_opregion_data *d;
343 	int ret;
344 
345 	if (!intel_pmic_opregion) {
346 		pr_warn("%s: No PMIC registered\n", __func__);
347 		return -ENXIO;
348 	}
349 
350 	d = intel_pmic_opregion->data;
351 
352 	mutex_lock(&intel_pmic_opregion->lock);
353 
354 	if (d->exec_mipi_pmic_seq_element) {
355 		ret = d->exec_mipi_pmic_seq_element(intel_pmic_opregion->regmap,
356 						    i2c_address, reg_address,
357 						    value, mask);
358 	} else if (d->pmic_i2c_address) {
359 		if (i2c_address == d->pmic_i2c_address) {
360 			ret = regmap_update_bits(intel_pmic_opregion->regmap,
361 						 reg_address, mask, value);
362 		} else {
363 			pr_err("%s: Unexpected i2c-addr: 0x%02x (reg-addr 0x%x value 0x%x mask 0x%x)\n",
364 			       __func__, i2c_address, reg_address, value, mask);
365 			ret = -ENXIO;
366 		}
367 	} else {
368 		pr_warn("%s: Not implemented\n", __func__);
369 		pr_warn("%s: i2c-addr: 0x%x reg-addr 0x%x value 0x%x mask 0x%x\n",
370 			__func__, i2c_address, reg_address, value, mask);
371 		ret = -EOPNOTSUPP;
372 	}
373 
374 	mutex_unlock(&intel_pmic_opregion->lock);
375 
376 	return ret;
377 }
378 EXPORT_SYMBOL_GPL(intel_soc_pmic_exec_mipi_pmic_seq_element);
379