xref: /openbmc/linux/drivers/acpi/osl.c (revision f3a8b664)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "internal.h"
49 
50 #define _COMPONENT		ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52 
53 struct acpi_os_dpc {
54 	acpi_osd_exec_callback function;
55 	void *context;
56 	struct work_struct work;
57 };
58 
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61 
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif				/*ENABLE_DEBUGGER */
66 
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 				      u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 				      u32 val_b);
71 
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 
80 /*
81  * This list of permanent mappings is for memory that may be accessed from
82  * interrupt context, where we can't do the ioremap().
83  */
84 struct acpi_ioremap {
85 	struct list_head list;
86 	void __iomem *virt;
87 	acpi_physical_address phys;
88 	acpi_size size;
89 	unsigned long refcount;
90 };
91 
92 static LIST_HEAD(acpi_ioremaps);
93 static DEFINE_MUTEX(acpi_ioremap_lock);
94 
95 static void __init acpi_request_region (struct acpi_generic_address *gas,
96 	unsigned int length, char *desc)
97 {
98 	u64 addr;
99 
100 	/* Handle possible alignment issues */
101 	memcpy(&addr, &gas->address, sizeof(addr));
102 	if (!addr || !length)
103 		return;
104 
105 	/* Resources are never freed */
106 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
107 		request_region(addr, length, desc);
108 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
109 		request_mem_region(addr, length, desc);
110 }
111 
112 static int __init acpi_reserve_resources(void)
113 {
114 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
115 		"ACPI PM1a_EVT_BLK");
116 
117 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
118 		"ACPI PM1b_EVT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
121 		"ACPI PM1a_CNT_BLK");
122 
123 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
124 		"ACPI PM1b_CNT_BLK");
125 
126 	if (acpi_gbl_FADT.pm_timer_length == 4)
127 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
128 
129 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130 		"ACPI PM2_CNT_BLK");
131 
132 	/* Length of GPE blocks must be a non-negative multiple of 2 */
133 
134 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
135 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
136 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
137 
138 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
139 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
140 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
141 
142 	return 0;
143 }
144 fs_initcall_sync(acpi_reserve_resources);
145 
146 void acpi_os_printf(const char *fmt, ...)
147 {
148 	va_list args;
149 	va_start(args, fmt);
150 	acpi_os_vprintf(fmt, args);
151 	va_end(args);
152 }
153 EXPORT_SYMBOL(acpi_os_printf);
154 
155 void acpi_os_vprintf(const char *fmt, va_list args)
156 {
157 	static char buffer[512];
158 
159 	vsprintf(buffer, fmt, args);
160 
161 #ifdef ENABLE_DEBUGGER
162 	if (acpi_in_debugger) {
163 		kdb_printf("%s", buffer);
164 	} else {
165 		if (printk_get_level(buffer))
166 			printk("%s", buffer);
167 		else
168 			printk(KERN_CONT "%s", buffer);
169 	}
170 #else
171 	if (acpi_debugger_write_log(buffer) < 0) {
172 		if (printk_get_level(buffer))
173 			printk("%s", buffer);
174 		else
175 			printk(KERN_CONT "%s", buffer);
176 	}
177 #endif
178 }
179 
180 #ifdef CONFIG_KEXEC
181 static unsigned long acpi_rsdp;
182 static int __init setup_acpi_rsdp(char *arg)
183 {
184 	if (kstrtoul(arg, 16, &acpi_rsdp))
185 		return -EINVAL;
186 	return 0;
187 }
188 early_param("acpi_rsdp", setup_acpi_rsdp);
189 #endif
190 
191 acpi_physical_address __init acpi_os_get_root_pointer(void)
192 {
193 #ifdef CONFIG_KEXEC
194 	if (acpi_rsdp)
195 		return acpi_rsdp;
196 #endif
197 
198 	if (efi_enabled(EFI_CONFIG_TABLES)) {
199 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
200 			return efi.acpi20;
201 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
202 			return efi.acpi;
203 		else {
204 			printk(KERN_ERR PREFIX
205 			       "System description tables not found\n");
206 			return 0;
207 		}
208 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209 		acpi_physical_address pa = 0;
210 
211 		acpi_find_root_pointer(&pa);
212 		return pa;
213 	}
214 
215 	return 0;
216 }
217 
218 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
219 static struct acpi_ioremap *
220 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
221 {
222 	struct acpi_ioremap *map;
223 
224 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
225 		if (map->phys <= phys &&
226 		    phys + size <= map->phys + map->size)
227 			return map;
228 
229 	return NULL;
230 }
231 
232 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
233 static void __iomem *
234 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
235 {
236 	struct acpi_ioremap *map;
237 
238 	map = acpi_map_lookup(phys, size);
239 	if (map)
240 		return map->virt + (phys - map->phys);
241 
242 	return NULL;
243 }
244 
245 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
246 {
247 	struct acpi_ioremap *map;
248 	void __iomem *virt = NULL;
249 
250 	mutex_lock(&acpi_ioremap_lock);
251 	map = acpi_map_lookup(phys, size);
252 	if (map) {
253 		virt = map->virt + (phys - map->phys);
254 		map->refcount++;
255 	}
256 	mutex_unlock(&acpi_ioremap_lock);
257 	return virt;
258 }
259 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
260 
261 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
262 static struct acpi_ioremap *
263 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
264 {
265 	struct acpi_ioremap *map;
266 
267 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
268 		if (map->virt <= virt &&
269 		    virt + size <= map->virt + map->size)
270 			return map;
271 
272 	return NULL;
273 }
274 
275 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
276 /* ioremap will take care of cache attributes */
277 #define should_use_kmap(pfn)   0
278 #else
279 #define should_use_kmap(pfn)   page_is_ram(pfn)
280 #endif
281 
282 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
283 {
284 	unsigned long pfn;
285 
286 	pfn = pg_off >> PAGE_SHIFT;
287 	if (should_use_kmap(pfn)) {
288 		if (pg_sz > PAGE_SIZE)
289 			return NULL;
290 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
291 	} else
292 		return acpi_os_ioremap(pg_off, pg_sz);
293 }
294 
295 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
296 {
297 	unsigned long pfn;
298 
299 	pfn = pg_off >> PAGE_SHIFT;
300 	if (should_use_kmap(pfn))
301 		kunmap(pfn_to_page(pfn));
302 	else
303 		iounmap(vaddr);
304 }
305 
306 /**
307  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
308  * @phys: Start of the physical address range to map.
309  * @size: Size of the physical address range to map.
310  *
311  * Look up the given physical address range in the list of existing ACPI memory
312  * mappings.  If found, get a reference to it and return a pointer to it (its
313  * virtual address).  If not found, map it, add it to that list and return a
314  * pointer to it.
315  *
316  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
317  * routine simply calls __acpi_map_table() to get the job done.
318  */
319 void __iomem *__ref
320 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
321 {
322 	struct acpi_ioremap *map;
323 	void __iomem *virt;
324 	acpi_physical_address pg_off;
325 	acpi_size pg_sz;
326 
327 	if (phys > ULONG_MAX) {
328 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
329 		return NULL;
330 	}
331 
332 	if (!acpi_gbl_permanent_mmap)
333 		return __acpi_map_table((unsigned long)phys, size);
334 
335 	mutex_lock(&acpi_ioremap_lock);
336 	/* Check if there's a suitable mapping already. */
337 	map = acpi_map_lookup(phys, size);
338 	if (map) {
339 		map->refcount++;
340 		goto out;
341 	}
342 
343 	map = kzalloc(sizeof(*map), GFP_KERNEL);
344 	if (!map) {
345 		mutex_unlock(&acpi_ioremap_lock);
346 		return NULL;
347 	}
348 
349 	pg_off = round_down(phys, PAGE_SIZE);
350 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
351 	virt = acpi_map(pg_off, pg_sz);
352 	if (!virt) {
353 		mutex_unlock(&acpi_ioremap_lock);
354 		kfree(map);
355 		return NULL;
356 	}
357 
358 	INIT_LIST_HEAD(&map->list);
359 	map->virt = virt;
360 	map->phys = pg_off;
361 	map->size = pg_sz;
362 	map->refcount = 1;
363 
364 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
365 
366 out:
367 	mutex_unlock(&acpi_ioremap_lock);
368 	return map->virt + (phys - map->phys);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
371 
372 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
373 {
374 	return (void *)acpi_os_map_iomem(phys, size);
375 }
376 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
377 
378 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
379 {
380 	if (!--map->refcount)
381 		list_del_rcu(&map->list);
382 }
383 
384 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
385 {
386 	if (!map->refcount) {
387 		synchronize_rcu_expedited();
388 		acpi_unmap(map->phys, map->virt);
389 		kfree(map);
390 	}
391 }
392 
393 /**
394  * acpi_os_unmap_iomem - Drop a memory mapping reference.
395  * @virt: Start of the address range to drop a reference to.
396  * @size: Size of the address range to drop a reference to.
397  *
398  * Look up the given virtual address range in the list of existing ACPI memory
399  * mappings, drop a reference to it and unmap it if there are no more active
400  * references to it.
401  *
402  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
403  * routine simply calls __acpi_unmap_table() to get the job done.  Since
404  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
405  * here.
406  */
407 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
408 {
409 	struct acpi_ioremap *map;
410 
411 	if (!acpi_gbl_permanent_mmap) {
412 		__acpi_unmap_table(virt, size);
413 		return;
414 	}
415 
416 	mutex_lock(&acpi_ioremap_lock);
417 	map = acpi_map_lookup_virt(virt, size);
418 	if (!map) {
419 		mutex_unlock(&acpi_ioremap_lock);
420 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
421 		return;
422 	}
423 	acpi_os_drop_map_ref(map);
424 	mutex_unlock(&acpi_ioremap_lock);
425 
426 	acpi_os_map_cleanup(map);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
429 
430 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
431 {
432 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
433 }
434 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
435 
436 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
437 {
438 	if (!acpi_gbl_permanent_mmap)
439 		__acpi_unmap_table(virt, size);
440 }
441 
442 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
443 {
444 	u64 addr;
445 	void __iomem *virt;
446 
447 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
448 		return 0;
449 
450 	/* Handle possible alignment issues */
451 	memcpy(&addr, &gas->address, sizeof(addr));
452 	if (!addr || !gas->bit_width)
453 		return -EINVAL;
454 
455 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
456 	if (!virt)
457 		return -EIO;
458 
459 	return 0;
460 }
461 EXPORT_SYMBOL(acpi_os_map_generic_address);
462 
463 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
464 {
465 	u64 addr;
466 	struct acpi_ioremap *map;
467 
468 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
469 		return;
470 
471 	/* Handle possible alignment issues */
472 	memcpy(&addr, &gas->address, sizeof(addr));
473 	if (!addr || !gas->bit_width)
474 		return;
475 
476 	mutex_lock(&acpi_ioremap_lock);
477 	map = acpi_map_lookup(addr, gas->bit_width / 8);
478 	if (!map) {
479 		mutex_unlock(&acpi_ioremap_lock);
480 		return;
481 	}
482 	acpi_os_drop_map_ref(map);
483 	mutex_unlock(&acpi_ioremap_lock);
484 
485 	acpi_os_map_cleanup(map);
486 }
487 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
488 
489 #ifdef ACPI_FUTURE_USAGE
490 acpi_status
491 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
492 {
493 	if (!phys || !virt)
494 		return AE_BAD_PARAMETER;
495 
496 	*phys = virt_to_phys(virt);
497 
498 	return AE_OK;
499 }
500 #endif
501 
502 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
503 static bool acpi_rev_override;
504 
505 int __init acpi_rev_override_setup(char *str)
506 {
507 	acpi_rev_override = true;
508 	return 1;
509 }
510 __setup("acpi_rev_override", acpi_rev_override_setup);
511 #else
512 #define acpi_rev_override	false
513 #endif
514 
515 #define ACPI_MAX_OVERRIDE_LEN 100
516 
517 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
518 
519 acpi_status
520 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
521 			    acpi_string *new_val)
522 {
523 	if (!init_val || !new_val)
524 		return AE_BAD_PARAMETER;
525 
526 	*new_val = NULL;
527 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
528 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
529 		       acpi_os_name);
530 		*new_val = acpi_os_name;
531 	}
532 
533 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
534 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
535 		*new_val = (char *)5;
536 	}
537 
538 	return AE_OK;
539 }
540 
541 static irqreturn_t acpi_irq(int irq, void *dev_id)
542 {
543 	u32 handled;
544 
545 	handled = (*acpi_irq_handler) (acpi_irq_context);
546 
547 	if (handled) {
548 		acpi_irq_handled++;
549 		return IRQ_HANDLED;
550 	} else {
551 		acpi_irq_not_handled++;
552 		return IRQ_NONE;
553 	}
554 }
555 
556 acpi_status
557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 				  void *context)
559 {
560 	unsigned int irq;
561 
562 	acpi_irq_stats_init();
563 
564 	/*
565 	 * ACPI interrupts different from the SCI in our copy of the FADT are
566 	 * not supported.
567 	 */
568 	if (gsi != acpi_gbl_FADT.sci_interrupt)
569 		return AE_BAD_PARAMETER;
570 
571 	if (acpi_irq_handler)
572 		return AE_ALREADY_ACQUIRED;
573 
574 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
576 		       gsi);
577 		return AE_OK;
578 	}
579 
580 	acpi_irq_handler = handler;
581 	acpi_irq_context = context;
582 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
583 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
584 		acpi_irq_handler = NULL;
585 		return AE_NOT_ACQUIRED;
586 	}
587 	acpi_sci_irq = irq;
588 
589 	return AE_OK;
590 }
591 
592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 		return AE_BAD_PARAMETER;
596 
597 	free_irq(acpi_sci_irq, acpi_irq);
598 	acpi_irq_handler = NULL;
599 	acpi_sci_irq = INVALID_ACPI_IRQ;
600 
601 	return AE_OK;
602 }
603 
604 /*
605  * Running in interpreter thread context, safe to sleep
606  */
607 
608 void acpi_os_sleep(u64 ms)
609 {
610 	msleep(ms);
611 }
612 
613 void acpi_os_stall(u32 us)
614 {
615 	while (us) {
616 		u32 delay = 1000;
617 
618 		if (delay > us)
619 			delay = us;
620 		udelay(delay);
621 		touch_nmi_watchdog();
622 		us -= delay;
623 	}
624 }
625 
626 /*
627  * Support ACPI 3.0 AML Timer operand
628  * Returns 64-bit free-running, monotonically increasing timer
629  * with 100ns granularity
630  */
631 u64 acpi_os_get_timer(void)
632 {
633 	u64 time_ns = ktime_to_ns(ktime_get());
634 	do_div(time_ns, 100);
635 	return time_ns;
636 }
637 
638 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
639 {
640 	u32 dummy;
641 
642 	if (!value)
643 		value = &dummy;
644 
645 	*value = 0;
646 	if (width <= 8) {
647 		*(u8 *) value = inb(port);
648 	} else if (width <= 16) {
649 		*(u16 *) value = inw(port);
650 	} else if (width <= 32) {
651 		*(u32 *) value = inl(port);
652 	} else {
653 		BUG();
654 	}
655 
656 	return AE_OK;
657 }
658 
659 EXPORT_SYMBOL(acpi_os_read_port);
660 
661 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
662 {
663 	if (width <= 8) {
664 		outb(value, port);
665 	} else if (width <= 16) {
666 		outw(value, port);
667 	} else if (width <= 32) {
668 		outl(value, port);
669 	} else {
670 		BUG();
671 	}
672 
673 	return AE_OK;
674 }
675 
676 EXPORT_SYMBOL(acpi_os_write_port);
677 
678 acpi_status
679 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
680 {
681 	void __iomem *virt_addr;
682 	unsigned int size = width / 8;
683 	bool unmap = false;
684 	u64 dummy;
685 
686 	rcu_read_lock();
687 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
688 	if (!virt_addr) {
689 		rcu_read_unlock();
690 		virt_addr = acpi_os_ioremap(phys_addr, size);
691 		if (!virt_addr)
692 			return AE_BAD_ADDRESS;
693 		unmap = true;
694 	}
695 
696 	if (!value)
697 		value = &dummy;
698 
699 	switch (width) {
700 	case 8:
701 		*(u8 *) value = readb(virt_addr);
702 		break;
703 	case 16:
704 		*(u16 *) value = readw(virt_addr);
705 		break;
706 	case 32:
707 		*(u32 *) value = readl(virt_addr);
708 		break;
709 	case 64:
710 		*(u64 *) value = readq(virt_addr);
711 		break;
712 	default:
713 		BUG();
714 	}
715 
716 	if (unmap)
717 		iounmap(virt_addr);
718 	else
719 		rcu_read_unlock();
720 
721 	return AE_OK;
722 }
723 
724 acpi_status
725 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
726 {
727 	void __iomem *virt_addr;
728 	unsigned int size = width / 8;
729 	bool unmap = false;
730 
731 	rcu_read_lock();
732 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
733 	if (!virt_addr) {
734 		rcu_read_unlock();
735 		virt_addr = acpi_os_ioremap(phys_addr, size);
736 		if (!virt_addr)
737 			return AE_BAD_ADDRESS;
738 		unmap = true;
739 	}
740 
741 	switch (width) {
742 	case 8:
743 		writeb(value, virt_addr);
744 		break;
745 	case 16:
746 		writew(value, virt_addr);
747 		break;
748 	case 32:
749 		writel(value, virt_addr);
750 		break;
751 	case 64:
752 		writeq(value, virt_addr);
753 		break;
754 	default:
755 		BUG();
756 	}
757 
758 	if (unmap)
759 		iounmap(virt_addr);
760 	else
761 		rcu_read_unlock();
762 
763 	return AE_OK;
764 }
765 
766 acpi_status
767 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
768 			       u64 *value, u32 width)
769 {
770 	int result, size;
771 	u32 value32;
772 
773 	if (!value)
774 		return AE_BAD_PARAMETER;
775 
776 	switch (width) {
777 	case 8:
778 		size = 1;
779 		break;
780 	case 16:
781 		size = 2;
782 		break;
783 	case 32:
784 		size = 4;
785 		break;
786 	default:
787 		return AE_ERROR;
788 	}
789 
790 	result = raw_pci_read(pci_id->segment, pci_id->bus,
791 				PCI_DEVFN(pci_id->device, pci_id->function),
792 				reg, size, &value32);
793 	*value = value32;
794 
795 	return (result ? AE_ERROR : AE_OK);
796 }
797 
798 acpi_status
799 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
800 				u64 value, u32 width)
801 {
802 	int result, size;
803 
804 	switch (width) {
805 	case 8:
806 		size = 1;
807 		break;
808 	case 16:
809 		size = 2;
810 		break;
811 	case 32:
812 		size = 4;
813 		break;
814 	default:
815 		return AE_ERROR;
816 	}
817 
818 	result = raw_pci_write(pci_id->segment, pci_id->bus,
819 				PCI_DEVFN(pci_id->device, pci_id->function),
820 				reg, size, value);
821 
822 	return (result ? AE_ERROR : AE_OK);
823 }
824 
825 static void acpi_os_execute_deferred(struct work_struct *work)
826 {
827 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
828 
829 	dpc->function(dpc->context);
830 	kfree(dpc);
831 }
832 
833 #ifdef CONFIG_ACPI_DEBUGGER
834 static struct acpi_debugger acpi_debugger;
835 static bool acpi_debugger_initialized;
836 
837 int acpi_register_debugger(struct module *owner,
838 			   const struct acpi_debugger_ops *ops)
839 {
840 	int ret = 0;
841 
842 	mutex_lock(&acpi_debugger.lock);
843 	if (acpi_debugger.ops) {
844 		ret = -EBUSY;
845 		goto err_lock;
846 	}
847 
848 	acpi_debugger.owner = owner;
849 	acpi_debugger.ops = ops;
850 
851 err_lock:
852 	mutex_unlock(&acpi_debugger.lock);
853 	return ret;
854 }
855 EXPORT_SYMBOL(acpi_register_debugger);
856 
857 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
858 {
859 	mutex_lock(&acpi_debugger.lock);
860 	if (ops == acpi_debugger.ops) {
861 		acpi_debugger.ops = NULL;
862 		acpi_debugger.owner = NULL;
863 	}
864 	mutex_unlock(&acpi_debugger.lock);
865 }
866 EXPORT_SYMBOL(acpi_unregister_debugger);
867 
868 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
869 {
870 	int ret;
871 	int (*func)(acpi_osd_exec_callback, void *);
872 	struct module *owner;
873 
874 	if (!acpi_debugger_initialized)
875 		return -ENODEV;
876 	mutex_lock(&acpi_debugger.lock);
877 	if (!acpi_debugger.ops) {
878 		ret = -ENODEV;
879 		goto err_lock;
880 	}
881 	if (!try_module_get(acpi_debugger.owner)) {
882 		ret = -ENODEV;
883 		goto err_lock;
884 	}
885 	func = acpi_debugger.ops->create_thread;
886 	owner = acpi_debugger.owner;
887 	mutex_unlock(&acpi_debugger.lock);
888 
889 	ret = func(function, context);
890 
891 	mutex_lock(&acpi_debugger.lock);
892 	module_put(owner);
893 err_lock:
894 	mutex_unlock(&acpi_debugger.lock);
895 	return ret;
896 }
897 
898 ssize_t acpi_debugger_write_log(const char *msg)
899 {
900 	ssize_t ret;
901 	ssize_t (*func)(const char *);
902 	struct module *owner;
903 
904 	if (!acpi_debugger_initialized)
905 		return -ENODEV;
906 	mutex_lock(&acpi_debugger.lock);
907 	if (!acpi_debugger.ops) {
908 		ret = -ENODEV;
909 		goto err_lock;
910 	}
911 	if (!try_module_get(acpi_debugger.owner)) {
912 		ret = -ENODEV;
913 		goto err_lock;
914 	}
915 	func = acpi_debugger.ops->write_log;
916 	owner = acpi_debugger.owner;
917 	mutex_unlock(&acpi_debugger.lock);
918 
919 	ret = func(msg);
920 
921 	mutex_lock(&acpi_debugger.lock);
922 	module_put(owner);
923 err_lock:
924 	mutex_unlock(&acpi_debugger.lock);
925 	return ret;
926 }
927 
928 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
929 {
930 	ssize_t ret;
931 	ssize_t (*func)(char *, size_t);
932 	struct module *owner;
933 
934 	if (!acpi_debugger_initialized)
935 		return -ENODEV;
936 	mutex_lock(&acpi_debugger.lock);
937 	if (!acpi_debugger.ops) {
938 		ret = -ENODEV;
939 		goto err_lock;
940 	}
941 	if (!try_module_get(acpi_debugger.owner)) {
942 		ret = -ENODEV;
943 		goto err_lock;
944 	}
945 	func = acpi_debugger.ops->read_cmd;
946 	owner = acpi_debugger.owner;
947 	mutex_unlock(&acpi_debugger.lock);
948 
949 	ret = func(buffer, buffer_length);
950 
951 	mutex_lock(&acpi_debugger.lock);
952 	module_put(owner);
953 err_lock:
954 	mutex_unlock(&acpi_debugger.lock);
955 	return ret;
956 }
957 
958 int acpi_debugger_wait_command_ready(void)
959 {
960 	int ret;
961 	int (*func)(bool, char *, size_t);
962 	struct module *owner;
963 
964 	if (!acpi_debugger_initialized)
965 		return -ENODEV;
966 	mutex_lock(&acpi_debugger.lock);
967 	if (!acpi_debugger.ops) {
968 		ret = -ENODEV;
969 		goto err_lock;
970 	}
971 	if (!try_module_get(acpi_debugger.owner)) {
972 		ret = -ENODEV;
973 		goto err_lock;
974 	}
975 	func = acpi_debugger.ops->wait_command_ready;
976 	owner = acpi_debugger.owner;
977 	mutex_unlock(&acpi_debugger.lock);
978 
979 	ret = func(acpi_gbl_method_executing,
980 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
981 
982 	mutex_lock(&acpi_debugger.lock);
983 	module_put(owner);
984 err_lock:
985 	mutex_unlock(&acpi_debugger.lock);
986 	return ret;
987 }
988 
989 int acpi_debugger_notify_command_complete(void)
990 {
991 	int ret;
992 	int (*func)(void);
993 	struct module *owner;
994 
995 	if (!acpi_debugger_initialized)
996 		return -ENODEV;
997 	mutex_lock(&acpi_debugger.lock);
998 	if (!acpi_debugger.ops) {
999 		ret = -ENODEV;
1000 		goto err_lock;
1001 	}
1002 	if (!try_module_get(acpi_debugger.owner)) {
1003 		ret = -ENODEV;
1004 		goto err_lock;
1005 	}
1006 	func = acpi_debugger.ops->notify_command_complete;
1007 	owner = acpi_debugger.owner;
1008 	mutex_unlock(&acpi_debugger.lock);
1009 
1010 	ret = func();
1011 
1012 	mutex_lock(&acpi_debugger.lock);
1013 	module_put(owner);
1014 err_lock:
1015 	mutex_unlock(&acpi_debugger.lock);
1016 	return ret;
1017 }
1018 
1019 int __init acpi_debugger_init(void)
1020 {
1021 	mutex_init(&acpi_debugger.lock);
1022 	acpi_debugger_initialized = true;
1023 	return 0;
1024 }
1025 #endif
1026 
1027 /*******************************************************************************
1028  *
1029  * FUNCTION:    acpi_os_execute
1030  *
1031  * PARAMETERS:  Type               - Type of the callback
1032  *              Function           - Function to be executed
1033  *              Context            - Function parameters
1034  *
1035  * RETURN:      Status
1036  *
1037  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1038  *              immediately executes function on a separate thread.
1039  *
1040  ******************************************************************************/
1041 
1042 acpi_status acpi_os_execute(acpi_execute_type type,
1043 			    acpi_osd_exec_callback function, void *context)
1044 {
1045 	acpi_status status = AE_OK;
1046 	struct acpi_os_dpc *dpc;
1047 	struct workqueue_struct *queue;
1048 	int ret;
1049 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1050 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1051 			  function, context));
1052 
1053 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1054 		ret = acpi_debugger_create_thread(function, context);
1055 		if (ret) {
1056 			pr_err("Call to kthread_create() failed.\n");
1057 			status = AE_ERROR;
1058 		}
1059 		goto out_thread;
1060 	}
1061 
1062 	/*
1063 	 * Allocate/initialize DPC structure.  Note that this memory will be
1064 	 * freed by the callee.  The kernel handles the work_struct list  in a
1065 	 * way that allows us to also free its memory inside the callee.
1066 	 * Because we may want to schedule several tasks with different
1067 	 * parameters we can't use the approach some kernel code uses of
1068 	 * having a static work_struct.
1069 	 */
1070 
1071 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1072 	if (!dpc)
1073 		return AE_NO_MEMORY;
1074 
1075 	dpc->function = function;
1076 	dpc->context = context;
1077 
1078 	/*
1079 	 * To prevent lockdep from complaining unnecessarily, make sure that
1080 	 * there is a different static lockdep key for each workqueue by using
1081 	 * INIT_WORK() for each of them separately.
1082 	 */
1083 	if (type == OSL_NOTIFY_HANDLER) {
1084 		queue = kacpi_notify_wq;
1085 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1086 	} else if (type == OSL_GPE_HANDLER) {
1087 		queue = kacpid_wq;
1088 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1089 	} else {
1090 		pr_err("Unsupported os_execute type %d.\n", type);
1091 		status = AE_ERROR;
1092 	}
1093 
1094 	if (ACPI_FAILURE(status))
1095 		goto err_workqueue;
1096 
1097 	/*
1098 	 * On some machines, a software-initiated SMI causes corruption unless
1099 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1100 	 * typically it's done in GPE-related methods that are run via
1101 	 * workqueues, so we can avoid the known corruption cases by always
1102 	 * queueing on CPU 0.
1103 	 */
1104 	ret = queue_work_on(0, queue, &dpc->work);
1105 	if (!ret) {
1106 		printk(KERN_ERR PREFIX
1107 			  "Call to queue_work() failed.\n");
1108 		status = AE_ERROR;
1109 	}
1110 err_workqueue:
1111 	if (ACPI_FAILURE(status))
1112 		kfree(dpc);
1113 out_thread:
1114 	return status;
1115 }
1116 EXPORT_SYMBOL(acpi_os_execute);
1117 
1118 void acpi_os_wait_events_complete(void)
1119 {
1120 	/*
1121 	 * Make sure the GPE handler or the fixed event handler is not used
1122 	 * on another CPU after removal.
1123 	 */
1124 	if (acpi_sci_irq_valid())
1125 		synchronize_hardirq(acpi_sci_irq);
1126 	flush_workqueue(kacpid_wq);
1127 	flush_workqueue(kacpi_notify_wq);
1128 }
1129 
1130 struct acpi_hp_work {
1131 	struct work_struct work;
1132 	struct acpi_device *adev;
1133 	u32 src;
1134 };
1135 
1136 static void acpi_hotplug_work_fn(struct work_struct *work)
1137 {
1138 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1139 
1140 	acpi_os_wait_events_complete();
1141 	acpi_device_hotplug(hpw->adev, hpw->src);
1142 	kfree(hpw);
1143 }
1144 
1145 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1146 {
1147 	struct acpi_hp_work *hpw;
1148 
1149 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1150 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1151 		  adev, src));
1152 
1153 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1154 	if (!hpw)
1155 		return AE_NO_MEMORY;
1156 
1157 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1158 	hpw->adev = adev;
1159 	hpw->src = src;
1160 	/*
1161 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1162 	 * the hotplug code may call driver .remove() functions, which may
1163 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1164 	 * these workqueues.
1165 	 */
1166 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1167 		kfree(hpw);
1168 		return AE_ERROR;
1169 	}
1170 	return AE_OK;
1171 }
1172 
1173 bool acpi_queue_hotplug_work(struct work_struct *work)
1174 {
1175 	return queue_work(kacpi_hotplug_wq, work);
1176 }
1177 
1178 acpi_status
1179 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1180 {
1181 	struct semaphore *sem = NULL;
1182 
1183 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1184 	if (!sem)
1185 		return AE_NO_MEMORY;
1186 
1187 	sema_init(sem, initial_units);
1188 
1189 	*handle = (acpi_handle *) sem;
1190 
1191 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1192 			  *handle, initial_units));
1193 
1194 	return AE_OK;
1195 }
1196 
1197 /*
1198  * TODO: A better way to delete semaphores?  Linux doesn't have a
1199  * 'delete_semaphore()' function -- may result in an invalid
1200  * pointer dereference for non-synchronized consumers.	Should
1201  * we at least check for blocked threads and signal/cancel them?
1202  */
1203 
1204 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1205 {
1206 	struct semaphore *sem = (struct semaphore *)handle;
1207 
1208 	if (!sem)
1209 		return AE_BAD_PARAMETER;
1210 
1211 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1212 
1213 	BUG_ON(!list_empty(&sem->wait_list));
1214 	kfree(sem);
1215 	sem = NULL;
1216 
1217 	return AE_OK;
1218 }
1219 
1220 /*
1221  * TODO: Support for units > 1?
1222  */
1223 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1224 {
1225 	acpi_status status = AE_OK;
1226 	struct semaphore *sem = (struct semaphore *)handle;
1227 	long jiffies;
1228 	int ret = 0;
1229 
1230 	if (!acpi_os_initialized)
1231 		return AE_OK;
1232 
1233 	if (!sem || (units < 1))
1234 		return AE_BAD_PARAMETER;
1235 
1236 	if (units > 1)
1237 		return AE_SUPPORT;
1238 
1239 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1240 			  handle, units, timeout));
1241 
1242 	if (timeout == ACPI_WAIT_FOREVER)
1243 		jiffies = MAX_SCHEDULE_TIMEOUT;
1244 	else
1245 		jiffies = msecs_to_jiffies(timeout);
1246 
1247 	ret = down_timeout(sem, jiffies);
1248 	if (ret)
1249 		status = AE_TIME;
1250 
1251 	if (ACPI_FAILURE(status)) {
1252 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1253 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1254 				  handle, units, timeout,
1255 				  acpi_format_exception(status)));
1256 	} else {
1257 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1258 				  "Acquired semaphore[%p|%d|%d]", handle,
1259 				  units, timeout));
1260 	}
1261 
1262 	return status;
1263 }
1264 
1265 /*
1266  * TODO: Support for units > 1?
1267  */
1268 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1269 {
1270 	struct semaphore *sem = (struct semaphore *)handle;
1271 
1272 	if (!acpi_os_initialized)
1273 		return AE_OK;
1274 
1275 	if (!sem || (units < 1))
1276 		return AE_BAD_PARAMETER;
1277 
1278 	if (units > 1)
1279 		return AE_SUPPORT;
1280 
1281 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1282 			  units));
1283 
1284 	up(sem);
1285 
1286 	return AE_OK;
1287 }
1288 
1289 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1290 {
1291 #ifdef ENABLE_DEBUGGER
1292 	if (acpi_in_debugger) {
1293 		u32 chars;
1294 
1295 		kdb_read(buffer, buffer_length);
1296 
1297 		/* remove the CR kdb includes */
1298 		chars = strlen(buffer) - 1;
1299 		buffer[chars] = '\0';
1300 	}
1301 #else
1302 	int ret;
1303 
1304 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1305 	if (ret < 0)
1306 		return AE_ERROR;
1307 	if (bytes_read)
1308 		*bytes_read = ret;
1309 #endif
1310 
1311 	return AE_OK;
1312 }
1313 EXPORT_SYMBOL(acpi_os_get_line);
1314 
1315 acpi_status acpi_os_wait_command_ready(void)
1316 {
1317 	int ret;
1318 
1319 	ret = acpi_debugger_wait_command_ready();
1320 	if (ret < 0)
1321 		return AE_ERROR;
1322 	return AE_OK;
1323 }
1324 
1325 acpi_status acpi_os_notify_command_complete(void)
1326 {
1327 	int ret;
1328 
1329 	ret = acpi_debugger_notify_command_complete();
1330 	if (ret < 0)
1331 		return AE_ERROR;
1332 	return AE_OK;
1333 }
1334 
1335 acpi_status acpi_os_signal(u32 function, void *info)
1336 {
1337 	switch (function) {
1338 	case ACPI_SIGNAL_FATAL:
1339 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1340 		break;
1341 	case ACPI_SIGNAL_BREAKPOINT:
1342 		/*
1343 		 * AML Breakpoint
1344 		 * ACPI spec. says to treat it as a NOP unless
1345 		 * you are debugging.  So if/when we integrate
1346 		 * AML debugger into the kernel debugger its
1347 		 * hook will go here.  But until then it is
1348 		 * not useful to print anything on breakpoints.
1349 		 */
1350 		break;
1351 	default:
1352 		break;
1353 	}
1354 
1355 	return AE_OK;
1356 }
1357 
1358 static int __init acpi_os_name_setup(char *str)
1359 {
1360 	char *p = acpi_os_name;
1361 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1362 
1363 	if (!str || !*str)
1364 		return 0;
1365 
1366 	for (; count-- && *str; str++) {
1367 		if (isalnum(*str) || *str == ' ' || *str == ':')
1368 			*p++ = *str;
1369 		else if (*str == '\'' || *str == '"')
1370 			continue;
1371 		else
1372 			break;
1373 	}
1374 	*p = 0;
1375 
1376 	return 1;
1377 
1378 }
1379 
1380 __setup("acpi_os_name=", acpi_os_name_setup);
1381 
1382 /*
1383  * Disable the auto-serialization of named objects creation methods.
1384  *
1385  * This feature is enabled by default.  It marks the AML control methods
1386  * that contain the opcodes to create named objects as "Serialized".
1387  */
1388 static int __init acpi_no_auto_serialize_setup(char *str)
1389 {
1390 	acpi_gbl_auto_serialize_methods = FALSE;
1391 	pr_info("ACPI: auto-serialization disabled\n");
1392 
1393 	return 1;
1394 }
1395 
1396 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1397 
1398 /* Check of resource interference between native drivers and ACPI
1399  * OperationRegions (SystemIO and System Memory only).
1400  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1401  * in arbitrary AML code and can interfere with legacy drivers.
1402  * acpi_enforce_resources= can be set to:
1403  *
1404  *   - strict (default) (2)
1405  *     -> further driver trying to access the resources will not load
1406  *   - lax              (1)
1407  *     -> further driver trying to access the resources will load, but you
1408  *     get a system message that something might go wrong...
1409  *
1410  *   - no               (0)
1411  *     -> ACPI Operation Region resources will not be registered
1412  *
1413  */
1414 #define ENFORCE_RESOURCES_STRICT 2
1415 #define ENFORCE_RESOURCES_LAX    1
1416 #define ENFORCE_RESOURCES_NO     0
1417 
1418 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1419 
1420 static int __init acpi_enforce_resources_setup(char *str)
1421 {
1422 	if (str == NULL || *str == '\0')
1423 		return 0;
1424 
1425 	if (!strcmp("strict", str))
1426 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1427 	else if (!strcmp("lax", str))
1428 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1429 	else if (!strcmp("no", str))
1430 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1431 
1432 	return 1;
1433 }
1434 
1435 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1436 
1437 /* Check for resource conflicts between ACPI OperationRegions and native
1438  * drivers */
1439 int acpi_check_resource_conflict(const struct resource *res)
1440 {
1441 	acpi_adr_space_type space_id;
1442 	acpi_size length;
1443 	u8 warn = 0;
1444 	int clash = 0;
1445 
1446 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1447 		return 0;
1448 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1449 		return 0;
1450 
1451 	if (res->flags & IORESOURCE_IO)
1452 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1453 	else
1454 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1455 
1456 	length = resource_size(res);
1457 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1458 		warn = 1;
1459 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1460 
1461 	if (clash) {
1462 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1463 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1464 				printk(KERN_NOTICE "ACPI: This conflict may"
1465 				       " cause random problems and system"
1466 				       " instability\n");
1467 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1468 			       " for this device, you should use it instead of"
1469 			       " the native driver\n");
1470 		}
1471 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1472 			return -EBUSY;
1473 	}
1474 	return 0;
1475 }
1476 EXPORT_SYMBOL(acpi_check_resource_conflict);
1477 
1478 int acpi_check_region(resource_size_t start, resource_size_t n,
1479 		      const char *name)
1480 {
1481 	struct resource res = {
1482 		.start = start,
1483 		.end   = start + n - 1,
1484 		.name  = name,
1485 		.flags = IORESOURCE_IO,
1486 	};
1487 
1488 	return acpi_check_resource_conflict(&res);
1489 }
1490 EXPORT_SYMBOL(acpi_check_region);
1491 
1492 /*
1493  * Let drivers know whether the resource checks are effective
1494  */
1495 int acpi_resources_are_enforced(void)
1496 {
1497 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498 }
1499 EXPORT_SYMBOL(acpi_resources_are_enforced);
1500 
1501 /*
1502  * Deallocate the memory for a spinlock.
1503  */
1504 void acpi_os_delete_lock(acpi_spinlock handle)
1505 {
1506 	ACPI_FREE(handle);
1507 }
1508 
1509 /*
1510  * Acquire a spinlock.
1511  *
1512  * handle is a pointer to the spinlock_t.
1513  */
1514 
1515 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 {
1517 	acpi_cpu_flags flags;
1518 	spin_lock_irqsave(lockp, flags);
1519 	return flags;
1520 }
1521 
1522 /*
1523  * Release a spinlock. See above.
1524  */
1525 
1526 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1527 {
1528 	spin_unlock_irqrestore(lockp, flags);
1529 }
1530 
1531 #ifndef ACPI_USE_LOCAL_CACHE
1532 
1533 /*******************************************************************************
1534  *
1535  * FUNCTION:    acpi_os_create_cache
1536  *
1537  * PARAMETERS:  name      - Ascii name for the cache
1538  *              size      - Size of each cached object
1539  *              depth     - Maximum depth of the cache (in objects) <ignored>
1540  *              cache     - Where the new cache object is returned
1541  *
1542  * RETURN:      status
1543  *
1544  * DESCRIPTION: Create a cache object
1545  *
1546  ******************************************************************************/
1547 
1548 acpi_status
1549 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1550 {
1551 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1552 	if (*cache == NULL)
1553 		return AE_ERROR;
1554 	else
1555 		return AE_OK;
1556 }
1557 
1558 /*******************************************************************************
1559  *
1560  * FUNCTION:    acpi_os_purge_cache
1561  *
1562  * PARAMETERS:  Cache           - Handle to cache object
1563  *
1564  * RETURN:      Status
1565  *
1566  * DESCRIPTION: Free all objects within the requested cache.
1567  *
1568  ******************************************************************************/
1569 
1570 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1571 {
1572 	kmem_cache_shrink(cache);
1573 	return (AE_OK);
1574 }
1575 
1576 /*******************************************************************************
1577  *
1578  * FUNCTION:    acpi_os_delete_cache
1579  *
1580  * PARAMETERS:  Cache           - Handle to cache object
1581  *
1582  * RETURN:      Status
1583  *
1584  * DESCRIPTION: Free all objects within the requested cache and delete the
1585  *              cache object.
1586  *
1587  ******************************************************************************/
1588 
1589 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1590 {
1591 	kmem_cache_destroy(cache);
1592 	return (AE_OK);
1593 }
1594 
1595 /*******************************************************************************
1596  *
1597  * FUNCTION:    acpi_os_release_object
1598  *
1599  * PARAMETERS:  Cache       - Handle to cache object
1600  *              Object      - The object to be released
1601  *
1602  * RETURN:      None
1603  *
1604  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1605  *              the object is deleted.
1606  *
1607  ******************************************************************************/
1608 
1609 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1610 {
1611 	kmem_cache_free(cache, object);
1612 	return (AE_OK);
1613 }
1614 #endif
1615 
1616 static int __init acpi_no_static_ssdt_setup(char *s)
1617 {
1618 	acpi_gbl_disable_ssdt_table_install = TRUE;
1619 	pr_info("ACPI: static SSDT installation disabled\n");
1620 
1621 	return 0;
1622 }
1623 
1624 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1625 
1626 static int __init acpi_disable_return_repair(char *s)
1627 {
1628 	printk(KERN_NOTICE PREFIX
1629 	       "ACPI: Predefined validation mechanism disabled\n");
1630 	acpi_gbl_disable_auto_repair = TRUE;
1631 
1632 	return 1;
1633 }
1634 
1635 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1636 
1637 acpi_status __init acpi_os_initialize(void)
1638 {
1639 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1642 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1643 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1644 		/*
1645 		 * Use acpi_os_map_generic_address to pre-map the reset
1646 		 * register if it's in system memory.
1647 		 */
1648 		int rv;
1649 
1650 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1651 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1652 	}
1653 	acpi_os_initialized = true;
1654 
1655 	return AE_OK;
1656 }
1657 
1658 acpi_status __init acpi_os_initialize1(void)
1659 {
1660 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1661 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1662 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1663 	BUG_ON(!kacpid_wq);
1664 	BUG_ON(!kacpi_notify_wq);
1665 	BUG_ON(!kacpi_hotplug_wq);
1666 	acpi_osi_init();
1667 	return AE_OK;
1668 }
1669 
1670 acpi_status acpi_os_terminate(void)
1671 {
1672 	if (acpi_irq_handler) {
1673 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1674 						 acpi_irq_handler);
1675 	}
1676 
1677 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1678 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1679 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1680 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1681 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1682 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1683 
1684 	destroy_workqueue(kacpid_wq);
1685 	destroy_workqueue(kacpi_notify_wq);
1686 	destroy_workqueue(kacpi_hotplug_wq);
1687 
1688 	return AE_OK;
1689 }
1690 
1691 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1692 				  u32 pm1b_control)
1693 {
1694 	int rc = 0;
1695 	if (__acpi_os_prepare_sleep)
1696 		rc = __acpi_os_prepare_sleep(sleep_state,
1697 					     pm1a_control, pm1b_control);
1698 	if (rc < 0)
1699 		return AE_ERROR;
1700 	else if (rc > 0)
1701 		return AE_CTRL_SKIP;
1702 
1703 	return AE_OK;
1704 }
1705 
1706 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1707 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1708 {
1709 	__acpi_os_prepare_sleep = func;
1710 }
1711 
1712 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1713 				  u32 val_b)
1714 {
1715 	int rc = 0;
1716 	if (__acpi_os_prepare_extended_sleep)
1717 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1718 					     val_a, val_b);
1719 	if (rc < 0)
1720 		return AE_ERROR;
1721 	else if (rc > 0)
1722 		return AE_CTRL_SKIP;
1723 
1724 	return AE_OK;
1725 }
1726 
1727 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1728 			       u32 val_a, u32 val_b))
1729 {
1730 	__acpi_os_prepare_extended_sleep = func;
1731 }
1732