xref: /openbmc/linux/drivers/acpi/osl.c (revision e0f6d1a5)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "internal.h"
49 
50 #define _COMPONENT		ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52 
53 struct acpi_os_dpc {
54 	acpi_osd_exec_callback function;
55 	void *context;
56 	struct work_struct work;
57 };
58 
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61 
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif				/*ENABLE_DEBUGGER */
66 
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 				      u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 				      u32 val_b);
71 
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 bool acpi_permanent_mmap = false;
80 
81 /*
82  * This list of permanent mappings is for memory that may be accessed from
83  * interrupt context, where we can't do the ioremap().
84  */
85 struct acpi_ioremap {
86 	struct list_head list;
87 	void __iomem *virt;
88 	acpi_physical_address phys;
89 	acpi_size size;
90 	unsigned long refcount;
91 };
92 
93 static LIST_HEAD(acpi_ioremaps);
94 static DEFINE_MUTEX(acpi_ioremap_lock);
95 
96 static void __init acpi_request_region (struct acpi_generic_address *gas,
97 	unsigned int length, char *desc)
98 {
99 	u64 addr;
100 
101 	/* Handle possible alignment issues */
102 	memcpy(&addr, &gas->address, sizeof(addr));
103 	if (!addr || !length)
104 		return;
105 
106 	/* Resources are never freed */
107 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 		request_region(addr, length, desc);
109 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 		request_mem_region(addr, length, desc);
111 }
112 
113 static int __init acpi_reserve_resources(void)
114 {
115 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 		"ACPI PM1a_EVT_BLK");
117 
118 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 		"ACPI PM1b_EVT_BLK");
120 
121 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 		"ACPI PM1a_CNT_BLK");
123 
124 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 		"ACPI PM1b_CNT_BLK");
126 
127 	if (acpi_gbl_FADT.pm_timer_length == 4)
128 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129 
130 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 		"ACPI PM2_CNT_BLK");
132 
133 	/* Length of GPE blocks must be a non-negative multiple of 2 */
134 
135 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138 
139 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142 
143 	return 0;
144 }
145 fs_initcall_sync(acpi_reserve_resources);
146 
147 void acpi_os_printf(const char *fmt, ...)
148 {
149 	va_list args;
150 	va_start(args, fmt);
151 	acpi_os_vprintf(fmt, args);
152 	va_end(args);
153 }
154 EXPORT_SYMBOL(acpi_os_printf);
155 
156 void acpi_os_vprintf(const char *fmt, va_list args)
157 {
158 	static char buffer[512];
159 
160 	vsprintf(buffer, fmt, args);
161 
162 #ifdef ENABLE_DEBUGGER
163 	if (acpi_in_debugger) {
164 		kdb_printf("%s", buffer);
165 	} else {
166 		if (printk_get_level(buffer))
167 			printk("%s", buffer);
168 		else
169 			printk(KERN_CONT "%s", buffer);
170 	}
171 #else
172 	if (acpi_debugger_write_log(buffer) < 0) {
173 		if (printk_get_level(buffer))
174 			printk("%s", buffer);
175 		else
176 			printk(KERN_CONT "%s", buffer);
177 	}
178 #endif
179 }
180 
181 #ifdef CONFIG_KEXEC
182 static unsigned long acpi_rsdp;
183 static int __init setup_acpi_rsdp(char *arg)
184 {
185 	return kstrtoul(arg, 16, &acpi_rsdp);
186 }
187 early_param("acpi_rsdp", setup_acpi_rsdp);
188 #endif
189 
190 acpi_physical_address __init acpi_os_get_root_pointer(void)
191 {
192 	acpi_physical_address pa;
193 
194 #ifdef CONFIG_KEXEC
195 	if (acpi_rsdp)
196 		return acpi_rsdp;
197 #endif
198 	pa = acpi_arch_get_root_pointer();
199 	if (pa)
200 		return pa;
201 
202 	if (efi_enabled(EFI_CONFIG_TABLES)) {
203 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
204 			return efi.acpi20;
205 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
206 			return efi.acpi;
207 		pr_err(PREFIX "System description tables not found\n");
208 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209 		acpi_find_root_pointer(&pa);
210 	}
211 
212 	return pa;
213 }
214 
215 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
216 static struct acpi_ioremap *
217 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
218 {
219 	struct acpi_ioremap *map;
220 
221 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
222 		if (map->phys <= phys &&
223 		    phys + size <= map->phys + map->size)
224 			return map;
225 
226 	return NULL;
227 }
228 
229 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
230 static void __iomem *
231 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
232 {
233 	struct acpi_ioremap *map;
234 
235 	map = acpi_map_lookup(phys, size);
236 	if (map)
237 		return map->virt + (phys - map->phys);
238 
239 	return NULL;
240 }
241 
242 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
243 {
244 	struct acpi_ioremap *map;
245 	void __iomem *virt = NULL;
246 
247 	mutex_lock(&acpi_ioremap_lock);
248 	map = acpi_map_lookup(phys, size);
249 	if (map) {
250 		virt = map->virt + (phys - map->phys);
251 		map->refcount++;
252 	}
253 	mutex_unlock(&acpi_ioremap_lock);
254 	return virt;
255 }
256 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
257 
258 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
259 static struct acpi_ioremap *
260 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
261 {
262 	struct acpi_ioremap *map;
263 
264 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
265 		if (map->virt <= virt &&
266 		    virt + size <= map->virt + map->size)
267 			return map;
268 
269 	return NULL;
270 }
271 
272 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
273 /* ioremap will take care of cache attributes */
274 #define should_use_kmap(pfn)   0
275 #else
276 #define should_use_kmap(pfn)   page_is_ram(pfn)
277 #endif
278 
279 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
280 {
281 	unsigned long pfn;
282 
283 	pfn = pg_off >> PAGE_SHIFT;
284 	if (should_use_kmap(pfn)) {
285 		if (pg_sz > PAGE_SIZE)
286 			return NULL;
287 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
288 	} else
289 		return acpi_os_ioremap(pg_off, pg_sz);
290 }
291 
292 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
293 {
294 	unsigned long pfn;
295 
296 	pfn = pg_off >> PAGE_SHIFT;
297 	if (should_use_kmap(pfn))
298 		kunmap(pfn_to_page(pfn));
299 	else
300 		iounmap(vaddr);
301 }
302 
303 /**
304  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
305  * @phys: Start of the physical address range to map.
306  * @size: Size of the physical address range to map.
307  *
308  * Look up the given physical address range in the list of existing ACPI memory
309  * mappings.  If found, get a reference to it and return a pointer to it (its
310  * virtual address).  If not found, map it, add it to that list and return a
311  * pointer to it.
312  *
313  * During early init (when acpi_permanent_mmap has not been set yet) this
314  * routine simply calls __acpi_map_table() to get the job done.
315  */
316 void __iomem *__ref
317 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
318 {
319 	struct acpi_ioremap *map;
320 	void __iomem *virt;
321 	acpi_physical_address pg_off;
322 	acpi_size pg_sz;
323 
324 	if (phys > ULONG_MAX) {
325 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
326 		return NULL;
327 	}
328 
329 	if (!acpi_permanent_mmap)
330 		return __acpi_map_table((unsigned long)phys, size);
331 
332 	mutex_lock(&acpi_ioremap_lock);
333 	/* Check if there's a suitable mapping already. */
334 	map = acpi_map_lookup(phys, size);
335 	if (map) {
336 		map->refcount++;
337 		goto out;
338 	}
339 
340 	map = kzalloc(sizeof(*map), GFP_KERNEL);
341 	if (!map) {
342 		mutex_unlock(&acpi_ioremap_lock);
343 		return NULL;
344 	}
345 
346 	pg_off = round_down(phys, PAGE_SIZE);
347 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
348 	virt = acpi_map(pg_off, pg_sz);
349 	if (!virt) {
350 		mutex_unlock(&acpi_ioremap_lock);
351 		kfree(map);
352 		return NULL;
353 	}
354 
355 	INIT_LIST_HEAD(&map->list);
356 	map->virt = virt;
357 	map->phys = pg_off;
358 	map->size = pg_sz;
359 	map->refcount = 1;
360 
361 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
362 
363 out:
364 	mutex_unlock(&acpi_ioremap_lock);
365 	return map->virt + (phys - map->phys);
366 }
367 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
368 
369 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
370 {
371 	return (void *)acpi_os_map_iomem(phys, size);
372 }
373 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
374 
375 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
376 {
377 	if (!--map->refcount)
378 		list_del_rcu(&map->list);
379 }
380 
381 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
382 {
383 	if (!map->refcount) {
384 		synchronize_rcu_expedited();
385 		acpi_unmap(map->phys, map->virt);
386 		kfree(map);
387 	}
388 }
389 
390 /**
391  * acpi_os_unmap_iomem - Drop a memory mapping reference.
392  * @virt: Start of the address range to drop a reference to.
393  * @size: Size of the address range to drop a reference to.
394  *
395  * Look up the given virtual address range in the list of existing ACPI memory
396  * mappings, drop a reference to it and unmap it if there are no more active
397  * references to it.
398  *
399  * During early init (when acpi_permanent_mmap has not been set yet) this
400  * routine simply calls __acpi_unmap_table() to get the job done.  Since
401  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
402  * here.
403  */
404 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
405 {
406 	struct acpi_ioremap *map;
407 
408 	if (!acpi_permanent_mmap) {
409 		__acpi_unmap_table(virt, size);
410 		return;
411 	}
412 
413 	mutex_lock(&acpi_ioremap_lock);
414 	map = acpi_map_lookup_virt(virt, size);
415 	if (!map) {
416 		mutex_unlock(&acpi_ioremap_lock);
417 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
418 		return;
419 	}
420 	acpi_os_drop_map_ref(map);
421 	mutex_unlock(&acpi_ioremap_lock);
422 
423 	acpi_os_map_cleanup(map);
424 }
425 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
426 
427 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
428 {
429 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
430 }
431 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
432 
433 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
434 {
435 	u64 addr;
436 	void __iomem *virt;
437 
438 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
439 		return 0;
440 
441 	/* Handle possible alignment issues */
442 	memcpy(&addr, &gas->address, sizeof(addr));
443 	if (!addr || !gas->bit_width)
444 		return -EINVAL;
445 
446 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
447 	if (!virt)
448 		return -EIO;
449 
450 	return 0;
451 }
452 EXPORT_SYMBOL(acpi_os_map_generic_address);
453 
454 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
455 {
456 	u64 addr;
457 	struct acpi_ioremap *map;
458 
459 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
460 		return;
461 
462 	/* Handle possible alignment issues */
463 	memcpy(&addr, &gas->address, sizeof(addr));
464 	if (!addr || !gas->bit_width)
465 		return;
466 
467 	mutex_lock(&acpi_ioremap_lock);
468 	map = acpi_map_lookup(addr, gas->bit_width / 8);
469 	if (!map) {
470 		mutex_unlock(&acpi_ioremap_lock);
471 		return;
472 	}
473 	acpi_os_drop_map_ref(map);
474 	mutex_unlock(&acpi_ioremap_lock);
475 
476 	acpi_os_map_cleanup(map);
477 }
478 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
479 
480 #ifdef ACPI_FUTURE_USAGE
481 acpi_status
482 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
483 {
484 	if (!phys || !virt)
485 		return AE_BAD_PARAMETER;
486 
487 	*phys = virt_to_phys(virt);
488 
489 	return AE_OK;
490 }
491 #endif
492 
493 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
494 static bool acpi_rev_override;
495 
496 int __init acpi_rev_override_setup(char *str)
497 {
498 	acpi_rev_override = true;
499 	return 1;
500 }
501 __setup("acpi_rev_override", acpi_rev_override_setup);
502 #else
503 #define acpi_rev_override	false
504 #endif
505 
506 #define ACPI_MAX_OVERRIDE_LEN 100
507 
508 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
509 
510 acpi_status
511 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
512 			    acpi_string *new_val)
513 {
514 	if (!init_val || !new_val)
515 		return AE_BAD_PARAMETER;
516 
517 	*new_val = NULL;
518 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
519 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
520 		       acpi_os_name);
521 		*new_val = acpi_os_name;
522 	}
523 
524 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
525 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
526 		*new_val = (char *)5;
527 	}
528 
529 	return AE_OK;
530 }
531 
532 static irqreturn_t acpi_irq(int irq, void *dev_id)
533 {
534 	u32 handled;
535 
536 	handled = (*acpi_irq_handler) (acpi_irq_context);
537 
538 	if (handled) {
539 		acpi_irq_handled++;
540 		return IRQ_HANDLED;
541 	} else {
542 		acpi_irq_not_handled++;
543 		return IRQ_NONE;
544 	}
545 }
546 
547 acpi_status
548 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
549 				  void *context)
550 {
551 	unsigned int irq;
552 
553 	acpi_irq_stats_init();
554 
555 	/*
556 	 * ACPI interrupts different from the SCI in our copy of the FADT are
557 	 * not supported.
558 	 */
559 	if (gsi != acpi_gbl_FADT.sci_interrupt)
560 		return AE_BAD_PARAMETER;
561 
562 	if (acpi_irq_handler)
563 		return AE_ALREADY_ACQUIRED;
564 
565 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
566 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
567 		       gsi);
568 		return AE_OK;
569 	}
570 
571 	acpi_irq_handler = handler;
572 	acpi_irq_context = context;
573 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
574 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
575 		acpi_irq_handler = NULL;
576 		return AE_NOT_ACQUIRED;
577 	}
578 	acpi_sci_irq = irq;
579 
580 	return AE_OK;
581 }
582 
583 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
584 {
585 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
586 		return AE_BAD_PARAMETER;
587 
588 	free_irq(acpi_sci_irq, acpi_irq);
589 	acpi_irq_handler = NULL;
590 	acpi_sci_irq = INVALID_ACPI_IRQ;
591 
592 	return AE_OK;
593 }
594 
595 /*
596  * Running in interpreter thread context, safe to sleep
597  */
598 
599 void acpi_os_sleep(u64 ms)
600 {
601 	msleep(ms);
602 }
603 
604 void acpi_os_stall(u32 us)
605 {
606 	while (us) {
607 		u32 delay = 1000;
608 
609 		if (delay > us)
610 			delay = us;
611 		udelay(delay);
612 		touch_nmi_watchdog();
613 		us -= delay;
614 	}
615 }
616 
617 /*
618  * Support ACPI 3.0 AML Timer operand
619  * Returns 64-bit free-running, monotonically increasing timer
620  * with 100ns granularity
621  */
622 u64 acpi_os_get_timer(void)
623 {
624 	u64 time_ns = ktime_to_ns(ktime_get());
625 	do_div(time_ns, 100);
626 	return time_ns;
627 }
628 
629 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
630 {
631 	u32 dummy;
632 
633 	if (!value)
634 		value = &dummy;
635 
636 	*value = 0;
637 	if (width <= 8) {
638 		*(u8 *) value = inb(port);
639 	} else if (width <= 16) {
640 		*(u16 *) value = inw(port);
641 	} else if (width <= 32) {
642 		*(u32 *) value = inl(port);
643 	} else {
644 		BUG();
645 	}
646 
647 	return AE_OK;
648 }
649 
650 EXPORT_SYMBOL(acpi_os_read_port);
651 
652 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
653 {
654 	if (width <= 8) {
655 		outb(value, port);
656 	} else if (width <= 16) {
657 		outw(value, port);
658 	} else if (width <= 32) {
659 		outl(value, port);
660 	} else {
661 		BUG();
662 	}
663 
664 	return AE_OK;
665 }
666 
667 EXPORT_SYMBOL(acpi_os_write_port);
668 
669 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
670 {
671 
672 	switch (width) {
673 	case 8:
674 		*(u8 *) value = readb(virt_addr);
675 		break;
676 	case 16:
677 		*(u16 *) value = readw(virt_addr);
678 		break;
679 	case 32:
680 		*(u32 *) value = readl(virt_addr);
681 		break;
682 	case 64:
683 		*(u64 *) value = readq(virt_addr);
684 		break;
685 	default:
686 		return -EINVAL;
687 	}
688 
689 	return 0;
690 }
691 
692 acpi_status
693 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
694 {
695 	void __iomem *virt_addr;
696 	unsigned int size = width / 8;
697 	bool unmap = false;
698 	u64 dummy;
699 	int error;
700 
701 	rcu_read_lock();
702 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
703 	if (!virt_addr) {
704 		rcu_read_unlock();
705 		virt_addr = acpi_os_ioremap(phys_addr, size);
706 		if (!virt_addr)
707 			return AE_BAD_ADDRESS;
708 		unmap = true;
709 	}
710 
711 	if (!value)
712 		value = &dummy;
713 
714 	error = acpi_os_read_iomem(virt_addr, value, width);
715 	BUG_ON(error);
716 
717 	if (unmap)
718 		iounmap(virt_addr);
719 	else
720 		rcu_read_unlock();
721 
722 	return AE_OK;
723 }
724 
725 acpi_status
726 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
727 {
728 	void __iomem *virt_addr;
729 	unsigned int size = width / 8;
730 	bool unmap = false;
731 
732 	rcu_read_lock();
733 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
734 	if (!virt_addr) {
735 		rcu_read_unlock();
736 		virt_addr = acpi_os_ioremap(phys_addr, size);
737 		if (!virt_addr)
738 			return AE_BAD_ADDRESS;
739 		unmap = true;
740 	}
741 
742 	switch (width) {
743 	case 8:
744 		writeb(value, virt_addr);
745 		break;
746 	case 16:
747 		writew(value, virt_addr);
748 		break;
749 	case 32:
750 		writel(value, virt_addr);
751 		break;
752 	case 64:
753 		writeq(value, virt_addr);
754 		break;
755 	default:
756 		BUG();
757 	}
758 
759 	if (unmap)
760 		iounmap(virt_addr);
761 	else
762 		rcu_read_unlock();
763 
764 	return AE_OK;
765 }
766 
767 acpi_status
768 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
769 			       u64 *value, u32 width)
770 {
771 	int result, size;
772 	u32 value32;
773 
774 	if (!value)
775 		return AE_BAD_PARAMETER;
776 
777 	switch (width) {
778 	case 8:
779 		size = 1;
780 		break;
781 	case 16:
782 		size = 2;
783 		break;
784 	case 32:
785 		size = 4;
786 		break;
787 	default:
788 		return AE_ERROR;
789 	}
790 
791 	result = raw_pci_read(pci_id->segment, pci_id->bus,
792 				PCI_DEVFN(pci_id->device, pci_id->function),
793 				reg, size, &value32);
794 	*value = value32;
795 
796 	return (result ? AE_ERROR : AE_OK);
797 }
798 
799 acpi_status
800 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
801 				u64 value, u32 width)
802 {
803 	int result, size;
804 
805 	switch (width) {
806 	case 8:
807 		size = 1;
808 		break;
809 	case 16:
810 		size = 2;
811 		break;
812 	case 32:
813 		size = 4;
814 		break;
815 	default:
816 		return AE_ERROR;
817 	}
818 
819 	result = raw_pci_write(pci_id->segment, pci_id->bus,
820 				PCI_DEVFN(pci_id->device, pci_id->function),
821 				reg, size, value);
822 
823 	return (result ? AE_ERROR : AE_OK);
824 }
825 
826 static void acpi_os_execute_deferred(struct work_struct *work)
827 {
828 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
829 
830 	dpc->function(dpc->context);
831 	kfree(dpc);
832 }
833 
834 #ifdef CONFIG_ACPI_DEBUGGER
835 static struct acpi_debugger acpi_debugger;
836 static bool acpi_debugger_initialized;
837 
838 int acpi_register_debugger(struct module *owner,
839 			   const struct acpi_debugger_ops *ops)
840 {
841 	int ret = 0;
842 
843 	mutex_lock(&acpi_debugger.lock);
844 	if (acpi_debugger.ops) {
845 		ret = -EBUSY;
846 		goto err_lock;
847 	}
848 
849 	acpi_debugger.owner = owner;
850 	acpi_debugger.ops = ops;
851 
852 err_lock:
853 	mutex_unlock(&acpi_debugger.lock);
854 	return ret;
855 }
856 EXPORT_SYMBOL(acpi_register_debugger);
857 
858 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
859 {
860 	mutex_lock(&acpi_debugger.lock);
861 	if (ops == acpi_debugger.ops) {
862 		acpi_debugger.ops = NULL;
863 		acpi_debugger.owner = NULL;
864 	}
865 	mutex_unlock(&acpi_debugger.lock);
866 }
867 EXPORT_SYMBOL(acpi_unregister_debugger);
868 
869 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
870 {
871 	int ret;
872 	int (*func)(acpi_osd_exec_callback, void *);
873 	struct module *owner;
874 
875 	if (!acpi_debugger_initialized)
876 		return -ENODEV;
877 	mutex_lock(&acpi_debugger.lock);
878 	if (!acpi_debugger.ops) {
879 		ret = -ENODEV;
880 		goto err_lock;
881 	}
882 	if (!try_module_get(acpi_debugger.owner)) {
883 		ret = -ENODEV;
884 		goto err_lock;
885 	}
886 	func = acpi_debugger.ops->create_thread;
887 	owner = acpi_debugger.owner;
888 	mutex_unlock(&acpi_debugger.lock);
889 
890 	ret = func(function, context);
891 
892 	mutex_lock(&acpi_debugger.lock);
893 	module_put(owner);
894 err_lock:
895 	mutex_unlock(&acpi_debugger.lock);
896 	return ret;
897 }
898 
899 ssize_t acpi_debugger_write_log(const char *msg)
900 {
901 	ssize_t ret;
902 	ssize_t (*func)(const char *);
903 	struct module *owner;
904 
905 	if (!acpi_debugger_initialized)
906 		return -ENODEV;
907 	mutex_lock(&acpi_debugger.lock);
908 	if (!acpi_debugger.ops) {
909 		ret = -ENODEV;
910 		goto err_lock;
911 	}
912 	if (!try_module_get(acpi_debugger.owner)) {
913 		ret = -ENODEV;
914 		goto err_lock;
915 	}
916 	func = acpi_debugger.ops->write_log;
917 	owner = acpi_debugger.owner;
918 	mutex_unlock(&acpi_debugger.lock);
919 
920 	ret = func(msg);
921 
922 	mutex_lock(&acpi_debugger.lock);
923 	module_put(owner);
924 err_lock:
925 	mutex_unlock(&acpi_debugger.lock);
926 	return ret;
927 }
928 
929 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
930 {
931 	ssize_t ret;
932 	ssize_t (*func)(char *, size_t);
933 	struct module *owner;
934 
935 	if (!acpi_debugger_initialized)
936 		return -ENODEV;
937 	mutex_lock(&acpi_debugger.lock);
938 	if (!acpi_debugger.ops) {
939 		ret = -ENODEV;
940 		goto err_lock;
941 	}
942 	if (!try_module_get(acpi_debugger.owner)) {
943 		ret = -ENODEV;
944 		goto err_lock;
945 	}
946 	func = acpi_debugger.ops->read_cmd;
947 	owner = acpi_debugger.owner;
948 	mutex_unlock(&acpi_debugger.lock);
949 
950 	ret = func(buffer, buffer_length);
951 
952 	mutex_lock(&acpi_debugger.lock);
953 	module_put(owner);
954 err_lock:
955 	mutex_unlock(&acpi_debugger.lock);
956 	return ret;
957 }
958 
959 int acpi_debugger_wait_command_ready(void)
960 {
961 	int ret;
962 	int (*func)(bool, char *, size_t);
963 	struct module *owner;
964 
965 	if (!acpi_debugger_initialized)
966 		return -ENODEV;
967 	mutex_lock(&acpi_debugger.lock);
968 	if (!acpi_debugger.ops) {
969 		ret = -ENODEV;
970 		goto err_lock;
971 	}
972 	if (!try_module_get(acpi_debugger.owner)) {
973 		ret = -ENODEV;
974 		goto err_lock;
975 	}
976 	func = acpi_debugger.ops->wait_command_ready;
977 	owner = acpi_debugger.owner;
978 	mutex_unlock(&acpi_debugger.lock);
979 
980 	ret = func(acpi_gbl_method_executing,
981 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
982 
983 	mutex_lock(&acpi_debugger.lock);
984 	module_put(owner);
985 err_lock:
986 	mutex_unlock(&acpi_debugger.lock);
987 	return ret;
988 }
989 
990 int acpi_debugger_notify_command_complete(void)
991 {
992 	int ret;
993 	int (*func)(void);
994 	struct module *owner;
995 
996 	if (!acpi_debugger_initialized)
997 		return -ENODEV;
998 	mutex_lock(&acpi_debugger.lock);
999 	if (!acpi_debugger.ops) {
1000 		ret = -ENODEV;
1001 		goto err_lock;
1002 	}
1003 	if (!try_module_get(acpi_debugger.owner)) {
1004 		ret = -ENODEV;
1005 		goto err_lock;
1006 	}
1007 	func = acpi_debugger.ops->notify_command_complete;
1008 	owner = acpi_debugger.owner;
1009 	mutex_unlock(&acpi_debugger.lock);
1010 
1011 	ret = func();
1012 
1013 	mutex_lock(&acpi_debugger.lock);
1014 	module_put(owner);
1015 err_lock:
1016 	mutex_unlock(&acpi_debugger.lock);
1017 	return ret;
1018 }
1019 
1020 int __init acpi_debugger_init(void)
1021 {
1022 	mutex_init(&acpi_debugger.lock);
1023 	acpi_debugger_initialized = true;
1024 	return 0;
1025 }
1026 #endif
1027 
1028 /*******************************************************************************
1029  *
1030  * FUNCTION:    acpi_os_execute
1031  *
1032  * PARAMETERS:  Type               - Type of the callback
1033  *              Function           - Function to be executed
1034  *              Context            - Function parameters
1035  *
1036  * RETURN:      Status
1037  *
1038  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1039  *              immediately executes function on a separate thread.
1040  *
1041  ******************************************************************************/
1042 
1043 acpi_status acpi_os_execute(acpi_execute_type type,
1044 			    acpi_osd_exec_callback function, void *context)
1045 {
1046 	acpi_status status = AE_OK;
1047 	struct acpi_os_dpc *dpc;
1048 	struct workqueue_struct *queue;
1049 	int ret;
1050 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1051 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1052 			  function, context));
1053 
1054 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1055 		ret = acpi_debugger_create_thread(function, context);
1056 		if (ret) {
1057 			pr_err("Call to kthread_create() failed.\n");
1058 			status = AE_ERROR;
1059 		}
1060 		goto out_thread;
1061 	}
1062 
1063 	/*
1064 	 * Allocate/initialize DPC structure.  Note that this memory will be
1065 	 * freed by the callee.  The kernel handles the work_struct list  in a
1066 	 * way that allows us to also free its memory inside the callee.
1067 	 * Because we may want to schedule several tasks with different
1068 	 * parameters we can't use the approach some kernel code uses of
1069 	 * having a static work_struct.
1070 	 */
1071 
1072 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1073 	if (!dpc)
1074 		return AE_NO_MEMORY;
1075 
1076 	dpc->function = function;
1077 	dpc->context = context;
1078 
1079 	/*
1080 	 * To prevent lockdep from complaining unnecessarily, make sure that
1081 	 * there is a different static lockdep key for each workqueue by using
1082 	 * INIT_WORK() for each of them separately.
1083 	 */
1084 	if (type == OSL_NOTIFY_HANDLER) {
1085 		queue = kacpi_notify_wq;
1086 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1087 	} else if (type == OSL_GPE_HANDLER) {
1088 		queue = kacpid_wq;
1089 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1090 	} else {
1091 		pr_err("Unsupported os_execute type %d.\n", type);
1092 		status = AE_ERROR;
1093 	}
1094 
1095 	if (ACPI_FAILURE(status))
1096 		goto err_workqueue;
1097 
1098 	/*
1099 	 * On some machines, a software-initiated SMI causes corruption unless
1100 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1101 	 * typically it's done in GPE-related methods that are run via
1102 	 * workqueues, so we can avoid the known corruption cases by always
1103 	 * queueing on CPU 0.
1104 	 */
1105 	ret = queue_work_on(0, queue, &dpc->work);
1106 	if (!ret) {
1107 		printk(KERN_ERR PREFIX
1108 			  "Call to queue_work() failed.\n");
1109 		status = AE_ERROR;
1110 	}
1111 err_workqueue:
1112 	if (ACPI_FAILURE(status))
1113 		kfree(dpc);
1114 out_thread:
1115 	return status;
1116 }
1117 EXPORT_SYMBOL(acpi_os_execute);
1118 
1119 void acpi_os_wait_events_complete(void)
1120 {
1121 	/*
1122 	 * Make sure the GPE handler or the fixed event handler is not used
1123 	 * on another CPU after removal.
1124 	 */
1125 	if (acpi_sci_irq_valid())
1126 		synchronize_hardirq(acpi_sci_irq);
1127 	flush_workqueue(kacpid_wq);
1128 	flush_workqueue(kacpi_notify_wq);
1129 }
1130 
1131 struct acpi_hp_work {
1132 	struct work_struct work;
1133 	struct acpi_device *adev;
1134 	u32 src;
1135 };
1136 
1137 static void acpi_hotplug_work_fn(struct work_struct *work)
1138 {
1139 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1140 
1141 	acpi_os_wait_events_complete();
1142 	acpi_device_hotplug(hpw->adev, hpw->src);
1143 	kfree(hpw);
1144 }
1145 
1146 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1147 {
1148 	struct acpi_hp_work *hpw;
1149 
1150 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1151 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1152 		  adev, src));
1153 
1154 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1155 	if (!hpw)
1156 		return AE_NO_MEMORY;
1157 
1158 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1159 	hpw->adev = adev;
1160 	hpw->src = src;
1161 	/*
1162 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1163 	 * the hotplug code may call driver .remove() functions, which may
1164 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1165 	 * these workqueues.
1166 	 */
1167 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1168 		kfree(hpw);
1169 		return AE_ERROR;
1170 	}
1171 	return AE_OK;
1172 }
1173 
1174 bool acpi_queue_hotplug_work(struct work_struct *work)
1175 {
1176 	return queue_work(kacpi_hotplug_wq, work);
1177 }
1178 
1179 acpi_status
1180 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1181 {
1182 	struct semaphore *sem = NULL;
1183 
1184 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1185 	if (!sem)
1186 		return AE_NO_MEMORY;
1187 
1188 	sema_init(sem, initial_units);
1189 
1190 	*handle = (acpi_handle *) sem;
1191 
1192 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1193 			  *handle, initial_units));
1194 
1195 	return AE_OK;
1196 }
1197 
1198 /*
1199  * TODO: A better way to delete semaphores?  Linux doesn't have a
1200  * 'delete_semaphore()' function -- may result in an invalid
1201  * pointer dereference for non-synchronized consumers.	Should
1202  * we at least check for blocked threads and signal/cancel them?
1203  */
1204 
1205 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1206 {
1207 	struct semaphore *sem = (struct semaphore *)handle;
1208 
1209 	if (!sem)
1210 		return AE_BAD_PARAMETER;
1211 
1212 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1213 
1214 	BUG_ON(!list_empty(&sem->wait_list));
1215 	kfree(sem);
1216 	sem = NULL;
1217 
1218 	return AE_OK;
1219 }
1220 
1221 /*
1222  * TODO: Support for units > 1?
1223  */
1224 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1225 {
1226 	acpi_status status = AE_OK;
1227 	struct semaphore *sem = (struct semaphore *)handle;
1228 	long jiffies;
1229 	int ret = 0;
1230 
1231 	if (!acpi_os_initialized)
1232 		return AE_OK;
1233 
1234 	if (!sem || (units < 1))
1235 		return AE_BAD_PARAMETER;
1236 
1237 	if (units > 1)
1238 		return AE_SUPPORT;
1239 
1240 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1241 			  handle, units, timeout));
1242 
1243 	if (timeout == ACPI_WAIT_FOREVER)
1244 		jiffies = MAX_SCHEDULE_TIMEOUT;
1245 	else
1246 		jiffies = msecs_to_jiffies(timeout);
1247 
1248 	ret = down_timeout(sem, jiffies);
1249 	if (ret)
1250 		status = AE_TIME;
1251 
1252 	if (ACPI_FAILURE(status)) {
1253 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1254 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1255 				  handle, units, timeout,
1256 				  acpi_format_exception(status)));
1257 	} else {
1258 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1259 				  "Acquired semaphore[%p|%d|%d]", handle,
1260 				  units, timeout));
1261 	}
1262 
1263 	return status;
1264 }
1265 
1266 /*
1267  * TODO: Support for units > 1?
1268  */
1269 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1270 {
1271 	struct semaphore *sem = (struct semaphore *)handle;
1272 
1273 	if (!acpi_os_initialized)
1274 		return AE_OK;
1275 
1276 	if (!sem || (units < 1))
1277 		return AE_BAD_PARAMETER;
1278 
1279 	if (units > 1)
1280 		return AE_SUPPORT;
1281 
1282 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1283 			  units));
1284 
1285 	up(sem);
1286 
1287 	return AE_OK;
1288 }
1289 
1290 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1291 {
1292 #ifdef ENABLE_DEBUGGER
1293 	if (acpi_in_debugger) {
1294 		u32 chars;
1295 
1296 		kdb_read(buffer, buffer_length);
1297 
1298 		/* remove the CR kdb includes */
1299 		chars = strlen(buffer) - 1;
1300 		buffer[chars] = '\0';
1301 	}
1302 #else
1303 	int ret;
1304 
1305 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1306 	if (ret < 0)
1307 		return AE_ERROR;
1308 	if (bytes_read)
1309 		*bytes_read = ret;
1310 #endif
1311 
1312 	return AE_OK;
1313 }
1314 EXPORT_SYMBOL(acpi_os_get_line);
1315 
1316 acpi_status acpi_os_wait_command_ready(void)
1317 {
1318 	int ret;
1319 
1320 	ret = acpi_debugger_wait_command_ready();
1321 	if (ret < 0)
1322 		return AE_ERROR;
1323 	return AE_OK;
1324 }
1325 
1326 acpi_status acpi_os_notify_command_complete(void)
1327 {
1328 	int ret;
1329 
1330 	ret = acpi_debugger_notify_command_complete();
1331 	if (ret < 0)
1332 		return AE_ERROR;
1333 	return AE_OK;
1334 }
1335 
1336 acpi_status acpi_os_signal(u32 function, void *info)
1337 {
1338 	switch (function) {
1339 	case ACPI_SIGNAL_FATAL:
1340 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1341 		break;
1342 	case ACPI_SIGNAL_BREAKPOINT:
1343 		/*
1344 		 * AML Breakpoint
1345 		 * ACPI spec. says to treat it as a NOP unless
1346 		 * you are debugging.  So if/when we integrate
1347 		 * AML debugger into the kernel debugger its
1348 		 * hook will go here.  But until then it is
1349 		 * not useful to print anything on breakpoints.
1350 		 */
1351 		break;
1352 	default:
1353 		break;
1354 	}
1355 
1356 	return AE_OK;
1357 }
1358 
1359 static int __init acpi_os_name_setup(char *str)
1360 {
1361 	char *p = acpi_os_name;
1362 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1363 
1364 	if (!str || !*str)
1365 		return 0;
1366 
1367 	for (; count-- && *str; str++) {
1368 		if (isalnum(*str) || *str == ' ' || *str == ':')
1369 			*p++ = *str;
1370 		else if (*str == '\'' || *str == '"')
1371 			continue;
1372 		else
1373 			break;
1374 	}
1375 	*p = 0;
1376 
1377 	return 1;
1378 
1379 }
1380 
1381 __setup("acpi_os_name=", acpi_os_name_setup);
1382 
1383 /*
1384  * Disable the auto-serialization of named objects creation methods.
1385  *
1386  * This feature is enabled by default.  It marks the AML control methods
1387  * that contain the opcodes to create named objects as "Serialized".
1388  */
1389 static int __init acpi_no_auto_serialize_setup(char *str)
1390 {
1391 	acpi_gbl_auto_serialize_methods = FALSE;
1392 	pr_info("ACPI: auto-serialization disabled\n");
1393 
1394 	return 1;
1395 }
1396 
1397 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1398 
1399 /* Check of resource interference between native drivers and ACPI
1400  * OperationRegions (SystemIO and System Memory only).
1401  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1402  * in arbitrary AML code and can interfere with legacy drivers.
1403  * acpi_enforce_resources= can be set to:
1404  *
1405  *   - strict (default) (2)
1406  *     -> further driver trying to access the resources will not load
1407  *   - lax              (1)
1408  *     -> further driver trying to access the resources will load, but you
1409  *     get a system message that something might go wrong...
1410  *
1411  *   - no               (0)
1412  *     -> ACPI Operation Region resources will not be registered
1413  *
1414  */
1415 #define ENFORCE_RESOURCES_STRICT 2
1416 #define ENFORCE_RESOURCES_LAX    1
1417 #define ENFORCE_RESOURCES_NO     0
1418 
1419 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1420 
1421 static int __init acpi_enforce_resources_setup(char *str)
1422 {
1423 	if (str == NULL || *str == '\0')
1424 		return 0;
1425 
1426 	if (!strcmp("strict", str))
1427 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428 	else if (!strcmp("lax", str))
1429 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1430 	else if (!strcmp("no", str))
1431 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1432 
1433 	return 1;
1434 }
1435 
1436 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1437 
1438 /* Check for resource conflicts between ACPI OperationRegions and native
1439  * drivers */
1440 int acpi_check_resource_conflict(const struct resource *res)
1441 {
1442 	acpi_adr_space_type space_id;
1443 	acpi_size length;
1444 	u8 warn = 0;
1445 	int clash = 0;
1446 
1447 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1448 		return 0;
1449 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1450 		return 0;
1451 
1452 	if (res->flags & IORESOURCE_IO)
1453 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1454 	else
1455 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1456 
1457 	length = resource_size(res);
1458 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1459 		warn = 1;
1460 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1461 
1462 	if (clash) {
1463 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1464 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1465 				printk(KERN_NOTICE "ACPI: This conflict may"
1466 				       " cause random problems and system"
1467 				       " instability\n");
1468 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1469 			       " for this device, you should use it instead of"
1470 			       " the native driver\n");
1471 		}
1472 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1473 			return -EBUSY;
1474 	}
1475 	return 0;
1476 }
1477 EXPORT_SYMBOL(acpi_check_resource_conflict);
1478 
1479 int acpi_check_region(resource_size_t start, resource_size_t n,
1480 		      const char *name)
1481 {
1482 	struct resource res = {
1483 		.start = start,
1484 		.end   = start + n - 1,
1485 		.name  = name,
1486 		.flags = IORESOURCE_IO,
1487 	};
1488 
1489 	return acpi_check_resource_conflict(&res);
1490 }
1491 EXPORT_SYMBOL(acpi_check_region);
1492 
1493 /*
1494  * Let drivers know whether the resource checks are effective
1495  */
1496 int acpi_resources_are_enforced(void)
1497 {
1498 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1499 }
1500 EXPORT_SYMBOL(acpi_resources_are_enforced);
1501 
1502 /*
1503  * Deallocate the memory for a spinlock.
1504  */
1505 void acpi_os_delete_lock(acpi_spinlock handle)
1506 {
1507 	ACPI_FREE(handle);
1508 }
1509 
1510 /*
1511  * Acquire a spinlock.
1512  *
1513  * handle is a pointer to the spinlock_t.
1514  */
1515 
1516 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1517 {
1518 	acpi_cpu_flags flags;
1519 	spin_lock_irqsave(lockp, flags);
1520 	return flags;
1521 }
1522 
1523 /*
1524  * Release a spinlock. See above.
1525  */
1526 
1527 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1528 {
1529 	spin_unlock_irqrestore(lockp, flags);
1530 }
1531 
1532 #ifndef ACPI_USE_LOCAL_CACHE
1533 
1534 /*******************************************************************************
1535  *
1536  * FUNCTION:    acpi_os_create_cache
1537  *
1538  * PARAMETERS:  name      - Ascii name for the cache
1539  *              size      - Size of each cached object
1540  *              depth     - Maximum depth of the cache (in objects) <ignored>
1541  *              cache     - Where the new cache object is returned
1542  *
1543  * RETURN:      status
1544  *
1545  * DESCRIPTION: Create a cache object
1546  *
1547  ******************************************************************************/
1548 
1549 acpi_status
1550 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1551 {
1552 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 	if (*cache == NULL)
1554 		return AE_ERROR;
1555 	else
1556 		return AE_OK;
1557 }
1558 
1559 /*******************************************************************************
1560  *
1561  * FUNCTION:    acpi_os_purge_cache
1562  *
1563  * PARAMETERS:  Cache           - Handle to cache object
1564  *
1565  * RETURN:      Status
1566  *
1567  * DESCRIPTION: Free all objects within the requested cache.
1568  *
1569  ******************************************************************************/
1570 
1571 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1572 {
1573 	kmem_cache_shrink(cache);
1574 	return (AE_OK);
1575 }
1576 
1577 /*******************************************************************************
1578  *
1579  * FUNCTION:    acpi_os_delete_cache
1580  *
1581  * PARAMETERS:  Cache           - Handle to cache object
1582  *
1583  * RETURN:      Status
1584  *
1585  * DESCRIPTION: Free all objects within the requested cache and delete the
1586  *              cache object.
1587  *
1588  ******************************************************************************/
1589 
1590 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1591 {
1592 	kmem_cache_destroy(cache);
1593 	return (AE_OK);
1594 }
1595 
1596 /*******************************************************************************
1597  *
1598  * FUNCTION:    acpi_os_release_object
1599  *
1600  * PARAMETERS:  Cache       - Handle to cache object
1601  *              Object      - The object to be released
1602  *
1603  * RETURN:      None
1604  *
1605  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1606  *              the object is deleted.
1607  *
1608  ******************************************************************************/
1609 
1610 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1611 {
1612 	kmem_cache_free(cache, object);
1613 	return (AE_OK);
1614 }
1615 #endif
1616 
1617 static int __init acpi_no_static_ssdt_setup(char *s)
1618 {
1619 	acpi_gbl_disable_ssdt_table_install = TRUE;
1620 	pr_info("ACPI: static SSDT installation disabled\n");
1621 
1622 	return 0;
1623 }
1624 
1625 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626 
1627 static int __init acpi_disable_return_repair(char *s)
1628 {
1629 	printk(KERN_NOTICE PREFIX
1630 	       "ACPI: Predefined validation mechanism disabled\n");
1631 	acpi_gbl_disable_auto_repair = TRUE;
1632 
1633 	return 1;
1634 }
1635 
1636 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1637 
1638 acpi_status __init acpi_os_initialize(void)
1639 {
1640 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1641 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1642 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1643 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1644 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1645 		/*
1646 		 * Use acpi_os_map_generic_address to pre-map the reset
1647 		 * register if it's in system memory.
1648 		 */
1649 		int rv;
1650 
1651 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1652 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1653 	}
1654 	acpi_os_initialized = true;
1655 
1656 	return AE_OK;
1657 }
1658 
1659 acpi_status __init acpi_os_initialize1(void)
1660 {
1661 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1662 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1663 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1664 	BUG_ON(!kacpid_wq);
1665 	BUG_ON(!kacpi_notify_wq);
1666 	BUG_ON(!kacpi_hotplug_wq);
1667 	acpi_osi_init();
1668 	return AE_OK;
1669 }
1670 
1671 acpi_status acpi_os_terminate(void)
1672 {
1673 	if (acpi_irq_handler) {
1674 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1675 						 acpi_irq_handler);
1676 	}
1677 
1678 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1679 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1680 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1681 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1682 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1683 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1684 
1685 	destroy_workqueue(kacpid_wq);
1686 	destroy_workqueue(kacpi_notify_wq);
1687 	destroy_workqueue(kacpi_hotplug_wq);
1688 
1689 	return AE_OK;
1690 }
1691 
1692 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1693 				  u32 pm1b_control)
1694 {
1695 	int rc = 0;
1696 	if (__acpi_os_prepare_sleep)
1697 		rc = __acpi_os_prepare_sleep(sleep_state,
1698 					     pm1a_control, pm1b_control);
1699 	if (rc < 0)
1700 		return AE_ERROR;
1701 	else if (rc > 0)
1702 		return AE_CTRL_TERMINATE;
1703 
1704 	return AE_OK;
1705 }
1706 
1707 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1708 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1709 {
1710 	__acpi_os_prepare_sleep = func;
1711 }
1712 
1713 #if (ACPI_REDUCED_HARDWARE)
1714 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1715 				  u32 val_b)
1716 {
1717 	int rc = 0;
1718 	if (__acpi_os_prepare_extended_sleep)
1719 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1720 					     val_a, val_b);
1721 	if (rc < 0)
1722 		return AE_ERROR;
1723 	else if (rc > 0)
1724 		return AE_CTRL_TERMINATE;
1725 
1726 	return AE_OK;
1727 }
1728 #else
1729 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730 				  u32 val_b)
1731 {
1732 	return AE_OK;
1733 }
1734 #endif
1735 
1736 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1737 			       u32 val_a, u32 val_b))
1738 {
1739 	__acpi_os_prepare_extended_sleep = func;
1740 }
1741 
1742 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1743 				u32 reg_a_value, u32 reg_b_value)
1744 {
1745 	acpi_status status;
1746 
1747 	if (acpi_gbl_reduced_hardware)
1748 		status = acpi_os_prepare_extended_sleep(sleep_state,
1749 							reg_a_value,
1750 							reg_b_value);
1751 	else
1752 		status = acpi_os_prepare_sleep(sleep_state,
1753 					       reg_a_value, reg_b_value);
1754 	return status;
1755 }
1756