1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $) 4 * 5 * Copyright (C) 2000 Andrew Henroid 6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 8 * Copyright (c) 2008 Intel Corporation 9 * Author: Matthew Wilcox <willy@linux.intel.com> 10 */ 11 12 #define pr_fmt(fmt) "ACPI: OSL: " fmt 13 14 #include <linux/module.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/mm.h> 18 #include <linux/highmem.h> 19 #include <linux/lockdep.h> 20 #include <linux/pci.h> 21 #include <linux/interrupt.h> 22 #include <linux/kmod.h> 23 #include <linux/delay.h> 24 #include <linux/workqueue.h> 25 #include <linux/nmi.h> 26 #include <linux/acpi.h> 27 #include <linux/efi.h> 28 #include <linux/ioport.h> 29 #include <linux/list.h> 30 #include <linux/jiffies.h> 31 #include <linux/semaphore.h> 32 #include <linux/security.h> 33 34 #include <asm/io.h> 35 #include <linux/uaccess.h> 36 #include <linux/io-64-nonatomic-lo-hi.h> 37 38 #include "acpica/accommon.h" 39 #include "acpica/acnamesp.h" 40 #include "internal.h" 41 42 /* Definitions for ACPI_DEBUG_PRINT() */ 43 #define _COMPONENT ACPI_OS_SERVICES 44 ACPI_MODULE_NAME("osl"); 45 46 struct acpi_os_dpc { 47 acpi_osd_exec_callback function; 48 void *context; 49 struct work_struct work; 50 }; 51 52 #ifdef ENABLE_DEBUGGER 53 #include <linux/kdb.h> 54 55 /* stuff for debugger support */ 56 int acpi_in_debugger; 57 EXPORT_SYMBOL(acpi_in_debugger); 58 #endif /*ENABLE_DEBUGGER */ 59 60 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, 61 u32 pm1b_ctrl); 62 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, 63 u32 val_b); 64 65 static acpi_osd_handler acpi_irq_handler; 66 static void *acpi_irq_context; 67 static struct workqueue_struct *kacpid_wq; 68 static struct workqueue_struct *kacpi_notify_wq; 69 static struct workqueue_struct *kacpi_hotplug_wq; 70 static bool acpi_os_initialized; 71 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ; 72 bool acpi_permanent_mmap = false; 73 74 /* 75 * This list of permanent mappings is for memory that may be accessed from 76 * interrupt context, where we can't do the ioremap(). 77 */ 78 struct acpi_ioremap { 79 struct list_head list; 80 void __iomem *virt; 81 acpi_physical_address phys; 82 acpi_size size; 83 union { 84 unsigned long refcount; 85 struct rcu_work rwork; 86 } track; 87 }; 88 89 static LIST_HEAD(acpi_ioremaps); 90 static DEFINE_MUTEX(acpi_ioremap_lock); 91 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map) 92 93 static void __init acpi_request_region (struct acpi_generic_address *gas, 94 unsigned int length, char *desc) 95 { 96 u64 addr; 97 98 /* Handle possible alignment issues */ 99 memcpy(&addr, &gas->address, sizeof(addr)); 100 if (!addr || !length) 101 return; 102 103 /* Resources are never freed */ 104 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) 105 request_region(addr, length, desc); 106 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 107 request_mem_region(addr, length, desc); 108 } 109 110 static int __init acpi_reserve_resources(void) 111 { 112 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, 113 "ACPI PM1a_EVT_BLK"); 114 115 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, 116 "ACPI PM1b_EVT_BLK"); 117 118 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, 119 "ACPI PM1a_CNT_BLK"); 120 121 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, 122 "ACPI PM1b_CNT_BLK"); 123 124 if (acpi_gbl_FADT.pm_timer_length == 4) 125 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); 126 127 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, 128 "ACPI PM2_CNT_BLK"); 129 130 /* Length of GPE blocks must be a non-negative multiple of 2 */ 131 132 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) 133 acpi_request_region(&acpi_gbl_FADT.xgpe0_block, 134 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); 135 136 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) 137 acpi_request_region(&acpi_gbl_FADT.xgpe1_block, 138 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); 139 140 return 0; 141 } 142 fs_initcall_sync(acpi_reserve_resources); 143 144 void acpi_os_printf(const char *fmt, ...) 145 { 146 va_list args; 147 va_start(args, fmt); 148 acpi_os_vprintf(fmt, args); 149 va_end(args); 150 } 151 EXPORT_SYMBOL(acpi_os_printf); 152 153 void acpi_os_vprintf(const char *fmt, va_list args) 154 { 155 static char buffer[512]; 156 157 vsprintf(buffer, fmt, args); 158 159 #ifdef ENABLE_DEBUGGER 160 if (acpi_in_debugger) { 161 kdb_printf("%s", buffer); 162 } else { 163 if (printk_get_level(buffer)) 164 printk("%s", buffer); 165 else 166 printk(KERN_CONT "%s", buffer); 167 } 168 #else 169 if (acpi_debugger_write_log(buffer) < 0) { 170 if (printk_get_level(buffer)) 171 printk("%s", buffer); 172 else 173 printk(KERN_CONT "%s", buffer); 174 } 175 #endif 176 } 177 178 #ifdef CONFIG_KEXEC 179 static unsigned long acpi_rsdp; 180 static int __init setup_acpi_rsdp(char *arg) 181 { 182 return kstrtoul(arg, 16, &acpi_rsdp); 183 } 184 early_param("acpi_rsdp", setup_acpi_rsdp); 185 #endif 186 187 acpi_physical_address __init acpi_os_get_root_pointer(void) 188 { 189 acpi_physical_address pa; 190 191 #ifdef CONFIG_KEXEC 192 /* 193 * We may have been provided with an RSDP on the command line, 194 * but if a malicious user has done so they may be pointing us 195 * at modified ACPI tables that could alter kernel behaviour - 196 * so, we check the lockdown status before making use of 197 * it. If we trust it then also stash it in an architecture 198 * specific location (if appropriate) so it can be carried 199 * over further kexec()s. 200 */ 201 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) { 202 acpi_arch_set_root_pointer(acpi_rsdp); 203 return acpi_rsdp; 204 } 205 #endif 206 pa = acpi_arch_get_root_pointer(); 207 if (pa) 208 return pa; 209 210 if (efi_enabled(EFI_CONFIG_TABLES)) { 211 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) 212 return efi.acpi20; 213 if (efi.acpi != EFI_INVALID_TABLE_ADDR) 214 return efi.acpi; 215 pr_err(PREFIX "System description tables not found\n"); 216 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) { 217 acpi_find_root_pointer(&pa); 218 } 219 220 return pa; 221 } 222 223 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 224 static struct acpi_ioremap * 225 acpi_map_lookup(acpi_physical_address phys, acpi_size size) 226 { 227 struct acpi_ioremap *map; 228 229 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held()) 230 if (map->phys <= phys && 231 phys + size <= map->phys + map->size) 232 return map; 233 234 return NULL; 235 } 236 237 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 238 static void __iomem * 239 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) 240 { 241 struct acpi_ioremap *map; 242 243 map = acpi_map_lookup(phys, size); 244 if (map) 245 return map->virt + (phys - map->phys); 246 247 return NULL; 248 } 249 250 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) 251 { 252 struct acpi_ioremap *map; 253 void __iomem *virt = NULL; 254 255 mutex_lock(&acpi_ioremap_lock); 256 map = acpi_map_lookup(phys, size); 257 if (map) { 258 virt = map->virt + (phys - map->phys); 259 map->track.refcount++; 260 } 261 mutex_unlock(&acpi_ioremap_lock); 262 return virt; 263 } 264 EXPORT_SYMBOL_GPL(acpi_os_get_iomem); 265 266 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 267 static struct acpi_ioremap * 268 acpi_map_lookup_virt(void __iomem *virt, acpi_size size) 269 { 270 struct acpi_ioremap *map; 271 272 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held()) 273 if (map->virt <= virt && 274 virt + size <= map->virt + map->size) 275 return map; 276 277 return NULL; 278 } 279 280 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64) 281 /* ioremap will take care of cache attributes */ 282 #define should_use_kmap(pfn) 0 283 #else 284 #define should_use_kmap(pfn) page_is_ram(pfn) 285 #endif 286 287 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz) 288 { 289 unsigned long pfn; 290 291 pfn = pg_off >> PAGE_SHIFT; 292 if (should_use_kmap(pfn)) { 293 if (pg_sz > PAGE_SIZE) 294 return NULL; 295 return (void __iomem __force *)kmap(pfn_to_page(pfn)); 296 } else 297 return acpi_os_ioremap(pg_off, pg_sz); 298 } 299 300 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) 301 { 302 unsigned long pfn; 303 304 pfn = pg_off >> PAGE_SHIFT; 305 if (should_use_kmap(pfn)) 306 kunmap(pfn_to_page(pfn)); 307 else 308 iounmap(vaddr); 309 } 310 311 /** 312 * acpi_os_map_iomem - Get a virtual address for a given physical address range. 313 * @phys: Start of the physical address range to map. 314 * @size: Size of the physical address range to map. 315 * 316 * Look up the given physical address range in the list of existing ACPI memory 317 * mappings. If found, get a reference to it and return a pointer to it (its 318 * virtual address). If not found, map it, add it to that list and return a 319 * pointer to it. 320 * 321 * During early init (when acpi_permanent_mmap has not been set yet) this 322 * routine simply calls __acpi_map_table() to get the job done. 323 */ 324 void __iomem __ref 325 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) 326 { 327 struct acpi_ioremap *map; 328 void __iomem *virt; 329 acpi_physical_address pg_off; 330 acpi_size pg_sz; 331 332 if (phys > ULONG_MAX) { 333 pr_err("Cannot map memory that high: 0x%llx\n", phys); 334 return NULL; 335 } 336 337 if (!acpi_permanent_mmap) 338 return __acpi_map_table((unsigned long)phys, size); 339 340 mutex_lock(&acpi_ioremap_lock); 341 /* Check if there's a suitable mapping already. */ 342 map = acpi_map_lookup(phys, size); 343 if (map) { 344 map->track.refcount++; 345 goto out; 346 } 347 348 map = kzalloc(sizeof(*map), GFP_KERNEL); 349 if (!map) { 350 mutex_unlock(&acpi_ioremap_lock); 351 return NULL; 352 } 353 354 pg_off = round_down(phys, PAGE_SIZE); 355 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; 356 virt = acpi_map(phys, size); 357 if (!virt) { 358 mutex_unlock(&acpi_ioremap_lock); 359 kfree(map); 360 return NULL; 361 } 362 363 INIT_LIST_HEAD(&map->list); 364 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK); 365 map->phys = pg_off; 366 map->size = pg_sz; 367 map->track.refcount = 1; 368 369 list_add_tail_rcu(&map->list, &acpi_ioremaps); 370 371 out: 372 mutex_unlock(&acpi_ioremap_lock); 373 return map->virt + (phys - map->phys); 374 } 375 EXPORT_SYMBOL_GPL(acpi_os_map_iomem); 376 377 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size) 378 { 379 return (void *)acpi_os_map_iomem(phys, size); 380 } 381 EXPORT_SYMBOL_GPL(acpi_os_map_memory); 382 383 static void acpi_os_map_remove(struct work_struct *work) 384 { 385 struct acpi_ioremap *map = container_of(to_rcu_work(work), 386 struct acpi_ioremap, 387 track.rwork); 388 389 acpi_unmap(map->phys, map->virt); 390 kfree(map); 391 } 392 393 /* Must be called with mutex_lock(&acpi_ioremap_lock) */ 394 static void acpi_os_drop_map_ref(struct acpi_ioremap *map) 395 { 396 if (--map->track.refcount) 397 return; 398 399 list_del_rcu(&map->list); 400 401 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove); 402 queue_rcu_work(system_wq, &map->track.rwork); 403 } 404 405 /** 406 * acpi_os_unmap_iomem - Drop a memory mapping reference. 407 * @virt: Start of the address range to drop a reference to. 408 * @size: Size of the address range to drop a reference to. 409 * 410 * Look up the given virtual address range in the list of existing ACPI memory 411 * mappings, drop a reference to it and if there are no more active references 412 * to it, queue it up for later removal. 413 * 414 * During early init (when acpi_permanent_mmap has not been set yet) this 415 * routine simply calls __acpi_unmap_table() to get the job done. Since 416 * __acpi_unmap_table() is an __init function, the __ref annotation is needed 417 * here. 418 */ 419 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) 420 { 421 struct acpi_ioremap *map; 422 423 if (!acpi_permanent_mmap) { 424 __acpi_unmap_table(virt, size); 425 return; 426 } 427 428 mutex_lock(&acpi_ioremap_lock); 429 430 map = acpi_map_lookup_virt(virt, size); 431 if (!map) { 432 mutex_unlock(&acpi_ioremap_lock); 433 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt); 434 return; 435 } 436 acpi_os_drop_map_ref(map); 437 438 mutex_unlock(&acpi_ioremap_lock); 439 } 440 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); 441 442 /** 443 * acpi_os_unmap_memory - Drop a memory mapping reference. 444 * @virt: Start of the address range to drop a reference to. 445 * @size: Size of the address range to drop a reference to. 446 */ 447 void __ref acpi_os_unmap_memory(void *virt, acpi_size size) 448 { 449 acpi_os_unmap_iomem((void __iomem *)virt, size); 450 } 451 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); 452 453 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas) 454 { 455 u64 addr; 456 457 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 458 return NULL; 459 460 /* Handle possible alignment issues */ 461 memcpy(&addr, &gas->address, sizeof(addr)); 462 if (!addr || !gas->bit_width) 463 return NULL; 464 465 return acpi_os_map_iomem(addr, gas->bit_width / 8); 466 } 467 EXPORT_SYMBOL(acpi_os_map_generic_address); 468 469 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) 470 { 471 u64 addr; 472 struct acpi_ioremap *map; 473 474 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 475 return; 476 477 /* Handle possible alignment issues */ 478 memcpy(&addr, &gas->address, sizeof(addr)); 479 if (!addr || !gas->bit_width) 480 return; 481 482 mutex_lock(&acpi_ioremap_lock); 483 484 map = acpi_map_lookup(addr, gas->bit_width / 8); 485 if (!map) { 486 mutex_unlock(&acpi_ioremap_lock); 487 return; 488 } 489 acpi_os_drop_map_ref(map); 490 491 mutex_unlock(&acpi_ioremap_lock); 492 } 493 EXPORT_SYMBOL(acpi_os_unmap_generic_address); 494 495 #ifdef ACPI_FUTURE_USAGE 496 acpi_status 497 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys) 498 { 499 if (!phys || !virt) 500 return AE_BAD_PARAMETER; 501 502 *phys = virt_to_phys(virt); 503 504 return AE_OK; 505 } 506 #endif 507 508 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE 509 static bool acpi_rev_override; 510 511 int __init acpi_rev_override_setup(char *str) 512 { 513 acpi_rev_override = true; 514 return 1; 515 } 516 __setup("acpi_rev_override", acpi_rev_override_setup); 517 #else 518 #define acpi_rev_override false 519 #endif 520 521 #define ACPI_MAX_OVERRIDE_LEN 100 522 523 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; 524 525 acpi_status 526 acpi_os_predefined_override(const struct acpi_predefined_names *init_val, 527 acpi_string *new_val) 528 { 529 if (!init_val || !new_val) 530 return AE_BAD_PARAMETER; 531 532 *new_val = NULL; 533 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { 534 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name); 535 *new_val = acpi_os_name; 536 } 537 538 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) { 539 pr_info("Overriding _REV return value to 5\n"); 540 *new_val = (char *)5; 541 } 542 543 return AE_OK; 544 } 545 546 static irqreturn_t acpi_irq(int irq, void *dev_id) 547 { 548 u32 handled; 549 550 handled = (*acpi_irq_handler) (acpi_irq_context); 551 552 if (handled) { 553 acpi_irq_handled++; 554 return IRQ_HANDLED; 555 } else { 556 acpi_irq_not_handled++; 557 return IRQ_NONE; 558 } 559 } 560 561 acpi_status 562 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, 563 void *context) 564 { 565 unsigned int irq; 566 567 acpi_irq_stats_init(); 568 569 /* 570 * ACPI interrupts different from the SCI in our copy of the FADT are 571 * not supported. 572 */ 573 if (gsi != acpi_gbl_FADT.sci_interrupt) 574 return AE_BAD_PARAMETER; 575 576 if (acpi_irq_handler) 577 return AE_ALREADY_ACQUIRED; 578 579 if (acpi_gsi_to_irq(gsi, &irq) < 0) { 580 pr_err("SCI (ACPI GSI %d) not registered\n", gsi); 581 return AE_OK; 582 } 583 584 acpi_irq_handler = handler; 585 acpi_irq_context = context; 586 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) { 587 pr_err("SCI (IRQ%d) allocation failed\n", irq); 588 acpi_irq_handler = NULL; 589 return AE_NOT_ACQUIRED; 590 } 591 acpi_sci_irq = irq; 592 593 return AE_OK; 594 } 595 596 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler) 597 { 598 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid()) 599 return AE_BAD_PARAMETER; 600 601 free_irq(acpi_sci_irq, acpi_irq); 602 acpi_irq_handler = NULL; 603 acpi_sci_irq = INVALID_ACPI_IRQ; 604 605 return AE_OK; 606 } 607 608 /* 609 * Running in interpreter thread context, safe to sleep 610 */ 611 612 void acpi_os_sleep(u64 ms) 613 { 614 msleep(ms); 615 } 616 617 void acpi_os_stall(u32 us) 618 { 619 while (us) { 620 u32 delay = 1000; 621 622 if (delay > us) 623 delay = us; 624 udelay(delay); 625 touch_nmi_watchdog(); 626 us -= delay; 627 } 628 } 629 630 /* 631 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running, 632 * monotonically increasing timer with 100ns granularity. Do not use 633 * ktime_get() to implement this function because this function may get 634 * called after timekeeping has been suspended. Note: calling this function 635 * after timekeeping has been suspended may lead to unexpected results 636 * because when timekeeping is suspended the jiffies counter is not 637 * incremented. See also timekeeping_suspend(). 638 */ 639 u64 acpi_os_get_timer(void) 640 { 641 return (get_jiffies_64() - INITIAL_JIFFIES) * 642 (ACPI_100NSEC_PER_SEC / HZ); 643 } 644 645 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width) 646 { 647 u32 dummy; 648 649 if (!value) 650 value = &dummy; 651 652 *value = 0; 653 if (width <= 8) { 654 *(u8 *) value = inb(port); 655 } else if (width <= 16) { 656 *(u16 *) value = inw(port); 657 } else if (width <= 32) { 658 *(u32 *) value = inl(port); 659 } else { 660 BUG(); 661 } 662 663 return AE_OK; 664 } 665 666 EXPORT_SYMBOL(acpi_os_read_port); 667 668 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) 669 { 670 if (width <= 8) { 671 outb(value, port); 672 } else if (width <= 16) { 673 outw(value, port); 674 } else if (width <= 32) { 675 outl(value, port); 676 } else { 677 BUG(); 678 } 679 680 return AE_OK; 681 } 682 683 EXPORT_SYMBOL(acpi_os_write_port); 684 685 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width) 686 { 687 688 switch (width) { 689 case 8: 690 *(u8 *) value = readb(virt_addr); 691 break; 692 case 16: 693 *(u16 *) value = readw(virt_addr); 694 break; 695 case 32: 696 *(u32 *) value = readl(virt_addr); 697 break; 698 case 64: 699 *(u64 *) value = readq(virt_addr); 700 break; 701 default: 702 return -EINVAL; 703 } 704 705 return 0; 706 } 707 708 acpi_status 709 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) 710 { 711 void __iomem *virt_addr; 712 unsigned int size = width / 8; 713 bool unmap = false; 714 u64 dummy; 715 int error; 716 717 rcu_read_lock(); 718 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 719 if (!virt_addr) { 720 rcu_read_unlock(); 721 virt_addr = acpi_os_ioremap(phys_addr, size); 722 if (!virt_addr) 723 return AE_BAD_ADDRESS; 724 unmap = true; 725 } 726 727 if (!value) 728 value = &dummy; 729 730 error = acpi_os_read_iomem(virt_addr, value, width); 731 BUG_ON(error); 732 733 if (unmap) 734 iounmap(virt_addr); 735 else 736 rcu_read_unlock(); 737 738 return AE_OK; 739 } 740 741 acpi_status 742 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) 743 { 744 void __iomem *virt_addr; 745 unsigned int size = width / 8; 746 bool unmap = false; 747 748 rcu_read_lock(); 749 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 750 if (!virt_addr) { 751 rcu_read_unlock(); 752 virt_addr = acpi_os_ioremap(phys_addr, size); 753 if (!virt_addr) 754 return AE_BAD_ADDRESS; 755 unmap = true; 756 } 757 758 switch (width) { 759 case 8: 760 writeb(value, virt_addr); 761 break; 762 case 16: 763 writew(value, virt_addr); 764 break; 765 case 32: 766 writel(value, virt_addr); 767 break; 768 case 64: 769 writeq(value, virt_addr); 770 break; 771 default: 772 BUG(); 773 } 774 775 if (unmap) 776 iounmap(virt_addr); 777 else 778 rcu_read_unlock(); 779 780 return AE_OK; 781 } 782 783 #ifdef CONFIG_PCI 784 acpi_status 785 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, 786 u64 *value, u32 width) 787 { 788 int result, size; 789 u32 value32; 790 791 if (!value) 792 return AE_BAD_PARAMETER; 793 794 switch (width) { 795 case 8: 796 size = 1; 797 break; 798 case 16: 799 size = 2; 800 break; 801 case 32: 802 size = 4; 803 break; 804 default: 805 return AE_ERROR; 806 } 807 808 result = raw_pci_read(pci_id->segment, pci_id->bus, 809 PCI_DEVFN(pci_id->device, pci_id->function), 810 reg, size, &value32); 811 *value = value32; 812 813 return (result ? AE_ERROR : AE_OK); 814 } 815 816 acpi_status 817 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, 818 u64 value, u32 width) 819 { 820 int result, size; 821 822 switch (width) { 823 case 8: 824 size = 1; 825 break; 826 case 16: 827 size = 2; 828 break; 829 case 32: 830 size = 4; 831 break; 832 default: 833 return AE_ERROR; 834 } 835 836 result = raw_pci_write(pci_id->segment, pci_id->bus, 837 PCI_DEVFN(pci_id->device, pci_id->function), 838 reg, size, value); 839 840 return (result ? AE_ERROR : AE_OK); 841 } 842 #endif 843 844 static void acpi_os_execute_deferred(struct work_struct *work) 845 { 846 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); 847 848 dpc->function(dpc->context); 849 kfree(dpc); 850 } 851 852 #ifdef CONFIG_ACPI_DEBUGGER 853 static struct acpi_debugger acpi_debugger; 854 static bool acpi_debugger_initialized; 855 856 int acpi_register_debugger(struct module *owner, 857 const struct acpi_debugger_ops *ops) 858 { 859 int ret = 0; 860 861 mutex_lock(&acpi_debugger.lock); 862 if (acpi_debugger.ops) { 863 ret = -EBUSY; 864 goto err_lock; 865 } 866 867 acpi_debugger.owner = owner; 868 acpi_debugger.ops = ops; 869 870 err_lock: 871 mutex_unlock(&acpi_debugger.lock); 872 return ret; 873 } 874 EXPORT_SYMBOL(acpi_register_debugger); 875 876 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) 877 { 878 mutex_lock(&acpi_debugger.lock); 879 if (ops == acpi_debugger.ops) { 880 acpi_debugger.ops = NULL; 881 acpi_debugger.owner = NULL; 882 } 883 mutex_unlock(&acpi_debugger.lock); 884 } 885 EXPORT_SYMBOL(acpi_unregister_debugger); 886 887 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) 888 { 889 int ret; 890 int (*func)(acpi_osd_exec_callback, void *); 891 struct module *owner; 892 893 if (!acpi_debugger_initialized) 894 return -ENODEV; 895 mutex_lock(&acpi_debugger.lock); 896 if (!acpi_debugger.ops) { 897 ret = -ENODEV; 898 goto err_lock; 899 } 900 if (!try_module_get(acpi_debugger.owner)) { 901 ret = -ENODEV; 902 goto err_lock; 903 } 904 func = acpi_debugger.ops->create_thread; 905 owner = acpi_debugger.owner; 906 mutex_unlock(&acpi_debugger.lock); 907 908 ret = func(function, context); 909 910 mutex_lock(&acpi_debugger.lock); 911 module_put(owner); 912 err_lock: 913 mutex_unlock(&acpi_debugger.lock); 914 return ret; 915 } 916 917 ssize_t acpi_debugger_write_log(const char *msg) 918 { 919 ssize_t ret; 920 ssize_t (*func)(const char *); 921 struct module *owner; 922 923 if (!acpi_debugger_initialized) 924 return -ENODEV; 925 mutex_lock(&acpi_debugger.lock); 926 if (!acpi_debugger.ops) { 927 ret = -ENODEV; 928 goto err_lock; 929 } 930 if (!try_module_get(acpi_debugger.owner)) { 931 ret = -ENODEV; 932 goto err_lock; 933 } 934 func = acpi_debugger.ops->write_log; 935 owner = acpi_debugger.owner; 936 mutex_unlock(&acpi_debugger.lock); 937 938 ret = func(msg); 939 940 mutex_lock(&acpi_debugger.lock); 941 module_put(owner); 942 err_lock: 943 mutex_unlock(&acpi_debugger.lock); 944 return ret; 945 } 946 947 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length) 948 { 949 ssize_t ret; 950 ssize_t (*func)(char *, size_t); 951 struct module *owner; 952 953 if (!acpi_debugger_initialized) 954 return -ENODEV; 955 mutex_lock(&acpi_debugger.lock); 956 if (!acpi_debugger.ops) { 957 ret = -ENODEV; 958 goto err_lock; 959 } 960 if (!try_module_get(acpi_debugger.owner)) { 961 ret = -ENODEV; 962 goto err_lock; 963 } 964 func = acpi_debugger.ops->read_cmd; 965 owner = acpi_debugger.owner; 966 mutex_unlock(&acpi_debugger.lock); 967 968 ret = func(buffer, buffer_length); 969 970 mutex_lock(&acpi_debugger.lock); 971 module_put(owner); 972 err_lock: 973 mutex_unlock(&acpi_debugger.lock); 974 return ret; 975 } 976 977 int acpi_debugger_wait_command_ready(void) 978 { 979 int ret; 980 int (*func)(bool, char *, size_t); 981 struct module *owner; 982 983 if (!acpi_debugger_initialized) 984 return -ENODEV; 985 mutex_lock(&acpi_debugger.lock); 986 if (!acpi_debugger.ops) { 987 ret = -ENODEV; 988 goto err_lock; 989 } 990 if (!try_module_get(acpi_debugger.owner)) { 991 ret = -ENODEV; 992 goto err_lock; 993 } 994 func = acpi_debugger.ops->wait_command_ready; 995 owner = acpi_debugger.owner; 996 mutex_unlock(&acpi_debugger.lock); 997 998 ret = func(acpi_gbl_method_executing, 999 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE); 1000 1001 mutex_lock(&acpi_debugger.lock); 1002 module_put(owner); 1003 err_lock: 1004 mutex_unlock(&acpi_debugger.lock); 1005 return ret; 1006 } 1007 1008 int acpi_debugger_notify_command_complete(void) 1009 { 1010 int ret; 1011 int (*func)(void); 1012 struct module *owner; 1013 1014 if (!acpi_debugger_initialized) 1015 return -ENODEV; 1016 mutex_lock(&acpi_debugger.lock); 1017 if (!acpi_debugger.ops) { 1018 ret = -ENODEV; 1019 goto err_lock; 1020 } 1021 if (!try_module_get(acpi_debugger.owner)) { 1022 ret = -ENODEV; 1023 goto err_lock; 1024 } 1025 func = acpi_debugger.ops->notify_command_complete; 1026 owner = acpi_debugger.owner; 1027 mutex_unlock(&acpi_debugger.lock); 1028 1029 ret = func(); 1030 1031 mutex_lock(&acpi_debugger.lock); 1032 module_put(owner); 1033 err_lock: 1034 mutex_unlock(&acpi_debugger.lock); 1035 return ret; 1036 } 1037 1038 int __init acpi_debugger_init(void) 1039 { 1040 mutex_init(&acpi_debugger.lock); 1041 acpi_debugger_initialized = true; 1042 return 0; 1043 } 1044 #endif 1045 1046 /******************************************************************************* 1047 * 1048 * FUNCTION: acpi_os_execute 1049 * 1050 * PARAMETERS: Type - Type of the callback 1051 * Function - Function to be executed 1052 * Context - Function parameters 1053 * 1054 * RETURN: Status 1055 * 1056 * DESCRIPTION: Depending on type, either queues function for deferred execution or 1057 * immediately executes function on a separate thread. 1058 * 1059 ******************************************************************************/ 1060 1061 acpi_status acpi_os_execute(acpi_execute_type type, 1062 acpi_osd_exec_callback function, void *context) 1063 { 1064 acpi_status status = AE_OK; 1065 struct acpi_os_dpc *dpc; 1066 struct workqueue_struct *queue; 1067 int ret; 1068 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1069 "Scheduling function [%p(%p)] for deferred execution.\n", 1070 function, context)); 1071 1072 if (type == OSL_DEBUGGER_MAIN_THREAD) { 1073 ret = acpi_debugger_create_thread(function, context); 1074 if (ret) { 1075 pr_err("Kernel thread creation failed\n"); 1076 status = AE_ERROR; 1077 } 1078 goto out_thread; 1079 } 1080 1081 /* 1082 * Allocate/initialize DPC structure. Note that this memory will be 1083 * freed by the callee. The kernel handles the work_struct list in a 1084 * way that allows us to also free its memory inside the callee. 1085 * Because we may want to schedule several tasks with different 1086 * parameters we can't use the approach some kernel code uses of 1087 * having a static work_struct. 1088 */ 1089 1090 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); 1091 if (!dpc) 1092 return AE_NO_MEMORY; 1093 1094 dpc->function = function; 1095 dpc->context = context; 1096 1097 /* 1098 * To prevent lockdep from complaining unnecessarily, make sure that 1099 * there is a different static lockdep key for each workqueue by using 1100 * INIT_WORK() for each of them separately. 1101 */ 1102 if (type == OSL_NOTIFY_HANDLER) { 1103 queue = kacpi_notify_wq; 1104 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1105 } else if (type == OSL_GPE_HANDLER) { 1106 queue = kacpid_wq; 1107 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1108 } else { 1109 pr_err("Unsupported os_execute type %d.\n", type); 1110 status = AE_ERROR; 1111 } 1112 1113 if (ACPI_FAILURE(status)) 1114 goto err_workqueue; 1115 1116 /* 1117 * On some machines, a software-initiated SMI causes corruption unless 1118 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but 1119 * typically it's done in GPE-related methods that are run via 1120 * workqueues, so we can avoid the known corruption cases by always 1121 * queueing on CPU 0. 1122 */ 1123 ret = queue_work_on(0, queue, &dpc->work); 1124 if (!ret) { 1125 pr_err("Unable to queue work\n"); 1126 status = AE_ERROR; 1127 } 1128 err_workqueue: 1129 if (ACPI_FAILURE(status)) 1130 kfree(dpc); 1131 out_thread: 1132 return status; 1133 } 1134 EXPORT_SYMBOL(acpi_os_execute); 1135 1136 void acpi_os_wait_events_complete(void) 1137 { 1138 /* 1139 * Make sure the GPE handler or the fixed event handler is not used 1140 * on another CPU after removal. 1141 */ 1142 if (acpi_sci_irq_valid()) 1143 synchronize_hardirq(acpi_sci_irq); 1144 flush_workqueue(kacpid_wq); 1145 flush_workqueue(kacpi_notify_wq); 1146 } 1147 EXPORT_SYMBOL(acpi_os_wait_events_complete); 1148 1149 struct acpi_hp_work { 1150 struct work_struct work; 1151 struct acpi_device *adev; 1152 u32 src; 1153 }; 1154 1155 static void acpi_hotplug_work_fn(struct work_struct *work) 1156 { 1157 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); 1158 1159 acpi_os_wait_events_complete(); 1160 acpi_device_hotplug(hpw->adev, hpw->src); 1161 kfree(hpw); 1162 } 1163 1164 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) 1165 { 1166 struct acpi_hp_work *hpw; 1167 1168 acpi_handle_debug(adev->handle, 1169 "Scheduling hotplug event %u for deferred handling\n", 1170 src); 1171 1172 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); 1173 if (!hpw) 1174 return AE_NO_MEMORY; 1175 1176 INIT_WORK(&hpw->work, acpi_hotplug_work_fn); 1177 hpw->adev = adev; 1178 hpw->src = src; 1179 /* 1180 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because 1181 * the hotplug code may call driver .remove() functions, which may 1182 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush 1183 * these workqueues. 1184 */ 1185 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { 1186 kfree(hpw); 1187 return AE_ERROR; 1188 } 1189 return AE_OK; 1190 } 1191 1192 bool acpi_queue_hotplug_work(struct work_struct *work) 1193 { 1194 return queue_work(kacpi_hotplug_wq, work); 1195 } 1196 1197 acpi_status 1198 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle) 1199 { 1200 struct semaphore *sem = NULL; 1201 1202 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); 1203 if (!sem) 1204 return AE_NO_MEMORY; 1205 1206 sema_init(sem, initial_units); 1207 1208 *handle = (acpi_handle *) sem; 1209 1210 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", 1211 *handle, initial_units)); 1212 1213 return AE_OK; 1214 } 1215 1216 /* 1217 * TODO: A better way to delete semaphores? Linux doesn't have a 1218 * 'delete_semaphore()' function -- may result in an invalid 1219 * pointer dereference for non-synchronized consumers. Should 1220 * we at least check for blocked threads and signal/cancel them? 1221 */ 1222 1223 acpi_status acpi_os_delete_semaphore(acpi_handle handle) 1224 { 1225 struct semaphore *sem = (struct semaphore *)handle; 1226 1227 if (!sem) 1228 return AE_BAD_PARAMETER; 1229 1230 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); 1231 1232 BUG_ON(!list_empty(&sem->wait_list)); 1233 kfree(sem); 1234 sem = NULL; 1235 1236 return AE_OK; 1237 } 1238 1239 /* 1240 * TODO: Support for units > 1? 1241 */ 1242 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) 1243 { 1244 acpi_status status = AE_OK; 1245 struct semaphore *sem = (struct semaphore *)handle; 1246 long jiffies; 1247 int ret = 0; 1248 1249 if (!acpi_os_initialized) 1250 return AE_OK; 1251 1252 if (!sem || (units < 1)) 1253 return AE_BAD_PARAMETER; 1254 1255 if (units > 1) 1256 return AE_SUPPORT; 1257 1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", 1259 handle, units, timeout)); 1260 1261 if (timeout == ACPI_WAIT_FOREVER) 1262 jiffies = MAX_SCHEDULE_TIMEOUT; 1263 else 1264 jiffies = msecs_to_jiffies(timeout); 1265 1266 ret = down_timeout(sem, jiffies); 1267 if (ret) 1268 status = AE_TIME; 1269 1270 if (ACPI_FAILURE(status)) { 1271 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1272 "Failed to acquire semaphore[%p|%d|%d], %s", 1273 handle, units, timeout, 1274 acpi_format_exception(status))); 1275 } else { 1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1277 "Acquired semaphore[%p|%d|%d]", handle, 1278 units, timeout)); 1279 } 1280 1281 return status; 1282 } 1283 1284 /* 1285 * TODO: Support for units > 1? 1286 */ 1287 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) 1288 { 1289 struct semaphore *sem = (struct semaphore *)handle; 1290 1291 if (!acpi_os_initialized) 1292 return AE_OK; 1293 1294 if (!sem || (units < 1)) 1295 return AE_BAD_PARAMETER; 1296 1297 if (units > 1) 1298 return AE_SUPPORT; 1299 1300 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, 1301 units)); 1302 1303 up(sem); 1304 1305 return AE_OK; 1306 } 1307 1308 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read) 1309 { 1310 #ifdef ENABLE_DEBUGGER 1311 if (acpi_in_debugger) { 1312 u32 chars; 1313 1314 kdb_read(buffer, buffer_length); 1315 1316 /* remove the CR kdb includes */ 1317 chars = strlen(buffer) - 1; 1318 buffer[chars] = '\0'; 1319 } 1320 #else 1321 int ret; 1322 1323 ret = acpi_debugger_read_cmd(buffer, buffer_length); 1324 if (ret < 0) 1325 return AE_ERROR; 1326 if (bytes_read) 1327 *bytes_read = ret; 1328 #endif 1329 1330 return AE_OK; 1331 } 1332 EXPORT_SYMBOL(acpi_os_get_line); 1333 1334 acpi_status acpi_os_wait_command_ready(void) 1335 { 1336 int ret; 1337 1338 ret = acpi_debugger_wait_command_ready(); 1339 if (ret < 0) 1340 return AE_ERROR; 1341 return AE_OK; 1342 } 1343 1344 acpi_status acpi_os_notify_command_complete(void) 1345 { 1346 int ret; 1347 1348 ret = acpi_debugger_notify_command_complete(); 1349 if (ret < 0) 1350 return AE_ERROR; 1351 return AE_OK; 1352 } 1353 1354 acpi_status acpi_os_signal(u32 function, void *info) 1355 { 1356 switch (function) { 1357 case ACPI_SIGNAL_FATAL: 1358 pr_err("Fatal opcode executed\n"); 1359 break; 1360 case ACPI_SIGNAL_BREAKPOINT: 1361 /* 1362 * AML Breakpoint 1363 * ACPI spec. says to treat it as a NOP unless 1364 * you are debugging. So if/when we integrate 1365 * AML debugger into the kernel debugger its 1366 * hook will go here. But until then it is 1367 * not useful to print anything on breakpoints. 1368 */ 1369 break; 1370 default: 1371 break; 1372 } 1373 1374 return AE_OK; 1375 } 1376 1377 static int __init acpi_os_name_setup(char *str) 1378 { 1379 char *p = acpi_os_name; 1380 int count = ACPI_MAX_OVERRIDE_LEN - 1; 1381 1382 if (!str || !*str) 1383 return 0; 1384 1385 for (; count-- && *str; str++) { 1386 if (isalnum(*str) || *str == ' ' || *str == ':') 1387 *p++ = *str; 1388 else if (*str == '\'' || *str == '"') 1389 continue; 1390 else 1391 break; 1392 } 1393 *p = 0; 1394 1395 return 1; 1396 1397 } 1398 1399 __setup("acpi_os_name=", acpi_os_name_setup); 1400 1401 /* 1402 * Disable the auto-serialization of named objects creation methods. 1403 * 1404 * This feature is enabled by default. It marks the AML control methods 1405 * that contain the opcodes to create named objects as "Serialized". 1406 */ 1407 static int __init acpi_no_auto_serialize_setup(char *str) 1408 { 1409 acpi_gbl_auto_serialize_methods = FALSE; 1410 pr_info("Auto-serialization disabled\n"); 1411 1412 return 1; 1413 } 1414 1415 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); 1416 1417 /* Check of resource interference between native drivers and ACPI 1418 * OperationRegions (SystemIO and System Memory only). 1419 * IO ports and memory declared in ACPI might be used by the ACPI subsystem 1420 * in arbitrary AML code and can interfere with legacy drivers. 1421 * acpi_enforce_resources= can be set to: 1422 * 1423 * - strict (default) (2) 1424 * -> further driver trying to access the resources will not load 1425 * - lax (1) 1426 * -> further driver trying to access the resources will load, but you 1427 * get a system message that something might go wrong... 1428 * 1429 * - no (0) 1430 * -> ACPI Operation Region resources will not be registered 1431 * 1432 */ 1433 #define ENFORCE_RESOURCES_STRICT 2 1434 #define ENFORCE_RESOURCES_LAX 1 1435 #define ENFORCE_RESOURCES_NO 0 1436 1437 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1438 1439 static int __init acpi_enforce_resources_setup(char *str) 1440 { 1441 if (str == NULL || *str == '\0') 1442 return 0; 1443 1444 if (!strcmp("strict", str)) 1445 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1446 else if (!strcmp("lax", str)) 1447 acpi_enforce_resources = ENFORCE_RESOURCES_LAX; 1448 else if (!strcmp("no", str)) 1449 acpi_enforce_resources = ENFORCE_RESOURCES_NO; 1450 1451 return 1; 1452 } 1453 1454 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); 1455 1456 /* Check for resource conflicts between ACPI OperationRegions and native 1457 * drivers */ 1458 int acpi_check_resource_conflict(const struct resource *res) 1459 { 1460 acpi_adr_space_type space_id; 1461 1462 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) 1463 return 0; 1464 1465 if (res->flags & IORESOURCE_IO) 1466 space_id = ACPI_ADR_SPACE_SYSTEM_IO; 1467 else if (res->flags & IORESOURCE_MEM) 1468 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; 1469 else 1470 return 0; 1471 1472 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1)) 1473 return 0; 1474 1475 pr_info("Resource conflict; ACPI support missing from driver?\n"); 1476 1477 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) 1478 return -EBUSY; 1479 1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) 1481 pr_notice("Resource conflict: System may be unstable or behave erratically\n"); 1482 1483 return 0; 1484 } 1485 EXPORT_SYMBOL(acpi_check_resource_conflict); 1486 1487 int acpi_check_region(resource_size_t start, resource_size_t n, 1488 const char *name) 1489 { 1490 struct resource res = { 1491 .start = start, 1492 .end = start + n - 1, 1493 .name = name, 1494 .flags = IORESOURCE_IO, 1495 }; 1496 1497 return acpi_check_resource_conflict(&res); 1498 } 1499 EXPORT_SYMBOL(acpi_check_region); 1500 1501 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level, 1502 void *_res, void **return_value) 1503 { 1504 struct acpi_mem_space_context **mem_ctx; 1505 union acpi_operand_object *handler_obj; 1506 union acpi_operand_object *region_obj2; 1507 union acpi_operand_object *region_obj; 1508 struct resource *res = _res; 1509 acpi_status status; 1510 1511 region_obj = acpi_ns_get_attached_object(handle); 1512 if (!region_obj) 1513 return AE_OK; 1514 1515 handler_obj = region_obj->region.handler; 1516 if (!handler_obj) 1517 return AE_OK; 1518 1519 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 1520 return AE_OK; 1521 1522 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE)) 1523 return AE_OK; 1524 1525 region_obj2 = acpi_ns_get_secondary_object(region_obj); 1526 if (!region_obj2) 1527 return AE_OK; 1528 1529 mem_ctx = (void *)®ion_obj2->extra.region_context; 1530 1531 if (!(mem_ctx[0]->address >= res->start && 1532 mem_ctx[0]->address < res->end)) 1533 return AE_OK; 1534 1535 status = handler_obj->address_space.setup(region_obj, 1536 ACPI_REGION_DEACTIVATE, 1537 NULL, (void **)mem_ctx); 1538 if (ACPI_SUCCESS(status)) 1539 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE); 1540 1541 return status; 1542 } 1543 1544 /** 1545 * acpi_release_memory - Release any mappings done to a memory region 1546 * @handle: Handle to namespace node 1547 * @res: Memory resource 1548 * @level: A level that terminates the search 1549 * 1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that 1551 * overlap with @res and that have already been activated (mapped). 1552 * 1553 * This is a helper that allows drivers to place special requirements on memory 1554 * region that may overlap with operation regions, primarily allowing them to 1555 * safely map the region as non-cached memory. 1556 * 1557 * The unmapped Operation Regions will be automatically remapped next time they 1558 * are called, so the drivers do not need to do anything else. 1559 */ 1560 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res, 1561 u32 level) 1562 { 1563 acpi_status status; 1564 1565 if (!(res->flags & IORESOURCE_MEM)) 1566 return AE_TYPE; 1567 1568 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level, 1569 acpi_deactivate_mem_region, NULL, 1570 res, NULL); 1571 if (ACPI_FAILURE(status)) 1572 return status; 1573 1574 /* 1575 * Wait for all of the mappings queued up for removal by 1576 * acpi_deactivate_mem_region() to actually go away. 1577 */ 1578 synchronize_rcu(); 1579 rcu_barrier(); 1580 flush_scheduled_work(); 1581 1582 return AE_OK; 1583 } 1584 EXPORT_SYMBOL_GPL(acpi_release_memory); 1585 1586 /* 1587 * Let drivers know whether the resource checks are effective 1588 */ 1589 int acpi_resources_are_enforced(void) 1590 { 1591 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; 1592 } 1593 EXPORT_SYMBOL(acpi_resources_are_enforced); 1594 1595 /* 1596 * Deallocate the memory for a spinlock. 1597 */ 1598 void acpi_os_delete_lock(acpi_spinlock handle) 1599 { 1600 ACPI_FREE(handle); 1601 } 1602 1603 /* 1604 * Acquire a spinlock. 1605 * 1606 * handle is a pointer to the spinlock_t. 1607 */ 1608 1609 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) 1610 __acquires(lockp) 1611 { 1612 acpi_cpu_flags flags; 1613 spin_lock_irqsave(lockp, flags); 1614 return flags; 1615 } 1616 1617 /* 1618 * Release a spinlock. See above. 1619 */ 1620 1621 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags) 1622 __releases(lockp) 1623 { 1624 spin_unlock_irqrestore(lockp, flags); 1625 } 1626 1627 #ifndef ACPI_USE_LOCAL_CACHE 1628 1629 /******************************************************************************* 1630 * 1631 * FUNCTION: acpi_os_create_cache 1632 * 1633 * PARAMETERS: name - Ascii name for the cache 1634 * size - Size of each cached object 1635 * depth - Maximum depth of the cache (in objects) <ignored> 1636 * cache - Where the new cache object is returned 1637 * 1638 * RETURN: status 1639 * 1640 * DESCRIPTION: Create a cache object 1641 * 1642 ******************************************************************************/ 1643 1644 acpi_status 1645 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache) 1646 { 1647 *cache = kmem_cache_create(name, size, 0, 0, NULL); 1648 if (*cache == NULL) 1649 return AE_ERROR; 1650 else 1651 return AE_OK; 1652 } 1653 1654 /******************************************************************************* 1655 * 1656 * FUNCTION: acpi_os_purge_cache 1657 * 1658 * PARAMETERS: Cache - Handle to cache object 1659 * 1660 * RETURN: Status 1661 * 1662 * DESCRIPTION: Free all objects within the requested cache. 1663 * 1664 ******************************************************************************/ 1665 1666 acpi_status acpi_os_purge_cache(acpi_cache_t * cache) 1667 { 1668 kmem_cache_shrink(cache); 1669 return (AE_OK); 1670 } 1671 1672 /******************************************************************************* 1673 * 1674 * FUNCTION: acpi_os_delete_cache 1675 * 1676 * PARAMETERS: Cache - Handle to cache object 1677 * 1678 * RETURN: Status 1679 * 1680 * DESCRIPTION: Free all objects within the requested cache and delete the 1681 * cache object. 1682 * 1683 ******************************************************************************/ 1684 1685 acpi_status acpi_os_delete_cache(acpi_cache_t * cache) 1686 { 1687 kmem_cache_destroy(cache); 1688 return (AE_OK); 1689 } 1690 1691 /******************************************************************************* 1692 * 1693 * FUNCTION: acpi_os_release_object 1694 * 1695 * PARAMETERS: Cache - Handle to cache object 1696 * Object - The object to be released 1697 * 1698 * RETURN: None 1699 * 1700 * DESCRIPTION: Release an object to the specified cache. If cache is full, 1701 * the object is deleted. 1702 * 1703 ******************************************************************************/ 1704 1705 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object) 1706 { 1707 kmem_cache_free(cache, object); 1708 return (AE_OK); 1709 } 1710 #endif 1711 1712 static int __init acpi_no_static_ssdt_setup(char *s) 1713 { 1714 acpi_gbl_disable_ssdt_table_install = TRUE; 1715 pr_info("Static SSDT installation disabled\n"); 1716 1717 return 0; 1718 } 1719 1720 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); 1721 1722 static int __init acpi_disable_return_repair(char *s) 1723 { 1724 pr_notice("Predefined validation mechanism disabled\n"); 1725 acpi_gbl_disable_auto_repair = TRUE; 1726 1727 return 1; 1728 } 1729 1730 __setup("acpica_no_return_repair", acpi_disable_return_repair); 1731 1732 acpi_status __init acpi_os_initialize(void) 1733 { 1734 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1735 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1736 1737 acpi_gbl_xgpe0_block_logical_address = 1738 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); 1739 acpi_gbl_xgpe1_block_logical_address = 1740 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); 1741 1742 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { 1743 /* 1744 * Use acpi_os_map_generic_address to pre-map the reset 1745 * register if it's in system memory. 1746 */ 1747 void *rv; 1748 1749 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); 1750 pr_debug("%s: Reset register mapping %s\n", __func__, 1751 rv ? "successful" : "failed"); 1752 } 1753 acpi_os_initialized = true; 1754 1755 return AE_OK; 1756 } 1757 1758 acpi_status __init acpi_os_initialize1(void) 1759 { 1760 kacpid_wq = alloc_workqueue("kacpid", 0, 1); 1761 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1); 1762 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); 1763 BUG_ON(!kacpid_wq); 1764 BUG_ON(!kacpi_notify_wq); 1765 BUG_ON(!kacpi_hotplug_wq); 1766 acpi_osi_init(); 1767 return AE_OK; 1768 } 1769 1770 acpi_status acpi_os_terminate(void) 1771 { 1772 if (acpi_irq_handler) { 1773 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, 1774 acpi_irq_handler); 1775 } 1776 1777 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); 1778 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); 1779 acpi_gbl_xgpe0_block_logical_address = 0UL; 1780 acpi_gbl_xgpe1_block_logical_address = 0UL; 1781 1782 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1783 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1784 1785 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) 1786 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); 1787 1788 destroy_workqueue(kacpid_wq); 1789 destroy_workqueue(kacpi_notify_wq); 1790 destroy_workqueue(kacpi_hotplug_wq); 1791 1792 return AE_OK; 1793 } 1794 1795 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, 1796 u32 pm1b_control) 1797 { 1798 int rc = 0; 1799 if (__acpi_os_prepare_sleep) 1800 rc = __acpi_os_prepare_sleep(sleep_state, 1801 pm1a_control, pm1b_control); 1802 if (rc < 0) 1803 return AE_ERROR; 1804 else if (rc > 0) 1805 return AE_CTRL_TERMINATE; 1806 1807 return AE_OK; 1808 } 1809 1810 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, 1811 u32 pm1a_ctrl, u32 pm1b_ctrl)) 1812 { 1813 __acpi_os_prepare_sleep = func; 1814 } 1815 1816 #if (ACPI_REDUCED_HARDWARE) 1817 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 1818 u32 val_b) 1819 { 1820 int rc = 0; 1821 if (__acpi_os_prepare_extended_sleep) 1822 rc = __acpi_os_prepare_extended_sleep(sleep_state, 1823 val_a, val_b); 1824 if (rc < 0) 1825 return AE_ERROR; 1826 else if (rc > 0) 1827 return AE_CTRL_TERMINATE; 1828 1829 return AE_OK; 1830 } 1831 #else 1832 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 1833 u32 val_b) 1834 { 1835 return AE_OK; 1836 } 1837 #endif 1838 1839 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, 1840 u32 val_a, u32 val_b)) 1841 { 1842 __acpi_os_prepare_extended_sleep = func; 1843 } 1844 1845 acpi_status acpi_os_enter_sleep(u8 sleep_state, 1846 u32 reg_a_value, u32 reg_b_value) 1847 { 1848 acpi_status status; 1849 1850 if (acpi_gbl_reduced_hardware) 1851 status = acpi_os_prepare_extended_sleep(sleep_state, 1852 reg_a_value, 1853 reg_b_value); 1854 else 1855 status = acpi_os_prepare_sleep(sleep_state, 1856 reg_a_value, reg_b_value); 1857 return status; 1858 } 1859