1 /* 2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $) 3 * 4 * Copyright (C) 2000 Andrew Henroid 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (c) 2008 Intel Corporation 8 * Author: Matthew Wilcox <willy@linux.intel.com> 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 27 * 28 */ 29 30 #include <linux/module.h> 31 #include <linux/kernel.h> 32 #include <linux/slab.h> 33 #include <linux/mm.h> 34 #include <linux/highmem.h> 35 #include <linux/pci.h> 36 #include <linux/interrupt.h> 37 #include <linux/kmod.h> 38 #include <linux/delay.h> 39 #include <linux/workqueue.h> 40 #include <linux/nmi.h> 41 #include <linux/acpi.h> 42 #include <linux/efi.h> 43 #include <linux/ioport.h> 44 #include <linux/list.h> 45 #include <linux/jiffies.h> 46 #include <linux/semaphore.h> 47 48 #include <asm/io.h> 49 #include <asm/uaccess.h> 50 51 #include "internal.h" 52 53 #define _COMPONENT ACPI_OS_SERVICES 54 ACPI_MODULE_NAME("osl"); 55 56 struct acpi_os_dpc { 57 acpi_osd_exec_callback function; 58 void *context; 59 struct work_struct work; 60 }; 61 62 #ifdef CONFIG_ACPI_CUSTOM_DSDT 63 #include CONFIG_ACPI_CUSTOM_DSDT_FILE 64 #endif 65 66 #ifdef ENABLE_DEBUGGER 67 #include <linux/kdb.h> 68 69 /* stuff for debugger support */ 70 int acpi_in_debugger; 71 EXPORT_SYMBOL(acpi_in_debugger); 72 73 extern char line_buf[80]; 74 #endif /*ENABLE_DEBUGGER */ 75 76 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, 77 u32 pm1b_ctrl); 78 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, 79 u32 val_b); 80 81 static acpi_osd_handler acpi_irq_handler; 82 static void *acpi_irq_context; 83 static struct workqueue_struct *kacpid_wq; 84 static struct workqueue_struct *kacpi_notify_wq; 85 static struct workqueue_struct *kacpi_hotplug_wq; 86 87 /* 88 * This list of permanent mappings is for memory that may be accessed from 89 * interrupt context, where we can't do the ioremap(). 90 */ 91 struct acpi_ioremap { 92 struct list_head list; 93 void __iomem *virt; 94 acpi_physical_address phys; 95 acpi_size size; 96 unsigned long refcount; 97 }; 98 99 static LIST_HEAD(acpi_ioremaps); 100 static DEFINE_MUTEX(acpi_ioremap_lock); 101 102 static void __init acpi_osi_setup_late(void); 103 104 /* 105 * The story of _OSI(Linux) 106 * 107 * From pre-history through Linux-2.6.22, 108 * Linux responded TRUE upon a BIOS OSI(Linux) query. 109 * 110 * Unfortunately, reference BIOS writers got wind of this 111 * and put OSI(Linux) in their example code, quickly exposing 112 * this string as ill-conceived and opening the door to 113 * an un-bounded number of BIOS incompatibilities. 114 * 115 * For example, OSI(Linux) was used on resume to re-POST a 116 * video card on one system, because Linux at that time 117 * could not do a speedy restore in its native driver. 118 * But then upon gaining quick native restore capability, 119 * Linux has no way to tell the BIOS to skip the time-consuming 120 * POST -- putting Linux at a permanent performance disadvantage. 121 * On another system, the BIOS writer used OSI(Linux) 122 * to infer native OS support for IPMI! On other systems, 123 * OSI(Linux) simply got in the way of Linux claiming to 124 * be compatible with other operating systems, exposing 125 * BIOS issues such as skipped device initialization. 126 * 127 * So "Linux" turned out to be a really poor chose of 128 * OSI string, and from Linux-2.6.23 onward we respond FALSE. 129 * 130 * BIOS writers should NOT query _OSI(Linux) on future systems. 131 * Linux will complain on the console when it sees it, and return FALSE. 132 * To get Linux to return TRUE for your system will require 133 * a kernel source update to add a DMI entry, 134 * or boot with "acpi_osi=Linux" 135 */ 136 137 static struct osi_linux { 138 unsigned int enable:1; 139 unsigned int dmi:1; 140 unsigned int cmdline:1; 141 unsigned int default_disabling:1; 142 } osi_linux = {0, 0, 0, 0}; 143 144 static u32 acpi_osi_handler(acpi_string interface, u32 supported) 145 { 146 if (!strcmp("Linux", interface)) { 147 148 printk_once(KERN_NOTICE FW_BUG PREFIX 149 "BIOS _OSI(Linux) query %s%s\n", 150 osi_linux.enable ? "honored" : "ignored", 151 osi_linux.cmdline ? " via cmdline" : 152 osi_linux.dmi ? " via DMI" : ""); 153 } 154 155 return supported; 156 } 157 158 static void __init acpi_request_region (struct acpi_generic_address *gas, 159 unsigned int length, char *desc) 160 { 161 u64 addr; 162 163 /* Handle possible alignment issues */ 164 memcpy(&addr, &gas->address, sizeof(addr)); 165 if (!addr || !length) 166 return; 167 168 /* Resources are never freed */ 169 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) 170 request_region(addr, length, desc); 171 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 172 request_mem_region(addr, length, desc); 173 } 174 175 static int __init acpi_reserve_resources(void) 176 { 177 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, 178 "ACPI PM1a_EVT_BLK"); 179 180 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, 181 "ACPI PM1b_EVT_BLK"); 182 183 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, 184 "ACPI PM1a_CNT_BLK"); 185 186 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, 187 "ACPI PM1b_CNT_BLK"); 188 189 if (acpi_gbl_FADT.pm_timer_length == 4) 190 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); 191 192 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, 193 "ACPI PM2_CNT_BLK"); 194 195 /* Length of GPE blocks must be a non-negative multiple of 2 */ 196 197 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) 198 acpi_request_region(&acpi_gbl_FADT.xgpe0_block, 199 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); 200 201 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) 202 acpi_request_region(&acpi_gbl_FADT.xgpe1_block, 203 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); 204 205 return 0; 206 } 207 device_initcall(acpi_reserve_resources); 208 209 void acpi_os_printf(const char *fmt, ...) 210 { 211 va_list args; 212 va_start(args, fmt); 213 acpi_os_vprintf(fmt, args); 214 va_end(args); 215 } 216 217 void acpi_os_vprintf(const char *fmt, va_list args) 218 { 219 static char buffer[512]; 220 221 vsprintf(buffer, fmt, args); 222 223 #ifdef ENABLE_DEBUGGER 224 if (acpi_in_debugger) { 225 kdb_printf("%s", buffer); 226 } else { 227 printk(KERN_CONT "%s", buffer); 228 } 229 #else 230 printk(KERN_CONT "%s", buffer); 231 #endif 232 } 233 234 #ifdef CONFIG_KEXEC 235 static unsigned long acpi_rsdp; 236 static int __init setup_acpi_rsdp(char *arg) 237 { 238 if (kstrtoul(arg, 16, &acpi_rsdp)) 239 return -EINVAL; 240 return 0; 241 } 242 early_param("acpi_rsdp", setup_acpi_rsdp); 243 #endif 244 245 acpi_physical_address __init acpi_os_get_root_pointer(void) 246 { 247 #ifdef CONFIG_KEXEC 248 if (acpi_rsdp) 249 return acpi_rsdp; 250 #endif 251 252 if (efi_enabled(EFI_CONFIG_TABLES)) { 253 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) 254 return efi.acpi20; 255 else if (efi.acpi != EFI_INVALID_TABLE_ADDR) 256 return efi.acpi; 257 else { 258 printk(KERN_ERR PREFIX 259 "System description tables not found\n"); 260 return 0; 261 } 262 } else { 263 acpi_physical_address pa = 0; 264 265 acpi_find_root_pointer(&pa); 266 return pa; 267 } 268 } 269 270 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 271 static struct acpi_ioremap * 272 acpi_map_lookup(acpi_physical_address phys, acpi_size size) 273 { 274 struct acpi_ioremap *map; 275 276 list_for_each_entry_rcu(map, &acpi_ioremaps, list) 277 if (map->phys <= phys && 278 phys + size <= map->phys + map->size) 279 return map; 280 281 return NULL; 282 } 283 284 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 285 static void __iomem * 286 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) 287 { 288 struct acpi_ioremap *map; 289 290 map = acpi_map_lookup(phys, size); 291 if (map) 292 return map->virt + (phys - map->phys); 293 294 return NULL; 295 } 296 297 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) 298 { 299 struct acpi_ioremap *map; 300 void __iomem *virt = NULL; 301 302 mutex_lock(&acpi_ioremap_lock); 303 map = acpi_map_lookup(phys, size); 304 if (map) { 305 virt = map->virt + (phys - map->phys); 306 map->refcount++; 307 } 308 mutex_unlock(&acpi_ioremap_lock); 309 return virt; 310 } 311 EXPORT_SYMBOL_GPL(acpi_os_get_iomem); 312 313 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ 314 static struct acpi_ioremap * 315 acpi_map_lookup_virt(void __iomem *virt, acpi_size size) 316 { 317 struct acpi_ioremap *map; 318 319 list_for_each_entry_rcu(map, &acpi_ioremaps, list) 320 if (map->virt <= virt && 321 virt + size <= map->virt + map->size) 322 return map; 323 324 return NULL; 325 } 326 327 #ifndef CONFIG_IA64 328 #define should_use_kmap(pfn) page_is_ram(pfn) 329 #else 330 /* ioremap will take care of cache attributes */ 331 #define should_use_kmap(pfn) 0 332 #endif 333 334 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz) 335 { 336 unsigned long pfn; 337 338 pfn = pg_off >> PAGE_SHIFT; 339 if (should_use_kmap(pfn)) { 340 if (pg_sz > PAGE_SIZE) 341 return NULL; 342 return (void __iomem __force *)kmap(pfn_to_page(pfn)); 343 } else 344 return acpi_os_ioremap(pg_off, pg_sz); 345 } 346 347 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) 348 { 349 unsigned long pfn; 350 351 pfn = pg_off >> PAGE_SHIFT; 352 if (should_use_kmap(pfn)) 353 kunmap(pfn_to_page(pfn)); 354 else 355 iounmap(vaddr); 356 } 357 358 void __iomem *__init_refok 359 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) 360 { 361 struct acpi_ioremap *map; 362 void __iomem *virt; 363 acpi_physical_address pg_off; 364 acpi_size pg_sz; 365 366 if (phys > ULONG_MAX) { 367 printk(KERN_ERR PREFIX "Cannot map memory that high\n"); 368 return NULL; 369 } 370 371 if (!acpi_gbl_permanent_mmap) 372 return __acpi_map_table((unsigned long)phys, size); 373 374 mutex_lock(&acpi_ioremap_lock); 375 /* Check if there's a suitable mapping already. */ 376 map = acpi_map_lookup(phys, size); 377 if (map) { 378 map->refcount++; 379 goto out; 380 } 381 382 map = kzalloc(sizeof(*map), GFP_KERNEL); 383 if (!map) { 384 mutex_unlock(&acpi_ioremap_lock); 385 return NULL; 386 } 387 388 pg_off = round_down(phys, PAGE_SIZE); 389 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; 390 virt = acpi_map(pg_off, pg_sz); 391 if (!virt) { 392 mutex_unlock(&acpi_ioremap_lock); 393 kfree(map); 394 return NULL; 395 } 396 397 INIT_LIST_HEAD(&map->list); 398 map->virt = virt; 399 map->phys = pg_off; 400 map->size = pg_sz; 401 map->refcount = 1; 402 403 list_add_tail_rcu(&map->list, &acpi_ioremaps); 404 405 out: 406 mutex_unlock(&acpi_ioremap_lock); 407 return map->virt + (phys - map->phys); 408 } 409 EXPORT_SYMBOL_GPL(acpi_os_map_iomem); 410 411 void *__init_refok 412 acpi_os_map_memory(acpi_physical_address phys, acpi_size size) 413 { 414 return (void *)acpi_os_map_iomem(phys, size); 415 } 416 EXPORT_SYMBOL_GPL(acpi_os_map_memory); 417 418 static void acpi_os_drop_map_ref(struct acpi_ioremap *map) 419 { 420 if (!--map->refcount) 421 list_del_rcu(&map->list); 422 } 423 424 static void acpi_os_map_cleanup(struct acpi_ioremap *map) 425 { 426 if (!map->refcount) { 427 synchronize_rcu(); 428 acpi_unmap(map->phys, map->virt); 429 kfree(map); 430 } 431 } 432 433 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) 434 { 435 struct acpi_ioremap *map; 436 437 if (!acpi_gbl_permanent_mmap) { 438 __acpi_unmap_table(virt, size); 439 return; 440 } 441 442 mutex_lock(&acpi_ioremap_lock); 443 map = acpi_map_lookup_virt(virt, size); 444 if (!map) { 445 mutex_unlock(&acpi_ioremap_lock); 446 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt); 447 return; 448 } 449 acpi_os_drop_map_ref(map); 450 mutex_unlock(&acpi_ioremap_lock); 451 452 acpi_os_map_cleanup(map); 453 } 454 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); 455 456 void __ref acpi_os_unmap_memory(void *virt, acpi_size size) 457 { 458 return acpi_os_unmap_iomem((void __iomem *)virt, size); 459 } 460 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); 461 462 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size) 463 { 464 if (!acpi_gbl_permanent_mmap) 465 __acpi_unmap_table(virt, size); 466 } 467 468 int acpi_os_map_generic_address(struct acpi_generic_address *gas) 469 { 470 u64 addr; 471 void __iomem *virt; 472 473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 474 return 0; 475 476 /* Handle possible alignment issues */ 477 memcpy(&addr, &gas->address, sizeof(addr)); 478 if (!addr || !gas->bit_width) 479 return -EINVAL; 480 481 virt = acpi_os_map_iomem(addr, gas->bit_width / 8); 482 if (!virt) 483 return -EIO; 484 485 return 0; 486 } 487 EXPORT_SYMBOL(acpi_os_map_generic_address); 488 489 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) 490 { 491 u64 addr; 492 struct acpi_ioremap *map; 493 494 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) 495 return; 496 497 /* Handle possible alignment issues */ 498 memcpy(&addr, &gas->address, sizeof(addr)); 499 if (!addr || !gas->bit_width) 500 return; 501 502 mutex_lock(&acpi_ioremap_lock); 503 map = acpi_map_lookup(addr, gas->bit_width / 8); 504 if (!map) { 505 mutex_unlock(&acpi_ioremap_lock); 506 return; 507 } 508 acpi_os_drop_map_ref(map); 509 mutex_unlock(&acpi_ioremap_lock); 510 511 acpi_os_map_cleanup(map); 512 } 513 EXPORT_SYMBOL(acpi_os_unmap_generic_address); 514 515 #ifdef ACPI_FUTURE_USAGE 516 acpi_status 517 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys) 518 { 519 if (!phys || !virt) 520 return AE_BAD_PARAMETER; 521 522 *phys = virt_to_phys(virt); 523 524 return AE_OK; 525 } 526 #endif 527 528 #define ACPI_MAX_OVERRIDE_LEN 100 529 530 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; 531 532 acpi_status 533 acpi_os_predefined_override(const struct acpi_predefined_names *init_val, 534 acpi_string * new_val) 535 { 536 if (!init_val || !new_val) 537 return AE_BAD_PARAMETER; 538 539 *new_val = NULL; 540 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { 541 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n", 542 acpi_os_name); 543 *new_val = acpi_os_name; 544 } 545 546 return AE_OK; 547 } 548 549 #ifdef CONFIG_ACPI_INITRD_TABLE_OVERRIDE 550 #include <linux/earlycpio.h> 551 #include <linux/memblock.h> 552 553 static u64 acpi_tables_addr; 554 static int all_tables_size; 555 556 /* Copied from acpica/tbutils.c:acpi_tb_checksum() */ 557 static u8 __init acpi_table_checksum(u8 *buffer, u32 length) 558 { 559 u8 sum = 0; 560 u8 *end = buffer + length; 561 562 while (buffer < end) 563 sum = (u8) (sum + *(buffer++)); 564 return sum; 565 } 566 567 /* All but ACPI_SIG_RSDP and ACPI_SIG_FACS: */ 568 static const char * const table_sigs[] = { 569 ACPI_SIG_BERT, ACPI_SIG_CPEP, ACPI_SIG_ECDT, ACPI_SIG_EINJ, 570 ACPI_SIG_ERST, ACPI_SIG_HEST, ACPI_SIG_MADT, ACPI_SIG_MSCT, 571 ACPI_SIG_SBST, ACPI_SIG_SLIT, ACPI_SIG_SRAT, ACPI_SIG_ASF, 572 ACPI_SIG_BOOT, ACPI_SIG_DBGP, ACPI_SIG_DMAR, ACPI_SIG_HPET, 573 ACPI_SIG_IBFT, ACPI_SIG_IVRS, ACPI_SIG_MCFG, ACPI_SIG_MCHI, 574 ACPI_SIG_SLIC, ACPI_SIG_SPCR, ACPI_SIG_SPMI, ACPI_SIG_TCPA, 575 ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT, 576 ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT, 577 ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, NULL }; 578 579 #define ACPI_HEADER_SIZE sizeof(struct acpi_table_header) 580 581 #define ACPI_OVERRIDE_TABLES 64 582 static struct cpio_data __initdata acpi_initrd_files[ACPI_OVERRIDE_TABLES]; 583 584 #define MAP_CHUNK_SIZE (NR_FIX_BTMAPS << PAGE_SHIFT) 585 586 void __init acpi_initrd_override(void *data, size_t size) 587 { 588 int sig, no, table_nr = 0, total_offset = 0; 589 long offset = 0; 590 struct acpi_table_header *table; 591 char cpio_path[32] = "kernel/firmware/acpi/"; 592 struct cpio_data file; 593 594 if (data == NULL || size == 0) 595 return; 596 597 for (no = 0; no < ACPI_OVERRIDE_TABLES; no++) { 598 file = find_cpio_data(cpio_path, data, size, &offset); 599 if (!file.data) 600 break; 601 602 data += offset; 603 size -= offset; 604 605 if (file.size < sizeof(struct acpi_table_header)) { 606 pr_err("ACPI OVERRIDE: Table smaller than ACPI header [%s%s]\n", 607 cpio_path, file.name); 608 continue; 609 } 610 611 table = file.data; 612 613 for (sig = 0; table_sigs[sig]; sig++) 614 if (!memcmp(table->signature, table_sigs[sig], 4)) 615 break; 616 617 if (!table_sigs[sig]) { 618 pr_err("ACPI OVERRIDE: Unknown signature [%s%s]\n", 619 cpio_path, file.name); 620 continue; 621 } 622 if (file.size != table->length) { 623 pr_err("ACPI OVERRIDE: File length does not match table length [%s%s]\n", 624 cpio_path, file.name); 625 continue; 626 } 627 if (acpi_table_checksum(file.data, table->length)) { 628 pr_err("ACPI OVERRIDE: Bad table checksum [%s%s]\n", 629 cpio_path, file.name); 630 continue; 631 } 632 633 pr_info("%4.4s ACPI table found in initrd [%s%s][0x%x]\n", 634 table->signature, cpio_path, file.name, table->length); 635 636 all_tables_size += table->length; 637 acpi_initrd_files[table_nr].data = file.data; 638 acpi_initrd_files[table_nr].size = file.size; 639 table_nr++; 640 } 641 if (table_nr == 0) 642 return; 643 644 acpi_tables_addr = 645 memblock_find_in_range(0, max_low_pfn_mapped << PAGE_SHIFT, 646 all_tables_size, PAGE_SIZE); 647 if (!acpi_tables_addr) { 648 WARN_ON(1); 649 return; 650 } 651 /* 652 * Only calling e820_add_reserve does not work and the 653 * tables are invalid (memory got used) later. 654 * memblock_reserve works as expected and the tables won't get modified. 655 * But it's not enough on X86 because ioremap will 656 * complain later (used by acpi_os_map_memory) that the pages 657 * that should get mapped are not marked "reserved". 658 * Both memblock_reserve and e820_add_region (via arch_reserve_mem_area) 659 * works fine. 660 */ 661 memblock_reserve(acpi_tables_addr, all_tables_size); 662 arch_reserve_mem_area(acpi_tables_addr, all_tables_size); 663 664 /* 665 * early_ioremap only can remap 256k one time. If we map all 666 * tables one time, we will hit the limit. Need to map chunks 667 * one by one during copying the same as that in relocate_initrd(). 668 */ 669 for (no = 0; no < table_nr; no++) { 670 unsigned char *src_p = acpi_initrd_files[no].data; 671 phys_addr_t size = acpi_initrd_files[no].size; 672 phys_addr_t dest_addr = acpi_tables_addr + total_offset; 673 phys_addr_t slop, clen; 674 char *dest_p; 675 676 total_offset += size; 677 678 while (size) { 679 slop = dest_addr & ~PAGE_MASK; 680 clen = size; 681 if (clen > MAP_CHUNK_SIZE - slop) 682 clen = MAP_CHUNK_SIZE - slop; 683 dest_p = early_ioremap(dest_addr & PAGE_MASK, 684 clen + slop); 685 memcpy(dest_p + slop, src_p, clen); 686 early_iounmap(dest_p, clen + slop); 687 src_p += clen; 688 dest_addr += clen; 689 size -= clen; 690 } 691 } 692 } 693 #endif /* CONFIG_ACPI_INITRD_TABLE_OVERRIDE */ 694 695 static void acpi_table_taint(struct acpi_table_header *table) 696 { 697 pr_warn(PREFIX 698 "Override [%4.4s-%8.8s], this is unsafe: tainting kernel\n", 699 table->signature, table->oem_table_id); 700 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE, LOCKDEP_NOW_UNRELIABLE); 701 } 702 703 704 acpi_status 705 acpi_os_table_override(struct acpi_table_header * existing_table, 706 struct acpi_table_header ** new_table) 707 { 708 if (!existing_table || !new_table) 709 return AE_BAD_PARAMETER; 710 711 *new_table = NULL; 712 713 #ifdef CONFIG_ACPI_CUSTOM_DSDT 714 if (strncmp(existing_table->signature, "DSDT", 4) == 0) 715 *new_table = (struct acpi_table_header *)AmlCode; 716 #endif 717 if (*new_table != NULL) 718 acpi_table_taint(existing_table); 719 return AE_OK; 720 } 721 722 acpi_status 723 acpi_os_physical_table_override(struct acpi_table_header *existing_table, 724 acpi_physical_address *address, 725 u32 *table_length) 726 { 727 #ifndef CONFIG_ACPI_INITRD_TABLE_OVERRIDE 728 *table_length = 0; 729 *address = 0; 730 return AE_OK; 731 #else 732 int table_offset = 0; 733 struct acpi_table_header *table; 734 735 *table_length = 0; 736 *address = 0; 737 738 if (!acpi_tables_addr) 739 return AE_OK; 740 741 do { 742 if (table_offset + ACPI_HEADER_SIZE > all_tables_size) { 743 WARN_ON(1); 744 return AE_OK; 745 } 746 747 table = acpi_os_map_memory(acpi_tables_addr + table_offset, 748 ACPI_HEADER_SIZE); 749 750 if (table_offset + table->length > all_tables_size) { 751 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE); 752 WARN_ON(1); 753 return AE_OK; 754 } 755 756 table_offset += table->length; 757 758 if (memcmp(existing_table->signature, table->signature, 4)) { 759 acpi_os_unmap_memory(table, 760 ACPI_HEADER_SIZE); 761 continue; 762 } 763 764 /* Only override tables with matching oem id */ 765 if (memcmp(table->oem_table_id, existing_table->oem_table_id, 766 ACPI_OEM_TABLE_ID_SIZE)) { 767 acpi_os_unmap_memory(table, 768 ACPI_HEADER_SIZE); 769 continue; 770 } 771 772 table_offset -= table->length; 773 *table_length = table->length; 774 acpi_os_unmap_memory(table, ACPI_HEADER_SIZE); 775 *address = acpi_tables_addr + table_offset; 776 break; 777 } while (table_offset + ACPI_HEADER_SIZE < all_tables_size); 778 779 if (*address != 0) 780 acpi_table_taint(existing_table); 781 return AE_OK; 782 #endif 783 } 784 785 static irqreturn_t acpi_irq(int irq, void *dev_id) 786 { 787 u32 handled; 788 789 handled = (*acpi_irq_handler) (acpi_irq_context); 790 791 if (handled) { 792 acpi_irq_handled++; 793 return IRQ_HANDLED; 794 } else { 795 acpi_irq_not_handled++; 796 return IRQ_NONE; 797 } 798 } 799 800 acpi_status 801 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, 802 void *context) 803 { 804 unsigned int irq; 805 806 acpi_irq_stats_init(); 807 808 /* 809 * ACPI interrupts different from the SCI in our copy of the FADT are 810 * not supported. 811 */ 812 if (gsi != acpi_gbl_FADT.sci_interrupt) 813 return AE_BAD_PARAMETER; 814 815 if (acpi_irq_handler) 816 return AE_ALREADY_ACQUIRED; 817 818 if (acpi_gsi_to_irq(gsi, &irq) < 0) { 819 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n", 820 gsi); 821 return AE_OK; 822 } 823 824 acpi_irq_handler = handler; 825 acpi_irq_context = context; 826 if (request_irq(irq, acpi_irq, IRQF_SHARED | IRQF_NO_SUSPEND, "acpi", acpi_irq)) { 827 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq); 828 acpi_irq_handler = NULL; 829 return AE_NOT_ACQUIRED; 830 } 831 832 return AE_OK; 833 } 834 835 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler) 836 { 837 if (irq != acpi_gbl_FADT.sci_interrupt) 838 return AE_BAD_PARAMETER; 839 840 free_irq(irq, acpi_irq); 841 acpi_irq_handler = NULL; 842 843 return AE_OK; 844 } 845 846 /* 847 * Running in interpreter thread context, safe to sleep 848 */ 849 850 void acpi_os_sleep(u64 ms) 851 { 852 msleep(ms); 853 } 854 855 void acpi_os_stall(u32 us) 856 { 857 while (us) { 858 u32 delay = 1000; 859 860 if (delay > us) 861 delay = us; 862 udelay(delay); 863 touch_nmi_watchdog(); 864 us -= delay; 865 } 866 } 867 868 /* 869 * Support ACPI 3.0 AML Timer operand 870 * Returns 64-bit free-running, monotonically increasing timer 871 * with 100ns granularity 872 */ 873 u64 acpi_os_get_timer(void) 874 { 875 u64 time_ns = ktime_to_ns(ktime_get()); 876 do_div(time_ns, 100); 877 return time_ns; 878 } 879 880 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width) 881 { 882 u32 dummy; 883 884 if (!value) 885 value = &dummy; 886 887 *value = 0; 888 if (width <= 8) { 889 *(u8 *) value = inb(port); 890 } else if (width <= 16) { 891 *(u16 *) value = inw(port); 892 } else if (width <= 32) { 893 *(u32 *) value = inl(port); 894 } else { 895 BUG(); 896 } 897 898 return AE_OK; 899 } 900 901 EXPORT_SYMBOL(acpi_os_read_port); 902 903 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) 904 { 905 if (width <= 8) { 906 outb(value, port); 907 } else if (width <= 16) { 908 outw(value, port); 909 } else if (width <= 32) { 910 outl(value, port); 911 } else { 912 BUG(); 913 } 914 915 return AE_OK; 916 } 917 918 EXPORT_SYMBOL(acpi_os_write_port); 919 920 #ifdef readq 921 static inline u64 read64(const volatile void __iomem *addr) 922 { 923 return readq(addr); 924 } 925 #else 926 static inline u64 read64(const volatile void __iomem *addr) 927 { 928 u64 l, h; 929 l = readl(addr); 930 h = readl(addr+4); 931 return l | (h << 32); 932 } 933 #endif 934 935 acpi_status 936 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) 937 { 938 void __iomem *virt_addr; 939 unsigned int size = width / 8; 940 bool unmap = false; 941 u64 dummy; 942 943 rcu_read_lock(); 944 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 945 if (!virt_addr) { 946 rcu_read_unlock(); 947 virt_addr = acpi_os_ioremap(phys_addr, size); 948 if (!virt_addr) 949 return AE_BAD_ADDRESS; 950 unmap = true; 951 } 952 953 if (!value) 954 value = &dummy; 955 956 switch (width) { 957 case 8: 958 *(u8 *) value = readb(virt_addr); 959 break; 960 case 16: 961 *(u16 *) value = readw(virt_addr); 962 break; 963 case 32: 964 *(u32 *) value = readl(virt_addr); 965 break; 966 case 64: 967 *(u64 *) value = read64(virt_addr); 968 break; 969 default: 970 BUG(); 971 } 972 973 if (unmap) 974 iounmap(virt_addr); 975 else 976 rcu_read_unlock(); 977 978 return AE_OK; 979 } 980 981 #ifdef writeq 982 static inline void write64(u64 val, volatile void __iomem *addr) 983 { 984 writeq(val, addr); 985 } 986 #else 987 static inline void write64(u64 val, volatile void __iomem *addr) 988 { 989 writel(val, addr); 990 writel(val>>32, addr+4); 991 } 992 #endif 993 994 acpi_status 995 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) 996 { 997 void __iomem *virt_addr; 998 unsigned int size = width / 8; 999 bool unmap = false; 1000 1001 rcu_read_lock(); 1002 virt_addr = acpi_map_vaddr_lookup(phys_addr, size); 1003 if (!virt_addr) { 1004 rcu_read_unlock(); 1005 virt_addr = acpi_os_ioremap(phys_addr, size); 1006 if (!virt_addr) 1007 return AE_BAD_ADDRESS; 1008 unmap = true; 1009 } 1010 1011 switch (width) { 1012 case 8: 1013 writeb(value, virt_addr); 1014 break; 1015 case 16: 1016 writew(value, virt_addr); 1017 break; 1018 case 32: 1019 writel(value, virt_addr); 1020 break; 1021 case 64: 1022 write64(value, virt_addr); 1023 break; 1024 default: 1025 BUG(); 1026 } 1027 1028 if (unmap) 1029 iounmap(virt_addr); 1030 else 1031 rcu_read_unlock(); 1032 1033 return AE_OK; 1034 } 1035 1036 acpi_status 1037 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, 1038 u64 *value, u32 width) 1039 { 1040 int result, size; 1041 u32 value32; 1042 1043 if (!value) 1044 return AE_BAD_PARAMETER; 1045 1046 switch (width) { 1047 case 8: 1048 size = 1; 1049 break; 1050 case 16: 1051 size = 2; 1052 break; 1053 case 32: 1054 size = 4; 1055 break; 1056 default: 1057 return AE_ERROR; 1058 } 1059 1060 result = raw_pci_read(pci_id->segment, pci_id->bus, 1061 PCI_DEVFN(pci_id->device, pci_id->function), 1062 reg, size, &value32); 1063 *value = value32; 1064 1065 return (result ? AE_ERROR : AE_OK); 1066 } 1067 1068 acpi_status 1069 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, 1070 u64 value, u32 width) 1071 { 1072 int result, size; 1073 1074 switch (width) { 1075 case 8: 1076 size = 1; 1077 break; 1078 case 16: 1079 size = 2; 1080 break; 1081 case 32: 1082 size = 4; 1083 break; 1084 default: 1085 return AE_ERROR; 1086 } 1087 1088 result = raw_pci_write(pci_id->segment, pci_id->bus, 1089 PCI_DEVFN(pci_id->device, pci_id->function), 1090 reg, size, value); 1091 1092 return (result ? AE_ERROR : AE_OK); 1093 } 1094 1095 static void acpi_os_execute_deferred(struct work_struct *work) 1096 { 1097 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); 1098 1099 dpc->function(dpc->context); 1100 kfree(dpc); 1101 } 1102 1103 /******************************************************************************* 1104 * 1105 * FUNCTION: acpi_os_execute 1106 * 1107 * PARAMETERS: Type - Type of the callback 1108 * Function - Function to be executed 1109 * Context - Function parameters 1110 * 1111 * RETURN: Status 1112 * 1113 * DESCRIPTION: Depending on type, either queues function for deferred execution or 1114 * immediately executes function on a separate thread. 1115 * 1116 ******************************************************************************/ 1117 1118 acpi_status acpi_os_execute(acpi_execute_type type, 1119 acpi_osd_exec_callback function, void *context) 1120 { 1121 acpi_status status = AE_OK; 1122 struct acpi_os_dpc *dpc; 1123 struct workqueue_struct *queue; 1124 int ret; 1125 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1126 "Scheduling function [%p(%p)] for deferred execution.\n", 1127 function, context)); 1128 1129 /* 1130 * Allocate/initialize DPC structure. Note that this memory will be 1131 * freed by the callee. The kernel handles the work_struct list in a 1132 * way that allows us to also free its memory inside the callee. 1133 * Because we may want to schedule several tasks with different 1134 * parameters we can't use the approach some kernel code uses of 1135 * having a static work_struct. 1136 */ 1137 1138 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); 1139 if (!dpc) 1140 return AE_NO_MEMORY; 1141 1142 dpc->function = function; 1143 dpc->context = context; 1144 1145 /* 1146 * To prevent lockdep from complaining unnecessarily, make sure that 1147 * there is a different static lockdep key for each workqueue by using 1148 * INIT_WORK() for each of them separately. 1149 */ 1150 if (type == OSL_NOTIFY_HANDLER) { 1151 queue = kacpi_notify_wq; 1152 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1153 } else { 1154 queue = kacpid_wq; 1155 INIT_WORK(&dpc->work, acpi_os_execute_deferred); 1156 } 1157 1158 /* 1159 * On some machines, a software-initiated SMI causes corruption unless 1160 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but 1161 * typically it's done in GPE-related methods that are run via 1162 * workqueues, so we can avoid the known corruption cases by always 1163 * queueing on CPU 0. 1164 */ 1165 ret = queue_work_on(0, queue, &dpc->work); 1166 1167 if (!ret) { 1168 printk(KERN_ERR PREFIX 1169 "Call to queue_work() failed.\n"); 1170 status = AE_ERROR; 1171 kfree(dpc); 1172 } 1173 return status; 1174 } 1175 EXPORT_SYMBOL(acpi_os_execute); 1176 1177 void acpi_os_wait_events_complete(void) 1178 { 1179 flush_workqueue(kacpid_wq); 1180 flush_workqueue(kacpi_notify_wq); 1181 } 1182 1183 struct acpi_hp_work { 1184 struct work_struct work; 1185 struct acpi_device *adev; 1186 u32 src; 1187 }; 1188 1189 static void acpi_hotplug_work_fn(struct work_struct *work) 1190 { 1191 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); 1192 1193 acpi_os_wait_events_complete(); 1194 acpi_device_hotplug(hpw->adev, hpw->src); 1195 kfree(hpw); 1196 } 1197 1198 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) 1199 { 1200 struct acpi_hp_work *hpw; 1201 1202 ACPI_DEBUG_PRINT((ACPI_DB_EXEC, 1203 "Scheduling hotplug event (%p, %u) for deferred execution.\n", 1204 adev, src)); 1205 1206 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); 1207 if (!hpw) 1208 return AE_NO_MEMORY; 1209 1210 INIT_WORK(&hpw->work, acpi_hotplug_work_fn); 1211 hpw->adev = adev; 1212 hpw->src = src; 1213 /* 1214 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because 1215 * the hotplug code may call driver .remove() functions, which may 1216 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush 1217 * these workqueues. 1218 */ 1219 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { 1220 kfree(hpw); 1221 return AE_ERROR; 1222 } 1223 return AE_OK; 1224 } 1225 1226 bool acpi_queue_hotplug_work(struct work_struct *work) 1227 { 1228 return queue_work(kacpi_hotplug_wq, work); 1229 } 1230 1231 acpi_status 1232 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle) 1233 { 1234 struct semaphore *sem = NULL; 1235 1236 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); 1237 if (!sem) 1238 return AE_NO_MEMORY; 1239 1240 sema_init(sem, initial_units); 1241 1242 *handle = (acpi_handle *) sem; 1243 1244 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", 1245 *handle, initial_units)); 1246 1247 return AE_OK; 1248 } 1249 1250 /* 1251 * TODO: A better way to delete semaphores? Linux doesn't have a 1252 * 'delete_semaphore()' function -- may result in an invalid 1253 * pointer dereference for non-synchronized consumers. Should 1254 * we at least check for blocked threads and signal/cancel them? 1255 */ 1256 1257 acpi_status acpi_os_delete_semaphore(acpi_handle handle) 1258 { 1259 struct semaphore *sem = (struct semaphore *)handle; 1260 1261 if (!sem) 1262 return AE_BAD_PARAMETER; 1263 1264 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); 1265 1266 BUG_ON(!list_empty(&sem->wait_list)); 1267 kfree(sem); 1268 sem = NULL; 1269 1270 return AE_OK; 1271 } 1272 1273 /* 1274 * TODO: Support for units > 1? 1275 */ 1276 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) 1277 { 1278 acpi_status status = AE_OK; 1279 struct semaphore *sem = (struct semaphore *)handle; 1280 long jiffies; 1281 int ret = 0; 1282 1283 if (!sem || (units < 1)) 1284 return AE_BAD_PARAMETER; 1285 1286 if (units > 1) 1287 return AE_SUPPORT; 1288 1289 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", 1290 handle, units, timeout)); 1291 1292 if (timeout == ACPI_WAIT_FOREVER) 1293 jiffies = MAX_SCHEDULE_TIMEOUT; 1294 else 1295 jiffies = msecs_to_jiffies(timeout); 1296 1297 ret = down_timeout(sem, jiffies); 1298 if (ret) 1299 status = AE_TIME; 1300 1301 if (ACPI_FAILURE(status)) { 1302 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1303 "Failed to acquire semaphore[%p|%d|%d], %s", 1304 handle, units, timeout, 1305 acpi_format_exception(status))); 1306 } else { 1307 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, 1308 "Acquired semaphore[%p|%d|%d]", handle, 1309 units, timeout)); 1310 } 1311 1312 return status; 1313 } 1314 1315 /* 1316 * TODO: Support for units > 1? 1317 */ 1318 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) 1319 { 1320 struct semaphore *sem = (struct semaphore *)handle; 1321 1322 if (!sem || (units < 1)) 1323 return AE_BAD_PARAMETER; 1324 1325 if (units > 1) 1326 return AE_SUPPORT; 1327 1328 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, 1329 units)); 1330 1331 up(sem); 1332 1333 return AE_OK; 1334 } 1335 1336 #ifdef ACPI_FUTURE_USAGE 1337 u32 acpi_os_get_line(char *buffer) 1338 { 1339 1340 #ifdef ENABLE_DEBUGGER 1341 if (acpi_in_debugger) { 1342 u32 chars; 1343 1344 kdb_read(buffer, sizeof(line_buf)); 1345 1346 /* remove the CR kdb includes */ 1347 chars = strlen(buffer) - 1; 1348 buffer[chars] = '\0'; 1349 } 1350 #endif 1351 1352 return 0; 1353 } 1354 #endif /* ACPI_FUTURE_USAGE */ 1355 1356 acpi_status acpi_os_signal(u32 function, void *info) 1357 { 1358 switch (function) { 1359 case ACPI_SIGNAL_FATAL: 1360 printk(KERN_ERR PREFIX "Fatal opcode executed\n"); 1361 break; 1362 case ACPI_SIGNAL_BREAKPOINT: 1363 /* 1364 * AML Breakpoint 1365 * ACPI spec. says to treat it as a NOP unless 1366 * you are debugging. So if/when we integrate 1367 * AML debugger into the kernel debugger its 1368 * hook will go here. But until then it is 1369 * not useful to print anything on breakpoints. 1370 */ 1371 break; 1372 default: 1373 break; 1374 } 1375 1376 return AE_OK; 1377 } 1378 1379 static int __init acpi_os_name_setup(char *str) 1380 { 1381 char *p = acpi_os_name; 1382 int count = ACPI_MAX_OVERRIDE_LEN - 1; 1383 1384 if (!str || !*str) 1385 return 0; 1386 1387 for (; count-- && *str; str++) { 1388 if (isalnum(*str) || *str == ' ' || *str == ':') 1389 *p++ = *str; 1390 else if (*str == '\'' || *str == '"') 1391 continue; 1392 else 1393 break; 1394 } 1395 *p = 0; 1396 1397 return 1; 1398 1399 } 1400 1401 __setup("acpi_os_name=", acpi_os_name_setup); 1402 1403 #define OSI_STRING_LENGTH_MAX 64 /* arbitrary */ 1404 #define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */ 1405 1406 struct osi_setup_entry { 1407 char string[OSI_STRING_LENGTH_MAX]; 1408 bool enable; 1409 }; 1410 1411 static struct osi_setup_entry 1412 osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = { 1413 {"Module Device", true}, 1414 {"Processor Device", true}, 1415 {"3.0 _SCP Extensions", true}, 1416 {"Processor Aggregator Device", true}, 1417 }; 1418 1419 void __init acpi_osi_setup(char *str) 1420 { 1421 struct osi_setup_entry *osi; 1422 bool enable = true; 1423 int i; 1424 1425 if (!acpi_gbl_create_osi_method) 1426 return; 1427 1428 if (str == NULL || *str == '\0') { 1429 printk(KERN_INFO PREFIX "_OSI method disabled\n"); 1430 acpi_gbl_create_osi_method = FALSE; 1431 return; 1432 } 1433 1434 if (*str == '!') { 1435 str++; 1436 if (*str == '\0') { 1437 osi_linux.default_disabling = 1; 1438 return; 1439 } else if (*str == '*') { 1440 acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS); 1441 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1442 osi = &osi_setup_entries[i]; 1443 osi->enable = false; 1444 } 1445 return; 1446 } 1447 enable = false; 1448 } 1449 1450 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1451 osi = &osi_setup_entries[i]; 1452 if (!strcmp(osi->string, str)) { 1453 osi->enable = enable; 1454 break; 1455 } else if (osi->string[0] == '\0') { 1456 osi->enable = enable; 1457 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX); 1458 break; 1459 } 1460 } 1461 } 1462 1463 static void __init set_osi_linux(unsigned int enable) 1464 { 1465 if (osi_linux.enable != enable) 1466 osi_linux.enable = enable; 1467 1468 if (osi_linux.enable) 1469 acpi_osi_setup("Linux"); 1470 else 1471 acpi_osi_setup("!Linux"); 1472 1473 return; 1474 } 1475 1476 static void __init acpi_cmdline_osi_linux(unsigned int enable) 1477 { 1478 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */ 1479 osi_linux.dmi = 0; 1480 set_osi_linux(enable); 1481 1482 return; 1483 } 1484 1485 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d) 1486 { 1487 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident); 1488 1489 if (enable == -1) 1490 return; 1491 1492 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */ 1493 set_osi_linux(enable); 1494 1495 return; 1496 } 1497 1498 /* 1499 * Modify the list of "OS Interfaces" reported to BIOS via _OSI 1500 * 1501 * empty string disables _OSI 1502 * string starting with '!' disables that string 1503 * otherwise string is added to list, augmenting built-in strings 1504 */ 1505 static void __init acpi_osi_setup_late(void) 1506 { 1507 struct osi_setup_entry *osi; 1508 char *str; 1509 int i; 1510 acpi_status status; 1511 1512 if (osi_linux.default_disabling) { 1513 status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS); 1514 1515 if (ACPI_SUCCESS(status)) 1516 printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n"); 1517 } 1518 1519 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { 1520 osi = &osi_setup_entries[i]; 1521 str = osi->string; 1522 1523 if (*str == '\0') 1524 break; 1525 if (osi->enable) { 1526 status = acpi_install_interface(str); 1527 1528 if (ACPI_SUCCESS(status)) 1529 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str); 1530 } else { 1531 status = acpi_remove_interface(str); 1532 1533 if (ACPI_SUCCESS(status)) 1534 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str); 1535 } 1536 } 1537 } 1538 1539 static int __init osi_setup(char *str) 1540 { 1541 if (str && !strcmp("Linux", str)) 1542 acpi_cmdline_osi_linux(1); 1543 else if (str && !strcmp("!Linux", str)) 1544 acpi_cmdline_osi_linux(0); 1545 else 1546 acpi_osi_setup(str); 1547 1548 return 1; 1549 } 1550 1551 __setup("acpi_osi=", osi_setup); 1552 1553 /* 1554 * Disable the auto-serialization of named objects creation methods. 1555 * 1556 * This feature is enabled by default. It marks the AML control methods 1557 * that contain the opcodes to create named objects as "Serialized". 1558 */ 1559 static int __init acpi_no_auto_serialize_setup(char *str) 1560 { 1561 acpi_gbl_auto_serialize_methods = FALSE; 1562 pr_info("ACPI: auto-serialization disabled\n"); 1563 1564 return 1; 1565 } 1566 1567 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); 1568 1569 /* Check of resource interference between native drivers and ACPI 1570 * OperationRegions (SystemIO and System Memory only). 1571 * IO ports and memory declared in ACPI might be used by the ACPI subsystem 1572 * in arbitrary AML code and can interfere with legacy drivers. 1573 * acpi_enforce_resources= can be set to: 1574 * 1575 * - strict (default) (2) 1576 * -> further driver trying to access the resources will not load 1577 * - lax (1) 1578 * -> further driver trying to access the resources will load, but you 1579 * get a system message that something might go wrong... 1580 * 1581 * - no (0) 1582 * -> ACPI Operation Region resources will not be registered 1583 * 1584 */ 1585 #define ENFORCE_RESOURCES_STRICT 2 1586 #define ENFORCE_RESOURCES_LAX 1 1587 #define ENFORCE_RESOURCES_NO 0 1588 1589 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1590 1591 static int __init acpi_enforce_resources_setup(char *str) 1592 { 1593 if (str == NULL || *str == '\0') 1594 return 0; 1595 1596 if (!strcmp("strict", str)) 1597 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; 1598 else if (!strcmp("lax", str)) 1599 acpi_enforce_resources = ENFORCE_RESOURCES_LAX; 1600 else if (!strcmp("no", str)) 1601 acpi_enforce_resources = ENFORCE_RESOURCES_NO; 1602 1603 return 1; 1604 } 1605 1606 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); 1607 1608 /* Check for resource conflicts between ACPI OperationRegions and native 1609 * drivers */ 1610 int acpi_check_resource_conflict(const struct resource *res) 1611 { 1612 acpi_adr_space_type space_id; 1613 acpi_size length; 1614 u8 warn = 0; 1615 int clash = 0; 1616 1617 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) 1618 return 0; 1619 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM)) 1620 return 0; 1621 1622 if (res->flags & IORESOURCE_IO) 1623 space_id = ACPI_ADR_SPACE_SYSTEM_IO; 1624 else 1625 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; 1626 1627 length = resource_size(res); 1628 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) 1629 warn = 1; 1630 clash = acpi_check_address_range(space_id, res->start, length, warn); 1631 1632 if (clash) { 1633 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) { 1634 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) 1635 printk(KERN_NOTICE "ACPI: This conflict may" 1636 " cause random problems and system" 1637 " instability\n"); 1638 printk(KERN_INFO "ACPI: If an ACPI driver is available" 1639 " for this device, you should use it instead of" 1640 " the native driver\n"); 1641 } 1642 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) 1643 return -EBUSY; 1644 } 1645 return 0; 1646 } 1647 EXPORT_SYMBOL(acpi_check_resource_conflict); 1648 1649 int acpi_check_region(resource_size_t start, resource_size_t n, 1650 const char *name) 1651 { 1652 struct resource res = { 1653 .start = start, 1654 .end = start + n - 1, 1655 .name = name, 1656 .flags = IORESOURCE_IO, 1657 }; 1658 1659 return acpi_check_resource_conflict(&res); 1660 } 1661 EXPORT_SYMBOL(acpi_check_region); 1662 1663 /* 1664 * Let drivers know whether the resource checks are effective 1665 */ 1666 int acpi_resources_are_enforced(void) 1667 { 1668 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; 1669 } 1670 EXPORT_SYMBOL(acpi_resources_are_enforced); 1671 1672 /* 1673 * Deallocate the memory for a spinlock. 1674 */ 1675 void acpi_os_delete_lock(acpi_spinlock handle) 1676 { 1677 ACPI_FREE(handle); 1678 } 1679 1680 /* 1681 * Acquire a spinlock. 1682 * 1683 * handle is a pointer to the spinlock_t. 1684 */ 1685 1686 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) 1687 { 1688 acpi_cpu_flags flags; 1689 spin_lock_irqsave(lockp, flags); 1690 return flags; 1691 } 1692 1693 /* 1694 * Release a spinlock. See above. 1695 */ 1696 1697 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags) 1698 { 1699 spin_unlock_irqrestore(lockp, flags); 1700 } 1701 1702 #ifndef ACPI_USE_LOCAL_CACHE 1703 1704 /******************************************************************************* 1705 * 1706 * FUNCTION: acpi_os_create_cache 1707 * 1708 * PARAMETERS: name - Ascii name for the cache 1709 * size - Size of each cached object 1710 * depth - Maximum depth of the cache (in objects) <ignored> 1711 * cache - Where the new cache object is returned 1712 * 1713 * RETURN: status 1714 * 1715 * DESCRIPTION: Create a cache object 1716 * 1717 ******************************************************************************/ 1718 1719 acpi_status 1720 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache) 1721 { 1722 *cache = kmem_cache_create(name, size, 0, 0, NULL); 1723 if (*cache == NULL) 1724 return AE_ERROR; 1725 else 1726 return AE_OK; 1727 } 1728 1729 /******************************************************************************* 1730 * 1731 * FUNCTION: acpi_os_purge_cache 1732 * 1733 * PARAMETERS: Cache - Handle to cache object 1734 * 1735 * RETURN: Status 1736 * 1737 * DESCRIPTION: Free all objects within the requested cache. 1738 * 1739 ******************************************************************************/ 1740 1741 acpi_status acpi_os_purge_cache(acpi_cache_t * cache) 1742 { 1743 kmem_cache_shrink(cache); 1744 return (AE_OK); 1745 } 1746 1747 /******************************************************************************* 1748 * 1749 * FUNCTION: acpi_os_delete_cache 1750 * 1751 * PARAMETERS: Cache - Handle to cache object 1752 * 1753 * RETURN: Status 1754 * 1755 * DESCRIPTION: Free all objects within the requested cache and delete the 1756 * cache object. 1757 * 1758 ******************************************************************************/ 1759 1760 acpi_status acpi_os_delete_cache(acpi_cache_t * cache) 1761 { 1762 kmem_cache_destroy(cache); 1763 return (AE_OK); 1764 } 1765 1766 /******************************************************************************* 1767 * 1768 * FUNCTION: acpi_os_release_object 1769 * 1770 * PARAMETERS: Cache - Handle to cache object 1771 * Object - The object to be released 1772 * 1773 * RETURN: None 1774 * 1775 * DESCRIPTION: Release an object to the specified cache. If cache is full, 1776 * the object is deleted. 1777 * 1778 ******************************************************************************/ 1779 1780 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object) 1781 { 1782 kmem_cache_free(cache, object); 1783 return (AE_OK); 1784 } 1785 #endif 1786 1787 static int __init acpi_no_static_ssdt_setup(char *s) 1788 { 1789 acpi_gbl_disable_ssdt_table_install = TRUE; 1790 pr_info("ACPI: static SSDT installation disabled\n"); 1791 1792 return 0; 1793 } 1794 1795 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); 1796 1797 static int __init acpi_disable_return_repair(char *s) 1798 { 1799 printk(KERN_NOTICE PREFIX 1800 "ACPI: Predefined validation mechanism disabled\n"); 1801 acpi_gbl_disable_auto_repair = TRUE; 1802 1803 return 1; 1804 } 1805 1806 __setup("acpica_no_return_repair", acpi_disable_return_repair); 1807 1808 acpi_status __init acpi_os_initialize(void) 1809 { 1810 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1811 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1812 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); 1813 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); 1814 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { 1815 /* 1816 * Use acpi_os_map_generic_address to pre-map the reset 1817 * register if it's in system memory. 1818 */ 1819 int rv; 1820 1821 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); 1822 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv); 1823 } 1824 1825 return AE_OK; 1826 } 1827 1828 acpi_status __init acpi_os_initialize1(void) 1829 { 1830 kacpid_wq = alloc_workqueue("kacpid", 0, 1); 1831 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1); 1832 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); 1833 BUG_ON(!kacpid_wq); 1834 BUG_ON(!kacpi_notify_wq); 1835 BUG_ON(!kacpi_hotplug_wq); 1836 acpi_install_interface_handler(acpi_osi_handler); 1837 acpi_osi_setup_late(); 1838 return AE_OK; 1839 } 1840 1841 acpi_status acpi_os_terminate(void) 1842 { 1843 if (acpi_irq_handler) { 1844 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, 1845 acpi_irq_handler); 1846 } 1847 1848 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); 1849 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); 1850 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); 1851 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); 1852 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) 1853 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); 1854 1855 destroy_workqueue(kacpid_wq); 1856 destroy_workqueue(kacpi_notify_wq); 1857 destroy_workqueue(kacpi_hotplug_wq); 1858 1859 return AE_OK; 1860 } 1861 1862 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, 1863 u32 pm1b_control) 1864 { 1865 int rc = 0; 1866 if (__acpi_os_prepare_sleep) 1867 rc = __acpi_os_prepare_sleep(sleep_state, 1868 pm1a_control, pm1b_control); 1869 if (rc < 0) 1870 return AE_ERROR; 1871 else if (rc > 0) 1872 return AE_CTRL_SKIP; 1873 1874 return AE_OK; 1875 } 1876 1877 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, 1878 u32 pm1a_ctrl, u32 pm1b_ctrl)) 1879 { 1880 __acpi_os_prepare_sleep = func; 1881 } 1882 1883 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, 1884 u32 val_b) 1885 { 1886 int rc = 0; 1887 if (__acpi_os_prepare_extended_sleep) 1888 rc = __acpi_os_prepare_extended_sleep(sleep_state, 1889 val_a, val_b); 1890 if (rc < 0) 1891 return AE_ERROR; 1892 else if (rc > 0) 1893 return AE_CTRL_SKIP; 1894 1895 return AE_OK; 1896 } 1897 1898 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, 1899 u32 val_a, u32 val_b)) 1900 { 1901 __acpi_os_prepare_extended_sleep = func; 1902 } 1903