xref: /openbmc/linux/drivers/acpi/osl.c (revision c40d04df)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/highmem.h>
35 #include <linux/pci.h>
36 #include <linux/interrupt.h>
37 #include <linux/kmod.h>
38 #include <linux/delay.h>
39 #include <linux/workqueue.h>
40 #include <linux/nmi.h>
41 #include <linux/acpi.h>
42 #include <linux/acpi_io.h>
43 #include <linux/efi.h>
44 #include <linux/ioport.h>
45 #include <linux/list.h>
46 #include <linux/jiffies.h>
47 #include <linux/semaphore.h>
48 
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 
52 #include <acpi/acpi.h>
53 #include <acpi/acpi_bus.h>
54 #include <acpi/processor.h>
55 
56 #define _COMPONENT		ACPI_OS_SERVICES
57 ACPI_MODULE_NAME("osl");
58 #define PREFIX		"ACPI: "
59 struct acpi_os_dpc {
60 	acpi_osd_exec_callback function;
61 	void *context;
62 	struct work_struct work;
63 	int wait;
64 };
65 
66 #ifdef CONFIG_ACPI_CUSTOM_DSDT
67 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
68 #endif
69 
70 #ifdef ENABLE_DEBUGGER
71 #include <linux/kdb.h>
72 
73 /* stuff for debugger support */
74 int acpi_in_debugger;
75 EXPORT_SYMBOL(acpi_in_debugger);
76 
77 extern char line_buf[80];
78 #endif				/*ENABLE_DEBUGGER */
79 
80 static acpi_osd_handler acpi_irq_handler;
81 static void *acpi_irq_context;
82 static struct workqueue_struct *kacpid_wq;
83 static struct workqueue_struct *kacpi_notify_wq;
84 struct workqueue_struct *kacpi_hotplug_wq;
85 EXPORT_SYMBOL(kacpi_hotplug_wq);
86 
87 /*
88  * This list of permanent mappings is for memory that may be accessed from
89  * interrupt context, where we can't do the ioremap().
90  */
91 struct acpi_ioremap {
92 	struct list_head list;
93 	void __iomem *virt;
94 	acpi_physical_address phys;
95 	acpi_size size;
96 	unsigned long refcount;
97 };
98 
99 static LIST_HEAD(acpi_ioremaps);
100 static DEFINE_MUTEX(acpi_ioremap_lock);
101 
102 static void __init acpi_osi_setup_late(void);
103 
104 /*
105  * The story of _OSI(Linux)
106  *
107  * From pre-history through Linux-2.6.22,
108  * Linux responded TRUE upon a BIOS OSI(Linux) query.
109  *
110  * Unfortunately, reference BIOS writers got wind of this
111  * and put OSI(Linux) in their example code, quickly exposing
112  * this string as ill-conceived and opening the door to
113  * an un-bounded number of BIOS incompatibilities.
114  *
115  * For example, OSI(Linux) was used on resume to re-POST a
116  * video card on one system, because Linux at that time
117  * could not do a speedy restore in its native driver.
118  * But then upon gaining quick native restore capability,
119  * Linux has no way to tell the BIOS to skip the time-consuming
120  * POST -- putting Linux at a permanent performance disadvantage.
121  * On another system, the BIOS writer used OSI(Linux)
122  * to infer native OS support for IPMI!  On other systems,
123  * OSI(Linux) simply got in the way of Linux claiming to
124  * be compatible with other operating systems, exposing
125  * BIOS issues such as skipped device initialization.
126  *
127  * So "Linux" turned out to be a really poor chose of
128  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
129  *
130  * BIOS writers should NOT query _OSI(Linux) on future systems.
131  * Linux will complain on the console when it sees it, and return FALSE.
132  * To get Linux to return TRUE for your system  will require
133  * a kernel source update to add a DMI entry,
134  * or boot with "acpi_osi=Linux"
135  */
136 
137 static struct osi_linux {
138 	unsigned int	enable:1;
139 	unsigned int	dmi:1;
140 	unsigned int	cmdline:1;
141 } osi_linux = {0, 0, 0};
142 
143 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
144 {
145 	if (!strcmp("Linux", interface)) {
146 
147 		printk_once(KERN_NOTICE FW_BUG PREFIX
148 			"BIOS _OSI(Linux) query %s%s\n",
149 			osi_linux.enable ? "honored" : "ignored",
150 			osi_linux.cmdline ? " via cmdline" :
151 			osi_linux.dmi ? " via DMI" : "");
152 	}
153 
154 	return supported;
155 }
156 
157 static void __init acpi_request_region (struct acpi_generic_address *gas,
158 	unsigned int length, char *desc)
159 {
160 	u64 addr;
161 
162 	/* Handle possible alignment issues */
163 	memcpy(&addr, &gas->address, sizeof(addr));
164 	if (!addr || !length)
165 		return;
166 
167 	/* Resources are never freed */
168 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
169 		request_region(addr, length, desc);
170 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
171 		request_mem_region(addr, length, desc);
172 }
173 
174 static int __init acpi_reserve_resources(void)
175 {
176 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
177 		"ACPI PM1a_EVT_BLK");
178 
179 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
180 		"ACPI PM1b_EVT_BLK");
181 
182 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
183 		"ACPI PM1a_CNT_BLK");
184 
185 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
186 		"ACPI PM1b_CNT_BLK");
187 
188 	if (acpi_gbl_FADT.pm_timer_length == 4)
189 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
190 
191 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
192 		"ACPI PM2_CNT_BLK");
193 
194 	/* Length of GPE blocks must be a non-negative multiple of 2 */
195 
196 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
197 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
198 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
199 
200 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
201 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
202 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
203 
204 	return 0;
205 }
206 device_initcall(acpi_reserve_resources);
207 
208 void acpi_os_printf(const char *fmt, ...)
209 {
210 	va_list args;
211 	va_start(args, fmt);
212 	acpi_os_vprintf(fmt, args);
213 	va_end(args);
214 }
215 
216 void acpi_os_vprintf(const char *fmt, va_list args)
217 {
218 	static char buffer[512];
219 
220 	vsprintf(buffer, fmt, args);
221 
222 #ifdef ENABLE_DEBUGGER
223 	if (acpi_in_debugger) {
224 		kdb_printf("%s", buffer);
225 	} else {
226 		printk(KERN_CONT "%s", buffer);
227 	}
228 #else
229 	printk(KERN_CONT "%s", buffer);
230 #endif
231 }
232 
233 #ifdef CONFIG_KEXEC
234 static unsigned long acpi_rsdp;
235 static int __init setup_acpi_rsdp(char *arg)
236 {
237 	acpi_rsdp = simple_strtoul(arg, NULL, 16);
238 	return 0;
239 }
240 early_param("acpi_rsdp", setup_acpi_rsdp);
241 #endif
242 
243 acpi_physical_address __init acpi_os_get_root_pointer(void)
244 {
245 #ifdef CONFIG_KEXEC
246 	if (acpi_rsdp)
247 		return acpi_rsdp;
248 #endif
249 
250 	if (efi_enabled) {
251 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
252 			return efi.acpi20;
253 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
254 			return efi.acpi;
255 		else {
256 			printk(KERN_ERR PREFIX
257 			       "System description tables not found\n");
258 			return 0;
259 		}
260 	} else {
261 		acpi_physical_address pa = 0;
262 
263 		acpi_find_root_pointer(&pa);
264 		return pa;
265 	}
266 }
267 
268 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
269 static struct acpi_ioremap *
270 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
271 {
272 	struct acpi_ioremap *map;
273 
274 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
275 		if (map->phys <= phys &&
276 		    phys + size <= map->phys + map->size)
277 			return map;
278 
279 	return NULL;
280 }
281 
282 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
283 static void __iomem *
284 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
285 {
286 	struct acpi_ioremap *map;
287 
288 	map = acpi_map_lookup(phys, size);
289 	if (map)
290 		return map->virt + (phys - map->phys);
291 
292 	return NULL;
293 }
294 
295 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
296 {
297 	struct acpi_ioremap *map;
298 	void __iomem *virt = NULL;
299 
300 	mutex_lock(&acpi_ioremap_lock);
301 	map = acpi_map_lookup(phys, size);
302 	if (map) {
303 		virt = map->virt + (phys - map->phys);
304 		map->refcount++;
305 	}
306 	mutex_unlock(&acpi_ioremap_lock);
307 	return virt;
308 }
309 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
310 
311 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
312 static struct acpi_ioremap *
313 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
314 {
315 	struct acpi_ioremap *map;
316 
317 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
318 		if (map->virt <= virt &&
319 		    virt + size <= map->virt + map->size)
320 			return map;
321 
322 	return NULL;
323 }
324 
325 #ifndef CONFIG_IA64
326 #define should_use_kmap(pfn)   page_is_ram(pfn)
327 #else
328 /* ioremap will take care of cache attributes */
329 #define should_use_kmap(pfn)   0
330 #endif
331 
332 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
333 {
334 	unsigned long pfn;
335 
336 	pfn = pg_off >> PAGE_SHIFT;
337 	if (should_use_kmap(pfn)) {
338 		if (pg_sz > PAGE_SIZE)
339 			return NULL;
340 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
341 	} else
342 		return acpi_os_ioremap(pg_off, pg_sz);
343 }
344 
345 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
346 {
347 	unsigned long pfn;
348 
349 	pfn = pg_off >> PAGE_SHIFT;
350 	if (page_is_ram(pfn))
351 		kunmap(pfn_to_page(pfn));
352 	else
353 		iounmap(vaddr);
354 }
355 
356 void __iomem *__init_refok
357 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
358 {
359 	struct acpi_ioremap *map;
360 	void __iomem *virt;
361 	acpi_physical_address pg_off;
362 	acpi_size pg_sz;
363 
364 	if (phys > ULONG_MAX) {
365 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
366 		return NULL;
367 	}
368 
369 	if (!acpi_gbl_permanent_mmap)
370 		return __acpi_map_table((unsigned long)phys, size);
371 
372 	mutex_lock(&acpi_ioremap_lock);
373 	/* Check if there's a suitable mapping already. */
374 	map = acpi_map_lookup(phys, size);
375 	if (map) {
376 		map->refcount++;
377 		goto out;
378 	}
379 
380 	map = kzalloc(sizeof(*map), GFP_KERNEL);
381 	if (!map) {
382 		mutex_unlock(&acpi_ioremap_lock);
383 		return NULL;
384 	}
385 
386 	pg_off = round_down(phys, PAGE_SIZE);
387 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
388 	virt = acpi_map(pg_off, pg_sz);
389 	if (!virt) {
390 		mutex_unlock(&acpi_ioremap_lock);
391 		kfree(map);
392 		return NULL;
393 	}
394 
395 	INIT_LIST_HEAD(&map->list);
396 	map->virt = virt;
397 	map->phys = pg_off;
398 	map->size = pg_sz;
399 	map->refcount = 1;
400 
401 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
402 
403  out:
404 	mutex_unlock(&acpi_ioremap_lock);
405 	return map->virt + (phys - map->phys);
406 }
407 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
408 
409 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
410 {
411 	if (!--map->refcount)
412 		list_del_rcu(&map->list);
413 }
414 
415 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
416 {
417 	if (!map->refcount) {
418 		synchronize_rcu();
419 		acpi_unmap(map->phys, map->virt);
420 		kfree(map);
421 	}
422 }
423 
424 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
425 {
426 	struct acpi_ioremap *map;
427 
428 	if (!acpi_gbl_permanent_mmap) {
429 		__acpi_unmap_table(virt, size);
430 		return;
431 	}
432 
433 	mutex_lock(&acpi_ioremap_lock);
434 	map = acpi_map_lookup_virt(virt, size);
435 	if (!map) {
436 		mutex_unlock(&acpi_ioremap_lock);
437 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
438 		return;
439 	}
440 	acpi_os_drop_map_ref(map);
441 	mutex_unlock(&acpi_ioremap_lock);
442 
443 	acpi_os_map_cleanup(map);
444 }
445 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
446 
447 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
448 {
449 	if (!acpi_gbl_permanent_mmap)
450 		__acpi_unmap_table(virt, size);
451 }
452 
453 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
454 {
455 	u64 addr;
456 	void __iomem *virt;
457 
458 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
459 		return 0;
460 
461 	/* Handle possible alignment issues */
462 	memcpy(&addr, &gas->address, sizeof(addr));
463 	if (!addr || !gas->bit_width)
464 		return -EINVAL;
465 
466 	virt = acpi_os_map_memory(addr, gas->bit_width / 8);
467 	if (!virt)
468 		return -EIO;
469 
470 	return 0;
471 }
472 EXPORT_SYMBOL(acpi_os_map_generic_address);
473 
474 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
475 {
476 	u64 addr;
477 	struct acpi_ioremap *map;
478 
479 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
480 		return;
481 
482 	/* Handle possible alignment issues */
483 	memcpy(&addr, &gas->address, sizeof(addr));
484 	if (!addr || !gas->bit_width)
485 		return;
486 
487 	mutex_lock(&acpi_ioremap_lock);
488 	map = acpi_map_lookup(addr, gas->bit_width / 8);
489 	if (!map) {
490 		mutex_unlock(&acpi_ioremap_lock);
491 		return;
492 	}
493 	acpi_os_drop_map_ref(map);
494 	mutex_unlock(&acpi_ioremap_lock);
495 
496 	acpi_os_map_cleanup(map);
497 }
498 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
499 
500 #ifdef ACPI_FUTURE_USAGE
501 acpi_status
502 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
503 {
504 	if (!phys || !virt)
505 		return AE_BAD_PARAMETER;
506 
507 	*phys = virt_to_phys(virt);
508 
509 	return AE_OK;
510 }
511 #endif
512 
513 #define ACPI_MAX_OVERRIDE_LEN 100
514 
515 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
516 
517 acpi_status
518 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
519 			    acpi_string * new_val)
520 {
521 	if (!init_val || !new_val)
522 		return AE_BAD_PARAMETER;
523 
524 	*new_val = NULL;
525 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
526 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
527 		       acpi_os_name);
528 		*new_val = acpi_os_name;
529 	}
530 
531 	return AE_OK;
532 }
533 
534 acpi_status
535 acpi_os_table_override(struct acpi_table_header * existing_table,
536 		       struct acpi_table_header ** new_table)
537 {
538 	if (!existing_table || !new_table)
539 		return AE_BAD_PARAMETER;
540 
541 	*new_table = NULL;
542 
543 #ifdef CONFIG_ACPI_CUSTOM_DSDT
544 	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
545 		*new_table = (struct acpi_table_header *)AmlCode;
546 #endif
547 	if (*new_table != NULL) {
548 		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
549 			   "this is unsafe: tainting kernel\n",
550 		       existing_table->signature,
551 		       existing_table->oem_table_id);
552 		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
553 	}
554 	return AE_OK;
555 }
556 
557 static irqreturn_t acpi_irq(int irq, void *dev_id)
558 {
559 	u32 handled;
560 
561 	handled = (*acpi_irq_handler) (acpi_irq_context);
562 
563 	if (handled) {
564 		acpi_irq_handled++;
565 		return IRQ_HANDLED;
566 	} else {
567 		acpi_irq_not_handled++;
568 		return IRQ_NONE;
569 	}
570 }
571 
572 acpi_status
573 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
574 				  void *context)
575 {
576 	unsigned int irq;
577 
578 	acpi_irq_stats_init();
579 
580 	/*
581 	 * ACPI interrupts different from the SCI in our copy of the FADT are
582 	 * not supported.
583 	 */
584 	if (gsi != acpi_gbl_FADT.sci_interrupt)
585 		return AE_BAD_PARAMETER;
586 
587 	if (acpi_irq_handler)
588 		return AE_ALREADY_ACQUIRED;
589 
590 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
591 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
592 		       gsi);
593 		return AE_OK;
594 	}
595 
596 	acpi_irq_handler = handler;
597 	acpi_irq_context = context;
598 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
599 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
600 		acpi_irq_handler = NULL;
601 		return AE_NOT_ACQUIRED;
602 	}
603 
604 	return AE_OK;
605 }
606 
607 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
608 {
609 	if (irq != acpi_gbl_FADT.sci_interrupt)
610 		return AE_BAD_PARAMETER;
611 
612 	free_irq(irq, acpi_irq);
613 	acpi_irq_handler = NULL;
614 
615 	return AE_OK;
616 }
617 
618 /*
619  * Running in interpreter thread context, safe to sleep
620  */
621 
622 void acpi_os_sleep(u64 ms)
623 {
624 	schedule_timeout_interruptible(msecs_to_jiffies(ms));
625 }
626 
627 void acpi_os_stall(u32 us)
628 {
629 	while (us) {
630 		u32 delay = 1000;
631 
632 		if (delay > us)
633 			delay = us;
634 		udelay(delay);
635 		touch_nmi_watchdog();
636 		us -= delay;
637 	}
638 }
639 
640 /*
641  * Support ACPI 3.0 AML Timer operand
642  * Returns 64-bit free-running, monotonically increasing timer
643  * with 100ns granularity
644  */
645 u64 acpi_os_get_timer(void)
646 {
647 	static u64 t;
648 
649 #ifdef	CONFIG_HPET
650 	/* TBD: use HPET if available */
651 #endif
652 
653 #ifdef	CONFIG_X86_PM_TIMER
654 	/* TBD: default to PM timer if HPET was not available */
655 #endif
656 	if (!t)
657 		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
658 
659 	return ++t;
660 }
661 
662 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
663 {
664 	u32 dummy;
665 
666 	if (!value)
667 		value = &dummy;
668 
669 	*value = 0;
670 	if (width <= 8) {
671 		*(u8 *) value = inb(port);
672 	} else if (width <= 16) {
673 		*(u16 *) value = inw(port);
674 	} else if (width <= 32) {
675 		*(u32 *) value = inl(port);
676 	} else {
677 		BUG();
678 	}
679 
680 	return AE_OK;
681 }
682 
683 EXPORT_SYMBOL(acpi_os_read_port);
684 
685 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
686 {
687 	if (width <= 8) {
688 		outb(value, port);
689 	} else if (width <= 16) {
690 		outw(value, port);
691 	} else if (width <= 32) {
692 		outl(value, port);
693 	} else {
694 		BUG();
695 	}
696 
697 	return AE_OK;
698 }
699 
700 EXPORT_SYMBOL(acpi_os_write_port);
701 
702 acpi_status
703 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
704 {
705 	void __iomem *virt_addr;
706 	unsigned int size = width / 8;
707 	bool unmap = false;
708 	u32 dummy;
709 
710 	rcu_read_lock();
711 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
712 	if (!virt_addr) {
713 		rcu_read_unlock();
714 		virt_addr = acpi_os_ioremap(phys_addr, size);
715 		if (!virt_addr)
716 			return AE_BAD_ADDRESS;
717 		unmap = true;
718 	}
719 
720 	if (!value)
721 		value = &dummy;
722 
723 	switch (width) {
724 	case 8:
725 		*(u8 *) value = readb(virt_addr);
726 		break;
727 	case 16:
728 		*(u16 *) value = readw(virt_addr);
729 		break;
730 	case 32:
731 		*(u32 *) value = readl(virt_addr);
732 		break;
733 	default:
734 		BUG();
735 	}
736 
737 	if (unmap)
738 		iounmap(virt_addr);
739 	else
740 		rcu_read_unlock();
741 
742 	return AE_OK;
743 }
744 
745 #ifdef readq
746 static inline u64 read64(const volatile void __iomem *addr)
747 {
748 	return readq(addr);
749 }
750 #else
751 static inline u64 read64(const volatile void __iomem *addr)
752 {
753 	u64 l, h;
754 	l = readl(addr);
755 	h = readl(addr+4);
756 	return l | (h << 32);
757 }
758 #endif
759 
760 acpi_status
761 acpi_os_read_memory64(acpi_physical_address phys_addr, u64 *value, u32 width)
762 {
763 	void __iomem *virt_addr;
764 	unsigned int size = width / 8;
765 	bool unmap = false;
766 	u64 dummy;
767 
768 	rcu_read_lock();
769 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
770 	if (!virt_addr) {
771 		rcu_read_unlock();
772 		virt_addr = acpi_os_ioremap(phys_addr, size);
773 		if (!virt_addr)
774 			return AE_BAD_ADDRESS;
775 		unmap = true;
776 	}
777 
778 	if (!value)
779 		value = &dummy;
780 
781 	switch (width) {
782 	case 8:
783 		*(u8 *) value = readb(virt_addr);
784 		break;
785 	case 16:
786 		*(u16 *) value = readw(virt_addr);
787 		break;
788 	case 32:
789 		*(u32 *) value = readl(virt_addr);
790 		break;
791 	case 64:
792 		*(u64 *) value = read64(virt_addr);
793 		break;
794 	default:
795 		BUG();
796 	}
797 
798 	if (unmap)
799 		iounmap(virt_addr);
800 	else
801 		rcu_read_unlock();
802 
803 	return AE_OK;
804 }
805 
806 acpi_status
807 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
808 {
809 	void __iomem *virt_addr;
810 	unsigned int size = width / 8;
811 	bool unmap = false;
812 
813 	rcu_read_lock();
814 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
815 	if (!virt_addr) {
816 		rcu_read_unlock();
817 		virt_addr = acpi_os_ioremap(phys_addr, size);
818 		if (!virt_addr)
819 			return AE_BAD_ADDRESS;
820 		unmap = true;
821 	}
822 
823 	switch (width) {
824 	case 8:
825 		writeb(value, virt_addr);
826 		break;
827 	case 16:
828 		writew(value, virt_addr);
829 		break;
830 	case 32:
831 		writel(value, virt_addr);
832 		break;
833 	default:
834 		BUG();
835 	}
836 
837 	if (unmap)
838 		iounmap(virt_addr);
839 	else
840 		rcu_read_unlock();
841 
842 	return AE_OK;
843 }
844 
845 #ifdef writeq
846 static inline void write64(u64 val, volatile void __iomem *addr)
847 {
848 	writeq(val, addr);
849 }
850 #else
851 static inline void write64(u64 val, volatile void __iomem *addr)
852 {
853 	writel(val, addr);
854 	writel(val>>32, addr+4);
855 }
856 #endif
857 
858 acpi_status
859 acpi_os_write_memory64(acpi_physical_address phys_addr, u64 value, u32 width)
860 {
861 	void __iomem *virt_addr;
862 	unsigned int size = width / 8;
863 	bool unmap = false;
864 
865 	rcu_read_lock();
866 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
867 	if (!virt_addr) {
868 		rcu_read_unlock();
869 		virt_addr = acpi_os_ioremap(phys_addr, size);
870 		if (!virt_addr)
871 			return AE_BAD_ADDRESS;
872 		unmap = true;
873 	}
874 
875 	switch (width) {
876 	case 8:
877 		writeb(value, virt_addr);
878 		break;
879 	case 16:
880 		writew(value, virt_addr);
881 		break;
882 	case 32:
883 		writel(value, virt_addr);
884 		break;
885 	case 64:
886 		write64(value, virt_addr);
887 		break;
888 	default:
889 		BUG();
890 	}
891 
892 	if (unmap)
893 		iounmap(virt_addr);
894 	else
895 		rcu_read_unlock();
896 
897 	return AE_OK;
898 }
899 
900 acpi_status
901 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
902 			       u64 *value, u32 width)
903 {
904 	int result, size;
905 	u32 value32;
906 
907 	if (!value)
908 		return AE_BAD_PARAMETER;
909 
910 	switch (width) {
911 	case 8:
912 		size = 1;
913 		break;
914 	case 16:
915 		size = 2;
916 		break;
917 	case 32:
918 		size = 4;
919 		break;
920 	default:
921 		return AE_ERROR;
922 	}
923 
924 	result = raw_pci_read(pci_id->segment, pci_id->bus,
925 				PCI_DEVFN(pci_id->device, pci_id->function),
926 				reg, size, &value32);
927 	*value = value32;
928 
929 	return (result ? AE_ERROR : AE_OK);
930 }
931 
932 acpi_status
933 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
934 				u64 value, u32 width)
935 {
936 	int result, size;
937 
938 	switch (width) {
939 	case 8:
940 		size = 1;
941 		break;
942 	case 16:
943 		size = 2;
944 		break;
945 	case 32:
946 		size = 4;
947 		break;
948 	default:
949 		return AE_ERROR;
950 	}
951 
952 	result = raw_pci_write(pci_id->segment, pci_id->bus,
953 				PCI_DEVFN(pci_id->device, pci_id->function),
954 				reg, size, value);
955 
956 	return (result ? AE_ERROR : AE_OK);
957 }
958 
959 static void acpi_os_execute_deferred(struct work_struct *work)
960 {
961 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
962 
963 	if (dpc->wait)
964 		acpi_os_wait_events_complete(NULL);
965 
966 	dpc->function(dpc->context);
967 	kfree(dpc);
968 }
969 
970 /*******************************************************************************
971  *
972  * FUNCTION:    acpi_os_execute
973  *
974  * PARAMETERS:  Type               - Type of the callback
975  *              Function           - Function to be executed
976  *              Context            - Function parameters
977  *
978  * RETURN:      Status
979  *
980  * DESCRIPTION: Depending on type, either queues function for deferred execution or
981  *              immediately executes function on a separate thread.
982  *
983  ******************************************************************************/
984 
985 static acpi_status __acpi_os_execute(acpi_execute_type type,
986 	acpi_osd_exec_callback function, void *context, int hp)
987 {
988 	acpi_status status = AE_OK;
989 	struct acpi_os_dpc *dpc;
990 	struct workqueue_struct *queue;
991 	int ret;
992 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
993 			  "Scheduling function [%p(%p)] for deferred execution.\n",
994 			  function, context));
995 
996 	/*
997 	 * Allocate/initialize DPC structure.  Note that this memory will be
998 	 * freed by the callee.  The kernel handles the work_struct list  in a
999 	 * way that allows us to also free its memory inside the callee.
1000 	 * Because we may want to schedule several tasks with different
1001 	 * parameters we can't use the approach some kernel code uses of
1002 	 * having a static work_struct.
1003 	 */
1004 
1005 	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1006 	if (!dpc)
1007 		return AE_NO_MEMORY;
1008 
1009 	dpc->function = function;
1010 	dpc->context = context;
1011 
1012 	/*
1013 	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
1014 	 * because the hotplug code may call driver .remove() functions,
1015 	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
1016 	 * to flush these workqueues.
1017 	 */
1018 	queue = hp ? kacpi_hotplug_wq :
1019 		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
1020 	dpc->wait = hp ? 1 : 0;
1021 
1022 	if (queue == kacpi_hotplug_wq)
1023 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1024 	else if (queue == kacpi_notify_wq)
1025 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1026 	else
1027 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1028 
1029 	/*
1030 	 * On some machines, a software-initiated SMI causes corruption unless
1031 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1032 	 * typically it's done in GPE-related methods that are run via
1033 	 * workqueues, so we can avoid the known corruption cases by always
1034 	 * queueing on CPU 0.
1035 	 */
1036 	ret = queue_work_on(0, queue, &dpc->work);
1037 
1038 	if (!ret) {
1039 		printk(KERN_ERR PREFIX
1040 			  "Call to queue_work() failed.\n");
1041 		status = AE_ERROR;
1042 		kfree(dpc);
1043 	}
1044 	return status;
1045 }
1046 
1047 acpi_status acpi_os_execute(acpi_execute_type type,
1048 			    acpi_osd_exec_callback function, void *context)
1049 {
1050 	return __acpi_os_execute(type, function, context, 0);
1051 }
1052 EXPORT_SYMBOL(acpi_os_execute);
1053 
1054 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
1055 	void *context)
1056 {
1057 	return __acpi_os_execute(0, function, context, 1);
1058 }
1059 
1060 void acpi_os_wait_events_complete(void *context)
1061 {
1062 	flush_workqueue(kacpid_wq);
1063 	flush_workqueue(kacpi_notify_wq);
1064 }
1065 
1066 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1067 
1068 acpi_status
1069 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1070 {
1071 	struct semaphore *sem = NULL;
1072 
1073 	sem = acpi_os_allocate(sizeof(struct semaphore));
1074 	if (!sem)
1075 		return AE_NO_MEMORY;
1076 	memset(sem, 0, sizeof(struct semaphore));
1077 
1078 	sema_init(sem, initial_units);
1079 
1080 	*handle = (acpi_handle *) sem;
1081 
1082 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1083 			  *handle, initial_units));
1084 
1085 	return AE_OK;
1086 }
1087 
1088 /*
1089  * TODO: A better way to delete semaphores?  Linux doesn't have a
1090  * 'delete_semaphore()' function -- may result in an invalid
1091  * pointer dereference for non-synchronized consumers.	Should
1092  * we at least check for blocked threads and signal/cancel them?
1093  */
1094 
1095 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1096 {
1097 	struct semaphore *sem = (struct semaphore *)handle;
1098 
1099 	if (!sem)
1100 		return AE_BAD_PARAMETER;
1101 
1102 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1103 
1104 	BUG_ON(!list_empty(&sem->wait_list));
1105 	kfree(sem);
1106 	sem = NULL;
1107 
1108 	return AE_OK;
1109 }
1110 
1111 /*
1112  * TODO: Support for units > 1?
1113  */
1114 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1115 {
1116 	acpi_status status = AE_OK;
1117 	struct semaphore *sem = (struct semaphore *)handle;
1118 	long jiffies;
1119 	int ret = 0;
1120 
1121 	if (!sem || (units < 1))
1122 		return AE_BAD_PARAMETER;
1123 
1124 	if (units > 1)
1125 		return AE_SUPPORT;
1126 
1127 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1128 			  handle, units, timeout));
1129 
1130 	if (timeout == ACPI_WAIT_FOREVER)
1131 		jiffies = MAX_SCHEDULE_TIMEOUT;
1132 	else
1133 		jiffies = msecs_to_jiffies(timeout);
1134 
1135 	ret = down_timeout(sem, jiffies);
1136 	if (ret)
1137 		status = AE_TIME;
1138 
1139 	if (ACPI_FAILURE(status)) {
1140 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1141 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1142 				  handle, units, timeout,
1143 				  acpi_format_exception(status)));
1144 	} else {
1145 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1146 				  "Acquired semaphore[%p|%d|%d]", handle,
1147 				  units, timeout));
1148 	}
1149 
1150 	return status;
1151 }
1152 
1153 /*
1154  * TODO: Support for units > 1?
1155  */
1156 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1157 {
1158 	struct semaphore *sem = (struct semaphore *)handle;
1159 
1160 	if (!sem || (units < 1))
1161 		return AE_BAD_PARAMETER;
1162 
1163 	if (units > 1)
1164 		return AE_SUPPORT;
1165 
1166 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1167 			  units));
1168 
1169 	up(sem);
1170 
1171 	return AE_OK;
1172 }
1173 
1174 #ifdef ACPI_FUTURE_USAGE
1175 u32 acpi_os_get_line(char *buffer)
1176 {
1177 
1178 #ifdef ENABLE_DEBUGGER
1179 	if (acpi_in_debugger) {
1180 		u32 chars;
1181 
1182 		kdb_read(buffer, sizeof(line_buf));
1183 
1184 		/* remove the CR kdb includes */
1185 		chars = strlen(buffer) - 1;
1186 		buffer[chars] = '\0';
1187 	}
1188 #endif
1189 
1190 	return 0;
1191 }
1192 #endif				/*  ACPI_FUTURE_USAGE  */
1193 
1194 acpi_status acpi_os_signal(u32 function, void *info)
1195 {
1196 	switch (function) {
1197 	case ACPI_SIGNAL_FATAL:
1198 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1199 		break;
1200 	case ACPI_SIGNAL_BREAKPOINT:
1201 		/*
1202 		 * AML Breakpoint
1203 		 * ACPI spec. says to treat it as a NOP unless
1204 		 * you are debugging.  So if/when we integrate
1205 		 * AML debugger into the kernel debugger its
1206 		 * hook will go here.  But until then it is
1207 		 * not useful to print anything on breakpoints.
1208 		 */
1209 		break;
1210 	default:
1211 		break;
1212 	}
1213 
1214 	return AE_OK;
1215 }
1216 
1217 static int __init acpi_os_name_setup(char *str)
1218 {
1219 	char *p = acpi_os_name;
1220 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1221 
1222 	if (!str || !*str)
1223 		return 0;
1224 
1225 	for (; count-- && str && *str; str++) {
1226 		if (isalnum(*str) || *str == ' ' || *str == ':')
1227 			*p++ = *str;
1228 		else if (*str == '\'' || *str == '"')
1229 			continue;
1230 		else
1231 			break;
1232 	}
1233 	*p = 0;
1234 
1235 	return 1;
1236 
1237 }
1238 
1239 __setup("acpi_os_name=", acpi_os_name_setup);
1240 
1241 #define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1242 #define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1243 
1244 struct osi_setup_entry {
1245 	char string[OSI_STRING_LENGTH_MAX];
1246 	bool enable;
1247 };
1248 
1249 static struct osi_setup_entry __initdata
1250 		osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1251 	{"Module Device", true},
1252 	{"Processor Device", true},
1253 	{"3.0 _SCP Extensions", true},
1254 	{"Processor Aggregator Device", true},
1255 };
1256 
1257 void __init acpi_osi_setup(char *str)
1258 {
1259 	struct osi_setup_entry *osi;
1260 	bool enable = true;
1261 	int i;
1262 
1263 	if (!acpi_gbl_create_osi_method)
1264 		return;
1265 
1266 	if (str == NULL || *str == '\0') {
1267 		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1268 		acpi_gbl_create_osi_method = FALSE;
1269 		return;
1270 	}
1271 
1272 	if (*str == '!') {
1273 		str++;
1274 		enable = false;
1275 	}
1276 
1277 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1278 		osi = &osi_setup_entries[i];
1279 		if (!strcmp(osi->string, str)) {
1280 			osi->enable = enable;
1281 			break;
1282 		} else if (osi->string[0] == '\0') {
1283 			osi->enable = enable;
1284 			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1285 			break;
1286 		}
1287 	}
1288 }
1289 
1290 static void __init set_osi_linux(unsigned int enable)
1291 {
1292 	if (osi_linux.enable != enable)
1293 		osi_linux.enable = enable;
1294 
1295 	if (osi_linux.enable)
1296 		acpi_osi_setup("Linux");
1297 	else
1298 		acpi_osi_setup("!Linux");
1299 
1300 	return;
1301 }
1302 
1303 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1304 {
1305 	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1306 	osi_linux.dmi = 0;
1307 	set_osi_linux(enable);
1308 
1309 	return;
1310 }
1311 
1312 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1313 {
1314 	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1315 
1316 	if (enable == -1)
1317 		return;
1318 
1319 	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1320 	set_osi_linux(enable);
1321 
1322 	return;
1323 }
1324 
1325 /*
1326  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1327  *
1328  * empty string disables _OSI
1329  * string starting with '!' disables that string
1330  * otherwise string is added to list, augmenting built-in strings
1331  */
1332 static void __init acpi_osi_setup_late(void)
1333 {
1334 	struct osi_setup_entry *osi;
1335 	char *str;
1336 	int i;
1337 	acpi_status status;
1338 
1339 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1340 		osi = &osi_setup_entries[i];
1341 		str = osi->string;
1342 
1343 		if (*str == '\0')
1344 			break;
1345 		if (osi->enable) {
1346 			status = acpi_install_interface(str);
1347 
1348 			if (ACPI_SUCCESS(status))
1349 				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1350 		} else {
1351 			status = acpi_remove_interface(str);
1352 
1353 			if (ACPI_SUCCESS(status))
1354 				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1355 		}
1356 	}
1357 }
1358 
1359 static int __init osi_setup(char *str)
1360 {
1361 	if (str && !strcmp("Linux", str))
1362 		acpi_cmdline_osi_linux(1);
1363 	else if (str && !strcmp("!Linux", str))
1364 		acpi_cmdline_osi_linux(0);
1365 	else
1366 		acpi_osi_setup(str);
1367 
1368 	return 1;
1369 }
1370 
1371 __setup("acpi_osi=", osi_setup);
1372 
1373 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1374 static int __init acpi_serialize_setup(char *str)
1375 {
1376 	printk(KERN_INFO PREFIX "serialize enabled\n");
1377 
1378 	acpi_gbl_all_methods_serialized = TRUE;
1379 
1380 	return 1;
1381 }
1382 
1383 __setup("acpi_serialize", acpi_serialize_setup);
1384 
1385 /* Check of resource interference between native drivers and ACPI
1386  * OperationRegions (SystemIO and System Memory only).
1387  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1388  * in arbitrary AML code and can interfere with legacy drivers.
1389  * acpi_enforce_resources= can be set to:
1390  *
1391  *   - strict (default) (2)
1392  *     -> further driver trying to access the resources will not load
1393  *   - lax              (1)
1394  *     -> further driver trying to access the resources will load, but you
1395  *     get a system message that something might go wrong...
1396  *
1397  *   - no               (0)
1398  *     -> ACPI Operation Region resources will not be registered
1399  *
1400  */
1401 #define ENFORCE_RESOURCES_STRICT 2
1402 #define ENFORCE_RESOURCES_LAX    1
1403 #define ENFORCE_RESOURCES_NO     0
1404 
1405 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1406 
1407 static int __init acpi_enforce_resources_setup(char *str)
1408 {
1409 	if (str == NULL || *str == '\0')
1410 		return 0;
1411 
1412 	if (!strcmp("strict", str))
1413 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1414 	else if (!strcmp("lax", str))
1415 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1416 	else if (!strcmp("no", str))
1417 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1418 
1419 	return 1;
1420 }
1421 
1422 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1423 
1424 /* Check for resource conflicts between ACPI OperationRegions and native
1425  * drivers */
1426 int acpi_check_resource_conflict(const struct resource *res)
1427 {
1428 	acpi_adr_space_type space_id;
1429 	acpi_size length;
1430 	u8 warn = 0;
1431 	int clash = 0;
1432 
1433 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1434 		return 0;
1435 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1436 		return 0;
1437 
1438 	if (res->flags & IORESOURCE_IO)
1439 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1440 	else
1441 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1442 
1443 	length = res->end - res->start + 1;
1444 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1445 		warn = 1;
1446 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1447 
1448 	if (clash) {
1449 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1450 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1451 				printk(KERN_NOTICE "ACPI: This conflict may"
1452 				       " cause random problems and system"
1453 				       " instability\n");
1454 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1455 			       " for this device, you should use it instead of"
1456 			       " the native driver\n");
1457 		}
1458 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1459 			return -EBUSY;
1460 	}
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL(acpi_check_resource_conflict);
1464 
1465 int acpi_check_region(resource_size_t start, resource_size_t n,
1466 		      const char *name)
1467 {
1468 	struct resource res = {
1469 		.start = start,
1470 		.end   = start + n - 1,
1471 		.name  = name,
1472 		.flags = IORESOURCE_IO,
1473 	};
1474 
1475 	return acpi_check_resource_conflict(&res);
1476 }
1477 EXPORT_SYMBOL(acpi_check_region);
1478 
1479 /*
1480  * Let drivers know whether the resource checks are effective
1481  */
1482 int acpi_resources_are_enforced(void)
1483 {
1484 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1485 }
1486 EXPORT_SYMBOL(acpi_resources_are_enforced);
1487 
1488 /*
1489  * Deallocate the memory for a spinlock.
1490  */
1491 void acpi_os_delete_lock(acpi_spinlock handle)
1492 {
1493 	ACPI_FREE(handle);
1494 }
1495 
1496 /*
1497  * Acquire a spinlock.
1498  *
1499  * handle is a pointer to the spinlock_t.
1500  */
1501 
1502 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1503 {
1504 	acpi_cpu_flags flags;
1505 	spin_lock_irqsave(lockp, flags);
1506 	return flags;
1507 }
1508 
1509 /*
1510  * Release a spinlock. See above.
1511  */
1512 
1513 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1514 {
1515 	spin_unlock_irqrestore(lockp, flags);
1516 }
1517 
1518 #ifndef ACPI_USE_LOCAL_CACHE
1519 
1520 /*******************************************************************************
1521  *
1522  * FUNCTION:    acpi_os_create_cache
1523  *
1524  * PARAMETERS:  name      - Ascii name for the cache
1525  *              size      - Size of each cached object
1526  *              depth     - Maximum depth of the cache (in objects) <ignored>
1527  *              cache     - Where the new cache object is returned
1528  *
1529  * RETURN:      status
1530  *
1531  * DESCRIPTION: Create a cache object
1532  *
1533  ******************************************************************************/
1534 
1535 acpi_status
1536 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1537 {
1538 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1539 	if (*cache == NULL)
1540 		return AE_ERROR;
1541 	else
1542 		return AE_OK;
1543 }
1544 
1545 /*******************************************************************************
1546  *
1547  * FUNCTION:    acpi_os_purge_cache
1548  *
1549  * PARAMETERS:  Cache           - Handle to cache object
1550  *
1551  * RETURN:      Status
1552  *
1553  * DESCRIPTION: Free all objects within the requested cache.
1554  *
1555  ******************************************************************************/
1556 
1557 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1558 {
1559 	kmem_cache_shrink(cache);
1560 	return (AE_OK);
1561 }
1562 
1563 /*******************************************************************************
1564  *
1565  * FUNCTION:    acpi_os_delete_cache
1566  *
1567  * PARAMETERS:  Cache           - Handle to cache object
1568  *
1569  * RETURN:      Status
1570  *
1571  * DESCRIPTION: Free all objects within the requested cache and delete the
1572  *              cache object.
1573  *
1574  ******************************************************************************/
1575 
1576 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1577 {
1578 	kmem_cache_destroy(cache);
1579 	return (AE_OK);
1580 }
1581 
1582 /*******************************************************************************
1583  *
1584  * FUNCTION:    acpi_os_release_object
1585  *
1586  * PARAMETERS:  Cache       - Handle to cache object
1587  *              Object      - The object to be released
1588  *
1589  * RETURN:      None
1590  *
1591  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1592  *              the object is deleted.
1593  *
1594  ******************************************************************************/
1595 
1596 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1597 {
1598 	kmem_cache_free(cache, object);
1599 	return (AE_OK);
1600 }
1601 #endif
1602 
1603 acpi_status __init acpi_os_initialize(void)
1604 {
1605 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1606 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1607 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1608 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1609 
1610 	return AE_OK;
1611 }
1612 
1613 acpi_status __init acpi_os_initialize1(void)
1614 {
1615 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1616 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1617 	kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1618 	BUG_ON(!kacpid_wq);
1619 	BUG_ON(!kacpi_notify_wq);
1620 	BUG_ON(!kacpi_hotplug_wq);
1621 	acpi_install_interface_handler(acpi_osi_handler);
1622 	acpi_osi_setup_late();
1623 	return AE_OK;
1624 }
1625 
1626 acpi_status acpi_os_terminate(void)
1627 {
1628 	if (acpi_irq_handler) {
1629 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1630 						 acpi_irq_handler);
1631 	}
1632 
1633 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1634 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1635 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1636 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1637 
1638 	destroy_workqueue(kacpid_wq);
1639 	destroy_workqueue(kacpi_notify_wq);
1640 	destroy_workqueue(kacpi_hotplug_wq);
1641 
1642 	return AE_OK;
1643 }
1644