xref: /openbmc/linux/drivers/acpi/osl.c (revision bc5aa3a0)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "internal.h"
49 
50 #define _COMPONENT		ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52 
53 struct acpi_os_dpc {
54 	acpi_osd_exec_callback function;
55 	void *context;
56 	struct work_struct work;
57 };
58 
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61 
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif				/*ENABLE_DEBUGGER */
66 
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 				      u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 				      u32 val_b);
71 
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79 
80 /*
81  * This list of permanent mappings is for memory that may be accessed from
82  * interrupt context, where we can't do the ioremap().
83  */
84 struct acpi_ioremap {
85 	struct list_head list;
86 	void __iomem *virt;
87 	acpi_physical_address phys;
88 	acpi_size size;
89 	unsigned long refcount;
90 };
91 
92 static LIST_HEAD(acpi_ioremaps);
93 static DEFINE_MUTEX(acpi_ioremap_lock);
94 
95 static void __init acpi_request_region (struct acpi_generic_address *gas,
96 	unsigned int length, char *desc)
97 {
98 	u64 addr;
99 
100 	/* Handle possible alignment issues */
101 	memcpy(&addr, &gas->address, sizeof(addr));
102 	if (!addr || !length)
103 		return;
104 
105 	/* Resources are never freed */
106 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
107 		request_region(addr, length, desc);
108 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
109 		request_mem_region(addr, length, desc);
110 }
111 
112 static int __init acpi_reserve_resources(void)
113 {
114 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
115 		"ACPI PM1a_EVT_BLK");
116 
117 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
118 		"ACPI PM1b_EVT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
121 		"ACPI PM1a_CNT_BLK");
122 
123 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
124 		"ACPI PM1b_CNT_BLK");
125 
126 	if (acpi_gbl_FADT.pm_timer_length == 4)
127 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
128 
129 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130 		"ACPI PM2_CNT_BLK");
131 
132 	/* Length of GPE blocks must be a non-negative multiple of 2 */
133 
134 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
135 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
136 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
137 
138 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
139 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
140 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
141 
142 	return 0;
143 }
144 fs_initcall_sync(acpi_reserve_resources);
145 
146 void acpi_os_printf(const char *fmt, ...)
147 {
148 	va_list args;
149 	va_start(args, fmt);
150 	acpi_os_vprintf(fmt, args);
151 	va_end(args);
152 }
153 EXPORT_SYMBOL(acpi_os_printf);
154 
155 void acpi_os_vprintf(const char *fmt, va_list args)
156 {
157 	static char buffer[512];
158 
159 	vsprintf(buffer, fmt, args);
160 
161 #ifdef ENABLE_DEBUGGER
162 	if (acpi_in_debugger) {
163 		kdb_printf("%s", buffer);
164 	} else {
165 		printk(KERN_CONT "%s", buffer);
166 	}
167 #else
168 	if (acpi_debugger_write_log(buffer) < 0)
169 		printk(KERN_CONT "%s", buffer);
170 #endif
171 }
172 
173 #ifdef CONFIG_KEXEC
174 static unsigned long acpi_rsdp;
175 static int __init setup_acpi_rsdp(char *arg)
176 {
177 	if (kstrtoul(arg, 16, &acpi_rsdp))
178 		return -EINVAL;
179 	return 0;
180 }
181 early_param("acpi_rsdp", setup_acpi_rsdp);
182 #endif
183 
184 acpi_physical_address __init acpi_os_get_root_pointer(void)
185 {
186 #ifdef CONFIG_KEXEC
187 	if (acpi_rsdp)
188 		return acpi_rsdp;
189 #endif
190 
191 	if (efi_enabled(EFI_CONFIG_TABLES)) {
192 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
193 			return efi.acpi20;
194 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
195 			return efi.acpi;
196 		else {
197 			printk(KERN_ERR PREFIX
198 			       "System description tables not found\n");
199 			return 0;
200 		}
201 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
202 		acpi_physical_address pa = 0;
203 
204 		acpi_find_root_pointer(&pa);
205 		return pa;
206 	}
207 
208 	return 0;
209 }
210 
211 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
212 static struct acpi_ioremap *
213 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
214 {
215 	struct acpi_ioremap *map;
216 
217 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
218 		if (map->phys <= phys &&
219 		    phys + size <= map->phys + map->size)
220 			return map;
221 
222 	return NULL;
223 }
224 
225 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
226 static void __iomem *
227 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
228 {
229 	struct acpi_ioremap *map;
230 
231 	map = acpi_map_lookup(phys, size);
232 	if (map)
233 		return map->virt + (phys - map->phys);
234 
235 	return NULL;
236 }
237 
238 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
239 {
240 	struct acpi_ioremap *map;
241 	void __iomem *virt = NULL;
242 
243 	mutex_lock(&acpi_ioremap_lock);
244 	map = acpi_map_lookup(phys, size);
245 	if (map) {
246 		virt = map->virt + (phys - map->phys);
247 		map->refcount++;
248 	}
249 	mutex_unlock(&acpi_ioremap_lock);
250 	return virt;
251 }
252 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
253 
254 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
255 static struct acpi_ioremap *
256 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
257 {
258 	struct acpi_ioremap *map;
259 
260 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
261 		if (map->virt <= virt &&
262 		    virt + size <= map->virt + map->size)
263 			return map;
264 
265 	return NULL;
266 }
267 
268 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
269 /* ioremap will take care of cache attributes */
270 #define should_use_kmap(pfn)   0
271 #else
272 #define should_use_kmap(pfn)   page_is_ram(pfn)
273 #endif
274 
275 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
276 {
277 	unsigned long pfn;
278 
279 	pfn = pg_off >> PAGE_SHIFT;
280 	if (should_use_kmap(pfn)) {
281 		if (pg_sz > PAGE_SIZE)
282 			return NULL;
283 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
284 	} else
285 		return acpi_os_ioremap(pg_off, pg_sz);
286 }
287 
288 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
289 {
290 	unsigned long pfn;
291 
292 	pfn = pg_off >> PAGE_SHIFT;
293 	if (should_use_kmap(pfn))
294 		kunmap(pfn_to_page(pfn));
295 	else
296 		iounmap(vaddr);
297 }
298 
299 /**
300  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
301  * @phys: Start of the physical address range to map.
302  * @size: Size of the physical address range to map.
303  *
304  * Look up the given physical address range in the list of existing ACPI memory
305  * mappings.  If found, get a reference to it and return a pointer to it (its
306  * virtual address).  If not found, map it, add it to that list and return a
307  * pointer to it.
308  *
309  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
310  * routine simply calls __acpi_map_table() to get the job done.
311  */
312 void __iomem *__ref
313 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
314 {
315 	struct acpi_ioremap *map;
316 	void __iomem *virt;
317 	acpi_physical_address pg_off;
318 	acpi_size pg_sz;
319 
320 	if (phys > ULONG_MAX) {
321 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
322 		return NULL;
323 	}
324 
325 	if (!acpi_gbl_permanent_mmap)
326 		return __acpi_map_table((unsigned long)phys, size);
327 
328 	mutex_lock(&acpi_ioremap_lock);
329 	/* Check if there's a suitable mapping already. */
330 	map = acpi_map_lookup(phys, size);
331 	if (map) {
332 		map->refcount++;
333 		goto out;
334 	}
335 
336 	map = kzalloc(sizeof(*map), GFP_KERNEL);
337 	if (!map) {
338 		mutex_unlock(&acpi_ioremap_lock);
339 		return NULL;
340 	}
341 
342 	pg_off = round_down(phys, PAGE_SIZE);
343 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
344 	virt = acpi_map(pg_off, pg_sz);
345 	if (!virt) {
346 		mutex_unlock(&acpi_ioremap_lock);
347 		kfree(map);
348 		return NULL;
349 	}
350 
351 	INIT_LIST_HEAD(&map->list);
352 	map->virt = virt;
353 	map->phys = pg_off;
354 	map->size = pg_sz;
355 	map->refcount = 1;
356 
357 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
358 
359 out:
360 	mutex_unlock(&acpi_ioremap_lock);
361 	return map->virt + (phys - map->phys);
362 }
363 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
364 
365 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
366 {
367 	return (void *)acpi_os_map_iomem(phys, size);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
370 
371 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
372 {
373 	if (!--map->refcount)
374 		list_del_rcu(&map->list);
375 }
376 
377 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
378 {
379 	if (!map->refcount) {
380 		synchronize_rcu_expedited();
381 		acpi_unmap(map->phys, map->virt);
382 		kfree(map);
383 	}
384 }
385 
386 /**
387  * acpi_os_unmap_iomem - Drop a memory mapping reference.
388  * @virt: Start of the address range to drop a reference to.
389  * @size: Size of the address range to drop a reference to.
390  *
391  * Look up the given virtual address range in the list of existing ACPI memory
392  * mappings, drop a reference to it and unmap it if there are no more active
393  * references to it.
394  *
395  * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
396  * routine simply calls __acpi_unmap_table() to get the job done.  Since
397  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
398  * here.
399  */
400 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
401 {
402 	struct acpi_ioremap *map;
403 
404 	if (!acpi_gbl_permanent_mmap) {
405 		__acpi_unmap_table(virt, size);
406 		return;
407 	}
408 
409 	mutex_lock(&acpi_ioremap_lock);
410 	map = acpi_map_lookup_virt(virt, size);
411 	if (!map) {
412 		mutex_unlock(&acpi_ioremap_lock);
413 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
414 		return;
415 	}
416 	acpi_os_drop_map_ref(map);
417 	mutex_unlock(&acpi_ioremap_lock);
418 
419 	acpi_os_map_cleanup(map);
420 }
421 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
422 
423 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
424 {
425 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
428 
429 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
430 {
431 	if (!acpi_gbl_permanent_mmap)
432 		__acpi_unmap_table(virt, size);
433 }
434 
435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437 	u64 addr;
438 	void __iomem *virt;
439 
440 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 		return 0;
442 
443 	/* Handle possible alignment issues */
444 	memcpy(&addr, &gas->address, sizeof(addr));
445 	if (!addr || !gas->bit_width)
446 		return -EINVAL;
447 
448 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 	if (!virt)
450 		return -EIO;
451 
452 	return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455 
456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458 	u64 addr;
459 	struct acpi_ioremap *map;
460 
461 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 		return;
463 
464 	/* Handle possible alignment issues */
465 	memcpy(&addr, &gas->address, sizeof(addr));
466 	if (!addr || !gas->bit_width)
467 		return;
468 
469 	mutex_lock(&acpi_ioremap_lock);
470 	map = acpi_map_lookup(addr, gas->bit_width / 8);
471 	if (!map) {
472 		mutex_unlock(&acpi_ioremap_lock);
473 		return;
474 	}
475 	acpi_os_drop_map_ref(map);
476 	mutex_unlock(&acpi_ioremap_lock);
477 
478 	acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481 
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486 	if (!phys || !virt)
487 		return AE_BAD_PARAMETER;
488 
489 	*phys = virt_to_phys(virt);
490 
491 	return AE_OK;
492 }
493 #endif
494 
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497 
498 int __init acpi_rev_override_setup(char *str)
499 {
500 	acpi_rev_override = true;
501 	return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override	false
506 #endif
507 
508 #define ACPI_MAX_OVERRIDE_LEN 100
509 
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511 
512 acpi_status
513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 			    acpi_string *new_val)
515 {
516 	if (!init_val || !new_val)
517 		return AE_BAD_PARAMETER;
518 
519 	*new_val = NULL;
520 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 		       acpi_os_name);
523 		*new_val = acpi_os_name;
524 	}
525 
526 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 		*new_val = (char *)5;
529 	}
530 
531 	return AE_OK;
532 }
533 
534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536 	u32 handled;
537 
538 	handled = (*acpi_irq_handler) (acpi_irq_context);
539 
540 	if (handled) {
541 		acpi_irq_handled++;
542 		return IRQ_HANDLED;
543 	} else {
544 		acpi_irq_not_handled++;
545 		return IRQ_NONE;
546 	}
547 }
548 
549 acpi_status
550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 				  void *context)
552 {
553 	unsigned int irq;
554 
555 	acpi_irq_stats_init();
556 
557 	/*
558 	 * ACPI interrupts different from the SCI in our copy of the FADT are
559 	 * not supported.
560 	 */
561 	if (gsi != acpi_gbl_FADT.sci_interrupt)
562 		return AE_BAD_PARAMETER;
563 
564 	if (acpi_irq_handler)
565 		return AE_ALREADY_ACQUIRED;
566 
567 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 		       gsi);
570 		return AE_OK;
571 	}
572 
573 	acpi_irq_handler = handler;
574 	acpi_irq_context = context;
575 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 		acpi_irq_handler = NULL;
578 		return AE_NOT_ACQUIRED;
579 	}
580 	acpi_sci_irq = irq;
581 
582 	return AE_OK;
583 }
584 
585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 		return AE_BAD_PARAMETER;
589 
590 	free_irq(acpi_sci_irq, acpi_irq);
591 	acpi_irq_handler = NULL;
592 	acpi_sci_irq = INVALID_ACPI_IRQ;
593 
594 	return AE_OK;
595 }
596 
597 /*
598  * Running in interpreter thread context, safe to sleep
599  */
600 
601 void acpi_os_sleep(u64 ms)
602 {
603 	msleep(ms);
604 }
605 
606 void acpi_os_stall(u32 us)
607 {
608 	while (us) {
609 		u32 delay = 1000;
610 
611 		if (delay > us)
612 			delay = us;
613 		udelay(delay);
614 		touch_nmi_watchdog();
615 		us -= delay;
616 	}
617 }
618 
619 /*
620  * Support ACPI 3.0 AML Timer operand
621  * Returns 64-bit free-running, monotonically increasing timer
622  * with 100ns granularity
623  */
624 u64 acpi_os_get_timer(void)
625 {
626 	u64 time_ns = ktime_to_ns(ktime_get());
627 	do_div(time_ns, 100);
628 	return time_ns;
629 }
630 
631 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
632 {
633 	u32 dummy;
634 
635 	if (!value)
636 		value = &dummy;
637 
638 	*value = 0;
639 	if (width <= 8) {
640 		*(u8 *) value = inb(port);
641 	} else if (width <= 16) {
642 		*(u16 *) value = inw(port);
643 	} else if (width <= 32) {
644 		*(u32 *) value = inl(port);
645 	} else {
646 		BUG();
647 	}
648 
649 	return AE_OK;
650 }
651 
652 EXPORT_SYMBOL(acpi_os_read_port);
653 
654 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
655 {
656 	if (width <= 8) {
657 		outb(value, port);
658 	} else if (width <= 16) {
659 		outw(value, port);
660 	} else if (width <= 32) {
661 		outl(value, port);
662 	} else {
663 		BUG();
664 	}
665 
666 	return AE_OK;
667 }
668 
669 EXPORT_SYMBOL(acpi_os_write_port);
670 
671 acpi_status
672 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
673 {
674 	void __iomem *virt_addr;
675 	unsigned int size = width / 8;
676 	bool unmap = false;
677 	u64 dummy;
678 
679 	rcu_read_lock();
680 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
681 	if (!virt_addr) {
682 		rcu_read_unlock();
683 		virt_addr = acpi_os_ioremap(phys_addr, size);
684 		if (!virt_addr)
685 			return AE_BAD_ADDRESS;
686 		unmap = true;
687 	}
688 
689 	if (!value)
690 		value = &dummy;
691 
692 	switch (width) {
693 	case 8:
694 		*(u8 *) value = readb(virt_addr);
695 		break;
696 	case 16:
697 		*(u16 *) value = readw(virt_addr);
698 		break;
699 	case 32:
700 		*(u32 *) value = readl(virt_addr);
701 		break;
702 	case 64:
703 		*(u64 *) value = readq(virt_addr);
704 		break;
705 	default:
706 		BUG();
707 	}
708 
709 	if (unmap)
710 		iounmap(virt_addr);
711 	else
712 		rcu_read_unlock();
713 
714 	return AE_OK;
715 }
716 
717 acpi_status
718 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
719 {
720 	void __iomem *virt_addr;
721 	unsigned int size = width / 8;
722 	bool unmap = false;
723 
724 	rcu_read_lock();
725 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
726 	if (!virt_addr) {
727 		rcu_read_unlock();
728 		virt_addr = acpi_os_ioremap(phys_addr, size);
729 		if (!virt_addr)
730 			return AE_BAD_ADDRESS;
731 		unmap = true;
732 	}
733 
734 	switch (width) {
735 	case 8:
736 		writeb(value, virt_addr);
737 		break;
738 	case 16:
739 		writew(value, virt_addr);
740 		break;
741 	case 32:
742 		writel(value, virt_addr);
743 		break;
744 	case 64:
745 		writeq(value, virt_addr);
746 		break;
747 	default:
748 		BUG();
749 	}
750 
751 	if (unmap)
752 		iounmap(virt_addr);
753 	else
754 		rcu_read_unlock();
755 
756 	return AE_OK;
757 }
758 
759 acpi_status
760 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
761 			       u64 *value, u32 width)
762 {
763 	int result, size;
764 	u32 value32;
765 
766 	if (!value)
767 		return AE_BAD_PARAMETER;
768 
769 	switch (width) {
770 	case 8:
771 		size = 1;
772 		break;
773 	case 16:
774 		size = 2;
775 		break;
776 	case 32:
777 		size = 4;
778 		break;
779 	default:
780 		return AE_ERROR;
781 	}
782 
783 	result = raw_pci_read(pci_id->segment, pci_id->bus,
784 				PCI_DEVFN(pci_id->device, pci_id->function),
785 				reg, size, &value32);
786 	*value = value32;
787 
788 	return (result ? AE_ERROR : AE_OK);
789 }
790 
791 acpi_status
792 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
793 				u64 value, u32 width)
794 {
795 	int result, size;
796 
797 	switch (width) {
798 	case 8:
799 		size = 1;
800 		break;
801 	case 16:
802 		size = 2;
803 		break;
804 	case 32:
805 		size = 4;
806 		break;
807 	default:
808 		return AE_ERROR;
809 	}
810 
811 	result = raw_pci_write(pci_id->segment, pci_id->bus,
812 				PCI_DEVFN(pci_id->device, pci_id->function),
813 				reg, size, value);
814 
815 	return (result ? AE_ERROR : AE_OK);
816 }
817 
818 static void acpi_os_execute_deferred(struct work_struct *work)
819 {
820 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
821 
822 	dpc->function(dpc->context);
823 	kfree(dpc);
824 }
825 
826 #ifdef CONFIG_ACPI_DEBUGGER
827 static struct acpi_debugger acpi_debugger;
828 static bool acpi_debugger_initialized;
829 
830 int acpi_register_debugger(struct module *owner,
831 			   const struct acpi_debugger_ops *ops)
832 {
833 	int ret = 0;
834 
835 	mutex_lock(&acpi_debugger.lock);
836 	if (acpi_debugger.ops) {
837 		ret = -EBUSY;
838 		goto err_lock;
839 	}
840 
841 	acpi_debugger.owner = owner;
842 	acpi_debugger.ops = ops;
843 
844 err_lock:
845 	mutex_unlock(&acpi_debugger.lock);
846 	return ret;
847 }
848 EXPORT_SYMBOL(acpi_register_debugger);
849 
850 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
851 {
852 	mutex_lock(&acpi_debugger.lock);
853 	if (ops == acpi_debugger.ops) {
854 		acpi_debugger.ops = NULL;
855 		acpi_debugger.owner = NULL;
856 	}
857 	mutex_unlock(&acpi_debugger.lock);
858 }
859 EXPORT_SYMBOL(acpi_unregister_debugger);
860 
861 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
862 {
863 	int ret;
864 	int (*func)(acpi_osd_exec_callback, void *);
865 	struct module *owner;
866 
867 	if (!acpi_debugger_initialized)
868 		return -ENODEV;
869 	mutex_lock(&acpi_debugger.lock);
870 	if (!acpi_debugger.ops) {
871 		ret = -ENODEV;
872 		goto err_lock;
873 	}
874 	if (!try_module_get(acpi_debugger.owner)) {
875 		ret = -ENODEV;
876 		goto err_lock;
877 	}
878 	func = acpi_debugger.ops->create_thread;
879 	owner = acpi_debugger.owner;
880 	mutex_unlock(&acpi_debugger.lock);
881 
882 	ret = func(function, context);
883 
884 	mutex_lock(&acpi_debugger.lock);
885 	module_put(owner);
886 err_lock:
887 	mutex_unlock(&acpi_debugger.lock);
888 	return ret;
889 }
890 
891 ssize_t acpi_debugger_write_log(const char *msg)
892 {
893 	ssize_t ret;
894 	ssize_t (*func)(const char *);
895 	struct module *owner;
896 
897 	if (!acpi_debugger_initialized)
898 		return -ENODEV;
899 	mutex_lock(&acpi_debugger.lock);
900 	if (!acpi_debugger.ops) {
901 		ret = -ENODEV;
902 		goto err_lock;
903 	}
904 	if (!try_module_get(acpi_debugger.owner)) {
905 		ret = -ENODEV;
906 		goto err_lock;
907 	}
908 	func = acpi_debugger.ops->write_log;
909 	owner = acpi_debugger.owner;
910 	mutex_unlock(&acpi_debugger.lock);
911 
912 	ret = func(msg);
913 
914 	mutex_lock(&acpi_debugger.lock);
915 	module_put(owner);
916 err_lock:
917 	mutex_unlock(&acpi_debugger.lock);
918 	return ret;
919 }
920 
921 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
922 {
923 	ssize_t ret;
924 	ssize_t (*func)(char *, size_t);
925 	struct module *owner;
926 
927 	if (!acpi_debugger_initialized)
928 		return -ENODEV;
929 	mutex_lock(&acpi_debugger.lock);
930 	if (!acpi_debugger.ops) {
931 		ret = -ENODEV;
932 		goto err_lock;
933 	}
934 	if (!try_module_get(acpi_debugger.owner)) {
935 		ret = -ENODEV;
936 		goto err_lock;
937 	}
938 	func = acpi_debugger.ops->read_cmd;
939 	owner = acpi_debugger.owner;
940 	mutex_unlock(&acpi_debugger.lock);
941 
942 	ret = func(buffer, buffer_length);
943 
944 	mutex_lock(&acpi_debugger.lock);
945 	module_put(owner);
946 err_lock:
947 	mutex_unlock(&acpi_debugger.lock);
948 	return ret;
949 }
950 
951 int acpi_debugger_wait_command_ready(void)
952 {
953 	int ret;
954 	int (*func)(bool, char *, size_t);
955 	struct module *owner;
956 
957 	if (!acpi_debugger_initialized)
958 		return -ENODEV;
959 	mutex_lock(&acpi_debugger.lock);
960 	if (!acpi_debugger.ops) {
961 		ret = -ENODEV;
962 		goto err_lock;
963 	}
964 	if (!try_module_get(acpi_debugger.owner)) {
965 		ret = -ENODEV;
966 		goto err_lock;
967 	}
968 	func = acpi_debugger.ops->wait_command_ready;
969 	owner = acpi_debugger.owner;
970 	mutex_unlock(&acpi_debugger.lock);
971 
972 	ret = func(acpi_gbl_method_executing,
973 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
974 
975 	mutex_lock(&acpi_debugger.lock);
976 	module_put(owner);
977 err_lock:
978 	mutex_unlock(&acpi_debugger.lock);
979 	return ret;
980 }
981 
982 int acpi_debugger_notify_command_complete(void)
983 {
984 	int ret;
985 	int (*func)(void);
986 	struct module *owner;
987 
988 	if (!acpi_debugger_initialized)
989 		return -ENODEV;
990 	mutex_lock(&acpi_debugger.lock);
991 	if (!acpi_debugger.ops) {
992 		ret = -ENODEV;
993 		goto err_lock;
994 	}
995 	if (!try_module_get(acpi_debugger.owner)) {
996 		ret = -ENODEV;
997 		goto err_lock;
998 	}
999 	func = acpi_debugger.ops->notify_command_complete;
1000 	owner = acpi_debugger.owner;
1001 	mutex_unlock(&acpi_debugger.lock);
1002 
1003 	ret = func();
1004 
1005 	mutex_lock(&acpi_debugger.lock);
1006 	module_put(owner);
1007 err_lock:
1008 	mutex_unlock(&acpi_debugger.lock);
1009 	return ret;
1010 }
1011 
1012 int __init acpi_debugger_init(void)
1013 {
1014 	mutex_init(&acpi_debugger.lock);
1015 	acpi_debugger_initialized = true;
1016 	return 0;
1017 }
1018 #endif
1019 
1020 /*******************************************************************************
1021  *
1022  * FUNCTION:    acpi_os_execute
1023  *
1024  * PARAMETERS:  Type               - Type of the callback
1025  *              Function           - Function to be executed
1026  *              Context            - Function parameters
1027  *
1028  * RETURN:      Status
1029  *
1030  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1031  *              immediately executes function on a separate thread.
1032  *
1033  ******************************************************************************/
1034 
1035 acpi_status acpi_os_execute(acpi_execute_type type,
1036 			    acpi_osd_exec_callback function, void *context)
1037 {
1038 	acpi_status status = AE_OK;
1039 	struct acpi_os_dpc *dpc;
1040 	struct workqueue_struct *queue;
1041 	int ret;
1042 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1043 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1044 			  function, context));
1045 
1046 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1047 		ret = acpi_debugger_create_thread(function, context);
1048 		if (ret) {
1049 			pr_err("Call to kthread_create() failed.\n");
1050 			status = AE_ERROR;
1051 		}
1052 		goto out_thread;
1053 	}
1054 
1055 	/*
1056 	 * Allocate/initialize DPC structure.  Note that this memory will be
1057 	 * freed by the callee.  The kernel handles the work_struct list  in a
1058 	 * way that allows us to also free its memory inside the callee.
1059 	 * Because we may want to schedule several tasks with different
1060 	 * parameters we can't use the approach some kernel code uses of
1061 	 * having a static work_struct.
1062 	 */
1063 
1064 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1065 	if (!dpc)
1066 		return AE_NO_MEMORY;
1067 
1068 	dpc->function = function;
1069 	dpc->context = context;
1070 
1071 	/*
1072 	 * To prevent lockdep from complaining unnecessarily, make sure that
1073 	 * there is a different static lockdep key for each workqueue by using
1074 	 * INIT_WORK() for each of them separately.
1075 	 */
1076 	if (type == OSL_NOTIFY_HANDLER) {
1077 		queue = kacpi_notify_wq;
1078 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1079 	} else if (type == OSL_GPE_HANDLER) {
1080 		queue = kacpid_wq;
1081 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1082 	} else {
1083 		pr_err("Unsupported os_execute type %d.\n", type);
1084 		status = AE_ERROR;
1085 	}
1086 
1087 	if (ACPI_FAILURE(status))
1088 		goto err_workqueue;
1089 
1090 	/*
1091 	 * On some machines, a software-initiated SMI causes corruption unless
1092 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1093 	 * typically it's done in GPE-related methods that are run via
1094 	 * workqueues, so we can avoid the known corruption cases by always
1095 	 * queueing on CPU 0.
1096 	 */
1097 	ret = queue_work_on(0, queue, &dpc->work);
1098 	if (!ret) {
1099 		printk(KERN_ERR PREFIX
1100 			  "Call to queue_work() failed.\n");
1101 		status = AE_ERROR;
1102 	}
1103 err_workqueue:
1104 	if (ACPI_FAILURE(status))
1105 		kfree(dpc);
1106 out_thread:
1107 	return status;
1108 }
1109 EXPORT_SYMBOL(acpi_os_execute);
1110 
1111 void acpi_os_wait_events_complete(void)
1112 {
1113 	/*
1114 	 * Make sure the GPE handler or the fixed event handler is not used
1115 	 * on another CPU after removal.
1116 	 */
1117 	if (acpi_sci_irq_valid())
1118 		synchronize_hardirq(acpi_sci_irq);
1119 	flush_workqueue(kacpid_wq);
1120 	flush_workqueue(kacpi_notify_wq);
1121 }
1122 
1123 struct acpi_hp_work {
1124 	struct work_struct work;
1125 	struct acpi_device *adev;
1126 	u32 src;
1127 };
1128 
1129 static void acpi_hotplug_work_fn(struct work_struct *work)
1130 {
1131 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1132 
1133 	acpi_os_wait_events_complete();
1134 	acpi_device_hotplug(hpw->adev, hpw->src);
1135 	kfree(hpw);
1136 }
1137 
1138 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1139 {
1140 	struct acpi_hp_work *hpw;
1141 
1142 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1143 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1144 		  adev, src));
1145 
1146 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1147 	if (!hpw)
1148 		return AE_NO_MEMORY;
1149 
1150 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1151 	hpw->adev = adev;
1152 	hpw->src = src;
1153 	/*
1154 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1155 	 * the hotplug code may call driver .remove() functions, which may
1156 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1157 	 * these workqueues.
1158 	 */
1159 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1160 		kfree(hpw);
1161 		return AE_ERROR;
1162 	}
1163 	return AE_OK;
1164 }
1165 
1166 bool acpi_queue_hotplug_work(struct work_struct *work)
1167 {
1168 	return queue_work(kacpi_hotplug_wq, work);
1169 }
1170 
1171 acpi_status
1172 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1173 {
1174 	struct semaphore *sem = NULL;
1175 
1176 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1177 	if (!sem)
1178 		return AE_NO_MEMORY;
1179 
1180 	sema_init(sem, initial_units);
1181 
1182 	*handle = (acpi_handle *) sem;
1183 
1184 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1185 			  *handle, initial_units));
1186 
1187 	return AE_OK;
1188 }
1189 
1190 /*
1191  * TODO: A better way to delete semaphores?  Linux doesn't have a
1192  * 'delete_semaphore()' function -- may result in an invalid
1193  * pointer dereference for non-synchronized consumers.	Should
1194  * we at least check for blocked threads and signal/cancel them?
1195  */
1196 
1197 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1198 {
1199 	struct semaphore *sem = (struct semaphore *)handle;
1200 
1201 	if (!sem)
1202 		return AE_BAD_PARAMETER;
1203 
1204 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1205 
1206 	BUG_ON(!list_empty(&sem->wait_list));
1207 	kfree(sem);
1208 	sem = NULL;
1209 
1210 	return AE_OK;
1211 }
1212 
1213 /*
1214  * TODO: Support for units > 1?
1215  */
1216 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1217 {
1218 	acpi_status status = AE_OK;
1219 	struct semaphore *sem = (struct semaphore *)handle;
1220 	long jiffies;
1221 	int ret = 0;
1222 
1223 	if (!acpi_os_initialized)
1224 		return AE_OK;
1225 
1226 	if (!sem || (units < 1))
1227 		return AE_BAD_PARAMETER;
1228 
1229 	if (units > 1)
1230 		return AE_SUPPORT;
1231 
1232 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1233 			  handle, units, timeout));
1234 
1235 	if (timeout == ACPI_WAIT_FOREVER)
1236 		jiffies = MAX_SCHEDULE_TIMEOUT;
1237 	else
1238 		jiffies = msecs_to_jiffies(timeout);
1239 
1240 	ret = down_timeout(sem, jiffies);
1241 	if (ret)
1242 		status = AE_TIME;
1243 
1244 	if (ACPI_FAILURE(status)) {
1245 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1246 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1247 				  handle, units, timeout,
1248 				  acpi_format_exception(status)));
1249 	} else {
1250 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1251 				  "Acquired semaphore[%p|%d|%d]", handle,
1252 				  units, timeout));
1253 	}
1254 
1255 	return status;
1256 }
1257 
1258 /*
1259  * TODO: Support for units > 1?
1260  */
1261 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1262 {
1263 	struct semaphore *sem = (struct semaphore *)handle;
1264 
1265 	if (!acpi_os_initialized)
1266 		return AE_OK;
1267 
1268 	if (!sem || (units < 1))
1269 		return AE_BAD_PARAMETER;
1270 
1271 	if (units > 1)
1272 		return AE_SUPPORT;
1273 
1274 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1275 			  units));
1276 
1277 	up(sem);
1278 
1279 	return AE_OK;
1280 }
1281 
1282 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1283 {
1284 #ifdef ENABLE_DEBUGGER
1285 	if (acpi_in_debugger) {
1286 		u32 chars;
1287 
1288 		kdb_read(buffer, buffer_length);
1289 
1290 		/* remove the CR kdb includes */
1291 		chars = strlen(buffer) - 1;
1292 		buffer[chars] = '\0';
1293 	}
1294 #else
1295 	int ret;
1296 
1297 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1298 	if (ret < 0)
1299 		return AE_ERROR;
1300 	if (bytes_read)
1301 		*bytes_read = ret;
1302 #endif
1303 
1304 	return AE_OK;
1305 }
1306 EXPORT_SYMBOL(acpi_os_get_line);
1307 
1308 acpi_status acpi_os_wait_command_ready(void)
1309 {
1310 	int ret;
1311 
1312 	ret = acpi_debugger_wait_command_ready();
1313 	if (ret < 0)
1314 		return AE_ERROR;
1315 	return AE_OK;
1316 }
1317 
1318 acpi_status acpi_os_notify_command_complete(void)
1319 {
1320 	int ret;
1321 
1322 	ret = acpi_debugger_notify_command_complete();
1323 	if (ret < 0)
1324 		return AE_ERROR;
1325 	return AE_OK;
1326 }
1327 
1328 acpi_status acpi_os_signal(u32 function, void *info)
1329 {
1330 	switch (function) {
1331 	case ACPI_SIGNAL_FATAL:
1332 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1333 		break;
1334 	case ACPI_SIGNAL_BREAKPOINT:
1335 		/*
1336 		 * AML Breakpoint
1337 		 * ACPI spec. says to treat it as a NOP unless
1338 		 * you are debugging.  So if/when we integrate
1339 		 * AML debugger into the kernel debugger its
1340 		 * hook will go here.  But until then it is
1341 		 * not useful to print anything on breakpoints.
1342 		 */
1343 		break;
1344 	default:
1345 		break;
1346 	}
1347 
1348 	return AE_OK;
1349 }
1350 
1351 static int __init acpi_os_name_setup(char *str)
1352 {
1353 	char *p = acpi_os_name;
1354 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1355 
1356 	if (!str || !*str)
1357 		return 0;
1358 
1359 	for (; count-- && *str; str++) {
1360 		if (isalnum(*str) || *str == ' ' || *str == ':')
1361 			*p++ = *str;
1362 		else if (*str == '\'' || *str == '"')
1363 			continue;
1364 		else
1365 			break;
1366 	}
1367 	*p = 0;
1368 
1369 	return 1;
1370 
1371 }
1372 
1373 __setup("acpi_os_name=", acpi_os_name_setup);
1374 
1375 /*
1376  * Disable the auto-serialization of named objects creation methods.
1377  *
1378  * This feature is enabled by default.  It marks the AML control methods
1379  * that contain the opcodes to create named objects as "Serialized".
1380  */
1381 static int __init acpi_no_auto_serialize_setup(char *str)
1382 {
1383 	acpi_gbl_auto_serialize_methods = FALSE;
1384 	pr_info("ACPI: auto-serialization disabled\n");
1385 
1386 	return 1;
1387 }
1388 
1389 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1390 
1391 /* Check of resource interference between native drivers and ACPI
1392  * OperationRegions (SystemIO and System Memory only).
1393  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1394  * in arbitrary AML code and can interfere with legacy drivers.
1395  * acpi_enforce_resources= can be set to:
1396  *
1397  *   - strict (default) (2)
1398  *     -> further driver trying to access the resources will not load
1399  *   - lax              (1)
1400  *     -> further driver trying to access the resources will load, but you
1401  *     get a system message that something might go wrong...
1402  *
1403  *   - no               (0)
1404  *     -> ACPI Operation Region resources will not be registered
1405  *
1406  */
1407 #define ENFORCE_RESOURCES_STRICT 2
1408 #define ENFORCE_RESOURCES_LAX    1
1409 #define ENFORCE_RESOURCES_NO     0
1410 
1411 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1412 
1413 static int __init acpi_enforce_resources_setup(char *str)
1414 {
1415 	if (str == NULL || *str == '\0')
1416 		return 0;
1417 
1418 	if (!strcmp("strict", str))
1419 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1420 	else if (!strcmp("lax", str))
1421 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1422 	else if (!strcmp("no", str))
1423 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1424 
1425 	return 1;
1426 }
1427 
1428 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1429 
1430 /* Check for resource conflicts between ACPI OperationRegions and native
1431  * drivers */
1432 int acpi_check_resource_conflict(const struct resource *res)
1433 {
1434 	acpi_adr_space_type space_id;
1435 	acpi_size length;
1436 	u8 warn = 0;
1437 	int clash = 0;
1438 
1439 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1440 		return 0;
1441 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1442 		return 0;
1443 
1444 	if (res->flags & IORESOURCE_IO)
1445 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1446 	else
1447 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1448 
1449 	length = resource_size(res);
1450 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1451 		warn = 1;
1452 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1453 
1454 	if (clash) {
1455 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1456 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1457 				printk(KERN_NOTICE "ACPI: This conflict may"
1458 				       " cause random problems and system"
1459 				       " instability\n");
1460 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1461 			       " for this device, you should use it instead of"
1462 			       " the native driver\n");
1463 		}
1464 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1465 			return -EBUSY;
1466 	}
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL(acpi_check_resource_conflict);
1470 
1471 int acpi_check_region(resource_size_t start, resource_size_t n,
1472 		      const char *name)
1473 {
1474 	struct resource res = {
1475 		.start = start,
1476 		.end   = start + n - 1,
1477 		.name  = name,
1478 		.flags = IORESOURCE_IO,
1479 	};
1480 
1481 	return acpi_check_resource_conflict(&res);
1482 }
1483 EXPORT_SYMBOL(acpi_check_region);
1484 
1485 /*
1486  * Let drivers know whether the resource checks are effective
1487  */
1488 int acpi_resources_are_enforced(void)
1489 {
1490 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1491 }
1492 EXPORT_SYMBOL(acpi_resources_are_enforced);
1493 
1494 /*
1495  * Deallocate the memory for a spinlock.
1496  */
1497 void acpi_os_delete_lock(acpi_spinlock handle)
1498 {
1499 	ACPI_FREE(handle);
1500 }
1501 
1502 /*
1503  * Acquire a spinlock.
1504  *
1505  * handle is a pointer to the spinlock_t.
1506  */
1507 
1508 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1509 {
1510 	acpi_cpu_flags flags;
1511 	spin_lock_irqsave(lockp, flags);
1512 	return flags;
1513 }
1514 
1515 /*
1516  * Release a spinlock. See above.
1517  */
1518 
1519 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1520 {
1521 	spin_unlock_irqrestore(lockp, flags);
1522 }
1523 
1524 #ifndef ACPI_USE_LOCAL_CACHE
1525 
1526 /*******************************************************************************
1527  *
1528  * FUNCTION:    acpi_os_create_cache
1529  *
1530  * PARAMETERS:  name      - Ascii name for the cache
1531  *              size      - Size of each cached object
1532  *              depth     - Maximum depth of the cache (in objects) <ignored>
1533  *              cache     - Where the new cache object is returned
1534  *
1535  * RETURN:      status
1536  *
1537  * DESCRIPTION: Create a cache object
1538  *
1539  ******************************************************************************/
1540 
1541 acpi_status
1542 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1543 {
1544 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1545 	if (*cache == NULL)
1546 		return AE_ERROR;
1547 	else
1548 		return AE_OK;
1549 }
1550 
1551 /*******************************************************************************
1552  *
1553  * FUNCTION:    acpi_os_purge_cache
1554  *
1555  * PARAMETERS:  Cache           - Handle to cache object
1556  *
1557  * RETURN:      Status
1558  *
1559  * DESCRIPTION: Free all objects within the requested cache.
1560  *
1561  ******************************************************************************/
1562 
1563 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1564 {
1565 	kmem_cache_shrink(cache);
1566 	return (AE_OK);
1567 }
1568 
1569 /*******************************************************************************
1570  *
1571  * FUNCTION:    acpi_os_delete_cache
1572  *
1573  * PARAMETERS:  Cache           - Handle to cache object
1574  *
1575  * RETURN:      Status
1576  *
1577  * DESCRIPTION: Free all objects within the requested cache and delete the
1578  *              cache object.
1579  *
1580  ******************************************************************************/
1581 
1582 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1583 {
1584 	kmem_cache_destroy(cache);
1585 	return (AE_OK);
1586 }
1587 
1588 /*******************************************************************************
1589  *
1590  * FUNCTION:    acpi_os_release_object
1591  *
1592  * PARAMETERS:  Cache       - Handle to cache object
1593  *              Object      - The object to be released
1594  *
1595  * RETURN:      None
1596  *
1597  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1598  *              the object is deleted.
1599  *
1600  ******************************************************************************/
1601 
1602 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1603 {
1604 	kmem_cache_free(cache, object);
1605 	return (AE_OK);
1606 }
1607 #endif
1608 
1609 static int __init acpi_no_static_ssdt_setup(char *s)
1610 {
1611 	acpi_gbl_disable_ssdt_table_install = TRUE;
1612 	pr_info("ACPI: static SSDT installation disabled\n");
1613 
1614 	return 0;
1615 }
1616 
1617 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1618 
1619 static int __init acpi_disable_return_repair(char *s)
1620 {
1621 	printk(KERN_NOTICE PREFIX
1622 	       "ACPI: Predefined validation mechanism disabled\n");
1623 	acpi_gbl_disable_auto_repair = TRUE;
1624 
1625 	return 1;
1626 }
1627 
1628 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1629 
1630 acpi_status __init acpi_os_initialize(void)
1631 {
1632 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1633 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1634 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1635 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1636 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1637 		/*
1638 		 * Use acpi_os_map_generic_address to pre-map the reset
1639 		 * register if it's in system memory.
1640 		 */
1641 		int rv;
1642 
1643 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1644 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1645 	}
1646 	acpi_os_initialized = true;
1647 
1648 	return AE_OK;
1649 }
1650 
1651 acpi_status __init acpi_os_initialize1(void)
1652 {
1653 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1654 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1655 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1656 	BUG_ON(!kacpid_wq);
1657 	BUG_ON(!kacpi_notify_wq);
1658 	BUG_ON(!kacpi_hotplug_wq);
1659 	acpi_osi_init();
1660 	return AE_OK;
1661 }
1662 
1663 acpi_status acpi_os_terminate(void)
1664 {
1665 	if (acpi_irq_handler) {
1666 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1667 						 acpi_irq_handler);
1668 	}
1669 
1670 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1671 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1672 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1673 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1674 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1675 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1676 
1677 	destroy_workqueue(kacpid_wq);
1678 	destroy_workqueue(kacpi_notify_wq);
1679 	destroy_workqueue(kacpi_hotplug_wq);
1680 
1681 	return AE_OK;
1682 }
1683 
1684 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1685 				  u32 pm1b_control)
1686 {
1687 	int rc = 0;
1688 	if (__acpi_os_prepare_sleep)
1689 		rc = __acpi_os_prepare_sleep(sleep_state,
1690 					     pm1a_control, pm1b_control);
1691 	if (rc < 0)
1692 		return AE_ERROR;
1693 	else if (rc > 0)
1694 		return AE_CTRL_SKIP;
1695 
1696 	return AE_OK;
1697 }
1698 
1699 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1700 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1701 {
1702 	__acpi_os_prepare_sleep = func;
1703 }
1704 
1705 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1706 				  u32 val_b)
1707 {
1708 	int rc = 0;
1709 	if (__acpi_os_prepare_extended_sleep)
1710 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1711 					     val_a, val_b);
1712 	if (rc < 0)
1713 		return AE_ERROR;
1714 	else if (rc > 0)
1715 		return AE_CTRL_SKIP;
1716 
1717 	return AE_OK;
1718 }
1719 
1720 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1721 			       u32 val_a, u32 val_b))
1722 {
1723 	__acpi_os_prepare_extended_sleep = func;
1724 }
1725