xref: /openbmc/linux/drivers/acpi/osl.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/pci.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/acpi.h>
41 #include <linux/efi.h>
42 #include <linux/ioport.h>
43 #include <linux/list.h>
44 #include <linux/jiffies.h>
45 #include <linux/semaphore.h>
46 
47 #include <asm/io.h>
48 #include <asm/uaccess.h>
49 
50 #include <acpi/acpi.h>
51 #include <acpi/acpi_bus.h>
52 #include <acpi/processor.h>
53 
54 #define _COMPONENT		ACPI_OS_SERVICES
55 ACPI_MODULE_NAME("osl");
56 #define PREFIX		"ACPI: "
57 struct acpi_os_dpc {
58 	acpi_osd_exec_callback function;
59 	void *context;
60 	struct work_struct work;
61 	int wait;
62 };
63 
64 #ifdef CONFIG_ACPI_CUSTOM_DSDT
65 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
66 #endif
67 
68 #ifdef ENABLE_DEBUGGER
69 #include <linux/kdb.h>
70 
71 /* stuff for debugger support */
72 int acpi_in_debugger;
73 EXPORT_SYMBOL(acpi_in_debugger);
74 
75 extern char line_buf[80];
76 #endif				/*ENABLE_DEBUGGER */
77 
78 static unsigned int acpi_irq_irq;
79 static acpi_osd_handler acpi_irq_handler;
80 static void *acpi_irq_context;
81 static struct workqueue_struct *kacpid_wq;
82 static struct workqueue_struct *kacpi_notify_wq;
83 static struct workqueue_struct *kacpi_hotplug_wq;
84 
85 struct acpi_res_list {
86 	resource_size_t start;
87 	resource_size_t end;
88 	acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 	char name[5];   /* only can have a length of 4 chars, make use of this
90 			   one instead of res->name, no need to kalloc then */
91 	struct list_head resource_list;
92 	int count;
93 };
94 
95 static LIST_HEAD(resource_list_head);
96 static DEFINE_SPINLOCK(acpi_res_lock);
97 
98 /*
99  * This list of permanent mappings is for memory that may be accessed from
100  * interrupt context, where we can't do the ioremap().
101  */
102 struct acpi_ioremap {
103 	struct list_head list;
104 	void __iomem *virt;
105 	acpi_physical_address phys;
106 	acpi_size size;
107 	struct kref ref;
108 };
109 
110 static LIST_HEAD(acpi_ioremaps);
111 static DEFINE_SPINLOCK(acpi_ioremap_lock);
112 
113 static void __init acpi_osi_setup_late(void);
114 
115 /*
116  * The story of _OSI(Linux)
117  *
118  * From pre-history through Linux-2.6.22,
119  * Linux responded TRUE upon a BIOS OSI(Linux) query.
120  *
121  * Unfortunately, reference BIOS writers got wind of this
122  * and put OSI(Linux) in their example code, quickly exposing
123  * this string as ill-conceived and opening the door to
124  * an un-bounded number of BIOS incompatibilities.
125  *
126  * For example, OSI(Linux) was used on resume to re-POST a
127  * video card on one system, because Linux at that time
128  * could not do a speedy restore in its native driver.
129  * But then upon gaining quick native restore capability,
130  * Linux has no way to tell the BIOS to skip the time-consuming
131  * POST -- putting Linux at a permanent performance disadvantage.
132  * On another system, the BIOS writer used OSI(Linux)
133  * to infer native OS support for IPMI!  On other systems,
134  * OSI(Linux) simply got in the way of Linux claiming to
135  * be compatible with other operating systems, exposing
136  * BIOS issues such as skipped device initialization.
137  *
138  * So "Linux" turned out to be a really poor chose of
139  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
140  *
141  * BIOS writers should NOT query _OSI(Linux) on future systems.
142  * Linux will complain on the console when it sees it, and return FALSE.
143  * To get Linux to return TRUE for your system  will require
144  * a kernel source update to add a DMI entry,
145  * or boot with "acpi_osi=Linux"
146  */
147 
148 static struct osi_linux {
149 	unsigned int	enable:1;
150 	unsigned int	dmi:1;
151 	unsigned int	cmdline:1;
152 } osi_linux = {0, 0, 0};
153 
154 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
155 {
156 	if (!strcmp("Linux", interface)) {
157 
158 		printk(KERN_NOTICE FW_BUG PREFIX
159 			"BIOS _OSI(Linux) query %s%s\n",
160 			osi_linux.enable ? "honored" : "ignored",
161 			osi_linux.cmdline ? " via cmdline" :
162 			osi_linux.dmi ? " via DMI" : "");
163 	}
164 
165 	return supported;
166 }
167 
168 static void __init acpi_request_region (struct acpi_generic_address *addr,
169 	unsigned int length, char *desc)
170 {
171 	if (!addr->address || !length)
172 		return;
173 
174 	/* Resources are never freed */
175 	if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
176 		request_region(addr->address, length, desc);
177 	else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
178 		request_mem_region(addr->address, length, desc);
179 }
180 
181 static int __init acpi_reserve_resources(void)
182 {
183 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
184 		"ACPI PM1a_EVT_BLK");
185 
186 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
187 		"ACPI PM1b_EVT_BLK");
188 
189 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
190 		"ACPI PM1a_CNT_BLK");
191 
192 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
193 		"ACPI PM1b_CNT_BLK");
194 
195 	if (acpi_gbl_FADT.pm_timer_length == 4)
196 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
197 
198 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
199 		"ACPI PM2_CNT_BLK");
200 
201 	/* Length of GPE blocks must be a non-negative multiple of 2 */
202 
203 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
204 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
205 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
206 
207 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
208 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
209 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
210 
211 	return 0;
212 }
213 device_initcall(acpi_reserve_resources);
214 
215 void acpi_os_printf(const char *fmt, ...)
216 {
217 	va_list args;
218 	va_start(args, fmt);
219 	acpi_os_vprintf(fmt, args);
220 	va_end(args);
221 }
222 
223 void acpi_os_vprintf(const char *fmt, va_list args)
224 {
225 	static char buffer[512];
226 
227 	vsprintf(buffer, fmt, args);
228 
229 #ifdef ENABLE_DEBUGGER
230 	if (acpi_in_debugger) {
231 		kdb_printf("%s", buffer);
232 	} else {
233 		printk(KERN_CONT "%s", buffer);
234 	}
235 #else
236 	printk(KERN_CONT "%s", buffer);
237 #endif
238 }
239 
240 acpi_physical_address __init acpi_os_get_root_pointer(void)
241 {
242 	if (efi_enabled) {
243 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
244 			return efi.acpi20;
245 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
246 			return efi.acpi;
247 		else {
248 			printk(KERN_ERR PREFIX
249 			       "System description tables not found\n");
250 			return 0;
251 		}
252 	} else {
253 		acpi_physical_address pa = 0;
254 
255 		acpi_find_root_pointer(&pa);
256 		return pa;
257 	}
258 }
259 
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
263 {
264 	struct acpi_ioremap *map;
265 
266 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 		if (map->phys <= phys &&
268 		    phys + size <= map->phys + map->size)
269 			return map;
270 
271 	return NULL;
272 }
273 
274 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
275 static void __iomem *
276 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
277 {
278 	struct acpi_ioremap *map;
279 
280 	map = acpi_map_lookup(phys, size);
281 	if (map)
282 		return map->virt + (phys - map->phys);
283 
284 	return NULL;
285 }
286 
287 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
288 static struct acpi_ioremap *
289 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
290 {
291 	struct acpi_ioremap *map;
292 
293 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
294 		if (map->virt <= virt &&
295 		    virt + size <= map->virt + map->size)
296 			return map;
297 
298 	return NULL;
299 }
300 
301 void __iomem *__init_refok
302 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
303 {
304 	struct acpi_ioremap *map, *tmp_map;
305 	unsigned long flags, pg_sz;
306 	void __iomem *virt;
307 	phys_addr_t pg_off;
308 
309 	if (phys > ULONG_MAX) {
310 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
311 		return NULL;
312 	}
313 
314 	if (!acpi_gbl_permanent_mmap)
315 		return __acpi_map_table((unsigned long)phys, size);
316 
317 	map = kzalloc(sizeof(*map), GFP_KERNEL);
318 	if (!map)
319 		return NULL;
320 
321 	pg_off = round_down(phys, PAGE_SIZE);
322 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
323 	virt = ioremap(pg_off, pg_sz);
324 	if (!virt) {
325 		kfree(map);
326 		return NULL;
327 	}
328 
329 	INIT_LIST_HEAD(&map->list);
330 	map->virt = virt;
331 	map->phys = pg_off;
332 	map->size = pg_sz;
333 	kref_init(&map->ref);
334 
335 	spin_lock_irqsave(&acpi_ioremap_lock, flags);
336 	/* Check if page has already been mapped. */
337 	tmp_map = acpi_map_lookup(phys, size);
338 	if (tmp_map) {
339 		kref_get(&tmp_map->ref);
340 		spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
341 		iounmap(map->virt);
342 		kfree(map);
343 		return tmp_map->virt + (phys - tmp_map->phys);
344 	}
345 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
346 	spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
347 
348 	return map->virt + (phys - map->phys);
349 }
350 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
351 
352 static void acpi_kref_del_iomap(struct kref *ref)
353 {
354 	struct acpi_ioremap *map;
355 
356 	map = container_of(ref, struct acpi_ioremap, ref);
357 	list_del_rcu(&map->list);
358 }
359 
360 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
361 {
362 	struct acpi_ioremap *map;
363 	unsigned long flags;
364 	int del;
365 
366 	if (!acpi_gbl_permanent_mmap) {
367 		__acpi_unmap_table(virt, size);
368 		return;
369 	}
370 
371 	spin_lock_irqsave(&acpi_ioremap_lock, flags);
372 	map = acpi_map_lookup_virt(virt, size);
373 	if (!map) {
374 		spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
375 		printk(KERN_ERR PREFIX "%s: bad address %p\n", __func__, virt);
376 		dump_stack();
377 		return;
378 	}
379 
380 	del = kref_put(&map->ref, acpi_kref_del_iomap);
381 	spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
382 
383 	if (!del)
384 		return;
385 
386 	synchronize_rcu();
387 	iounmap(map->virt);
388 	kfree(map);
389 }
390 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
391 
392 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
393 {
394 	if (!acpi_gbl_permanent_mmap)
395 		__acpi_unmap_table(virt, size);
396 }
397 
398 int acpi_os_map_generic_address(struct acpi_generic_address *addr)
399 {
400 	void __iomem *virt;
401 
402 	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
403 		return 0;
404 
405 	if (!addr->address || !addr->bit_width)
406 		return -EINVAL;
407 
408 	virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
409 	if (!virt)
410 		return -EIO;
411 
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(acpi_os_map_generic_address);
415 
416 void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
417 {
418 	void __iomem *virt;
419 	unsigned long flags;
420 	acpi_size size = addr->bit_width / 8;
421 
422 	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
423 		return;
424 
425 	if (!addr->address || !addr->bit_width)
426 		return;
427 
428 	spin_lock_irqsave(&acpi_ioremap_lock, flags);
429 	virt = acpi_map_vaddr_lookup(addr->address, size);
430 	spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
431 
432 	acpi_os_unmap_memory(virt, size);
433 }
434 EXPORT_SYMBOL_GPL(acpi_os_unmap_generic_address);
435 
436 #ifdef ACPI_FUTURE_USAGE
437 acpi_status
438 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
439 {
440 	if (!phys || !virt)
441 		return AE_BAD_PARAMETER;
442 
443 	*phys = virt_to_phys(virt);
444 
445 	return AE_OK;
446 }
447 #endif
448 
449 #define ACPI_MAX_OVERRIDE_LEN 100
450 
451 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
452 
453 acpi_status
454 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
455 			    acpi_string * new_val)
456 {
457 	if (!init_val || !new_val)
458 		return AE_BAD_PARAMETER;
459 
460 	*new_val = NULL;
461 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
462 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
463 		       acpi_os_name);
464 		*new_val = acpi_os_name;
465 	}
466 
467 	return AE_OK;
468 }
469 
470 acpi_status
471 acpi_os_table_override(struct acpi_table_header * existing_table,
472 		       struct acpi_table_header ** new_table)
473 {
474 	if (!existing_table || !new_table)
475 		return AE_BAD_PARAMETER;
476 
477 	*new_table = NULL;
478 
479 #ifdef CONFIG_ACPI_CUSTOM_DSDT
480 	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
481 		*new_table = (struct acpi_table_header *)AmlCode;
482 #endif
483 	if (*new_table != NULL) {
484 		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
485 			   "this is unsafe: tainting kernel\n",
486 		       existing_table->signature,
487 		       existing_table->oem_table_id);
488 		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
489 	}
490 	return AE_OK;
491 }
492 
493 static irqreturn_t acpi_irq(int irq, void *dev_id)
494 {
495 	u32 handled;
496 
497 	handled = (*acpi_irq_handler) (acpi_irq_context);
498 
499 	if (handled) {
500 		acpi_irq_handled++;
501 		return IRQ_HANDLED;
502 	} else {
503 		acpi_irq_not_handled++;
504 		return IRQ_NONE;
505 	}
506 }
507 
508 acpi_status
509 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
510 				  void *context)
511 {
512 	unsigned int irq;
513 
514 	acpi_irq_stats_init();
515 
516 	/*
517 	 * Ignore the GSI from the core, and use the value in our copy of the
518 	 * FADT. It may not be the same if an interrupt source override exists
519 	 * for the SCI.
520 	 */
521 	gsi = acpi_gbl_FADT.sci_interrupt;
522 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
523 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
524 		       gsi);
525 		return AE_OK;
526 	}
527 
528 	acpi_irq_handler = handler;
529 	acpi_irq_context = context;
530 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
531 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
532 		return AE_NOT_ACQUIRED;
533 	}
534 	acpi_irq_irq = irq;
535 
536 	return AE_OK;
537 }
538 
539 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
540 {
541 	if (irq) {
542 		free_irq(irq, acpi_irq);
543 		acpi_irq_handler = NULL;
544 		acpi_irq_irq = 0;
545 	}
546 
547 	return AE_OK;
548 }
549 
550 /*
551  * Running in interpreter thread context, safe to sleep
552  */
553 
554 void acpi_os_sleep(u64 ms)
555 {
556 	schedule_timeout_interruptible(msecs_to_jiffies(ms));
557 }
558 
559 void acpi_os_stall(u32 us)
560 {
561 	while (us) {
562 		u32 delay = 1000;
563 
564 		if (delay > us)
565 			delay = us;
566 		udelay(delay);
567 		touch_nmi_watchdog();
568 		us -= delay;
569 	}
570 }
571 
572 /*
573  * Support ACPI 3.0 AML Timer operand
574  * Returns 64-bit free-running, monotonically increasing timer
575  * with 100ns granularity
576  */
577 u64 acpi_os_get_timer(void)
578 {
579 	static u64 t;
580 
581 #ifdef	CONFIG_HPET
582 	/* TBD: use HPET if available */
583 #endif
584 
585 #ifdef	CONFIG_X86_PM_TIMER
586 	/* TBD: default to PM timer if HPET was not available */
587 #endif
588 	if (!t)
589 		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
590 
591 	return ++t;
592 }
593 
594 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
595 {
596 	u32 dummy;
597 
598 	if (!value)
599 		value = &dummy;
600 
601 	*value = 0;
602 	if (width <= 8) {
603 		*(u8 *) value = inb(port);
604 	} else if (width <= 16) {
605 		*(u16 *) value = inw(port);
606 	} else if (width <= 32) {
607 		*(u32 *) value = inl(port);
608 	} else {
609 		BUG();
610 	}
611 
612 	return AE_OK;
613 }
614 
615 EXPORT_SYMBOL(acpi_os_read_port);
616 
617 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
618 {
619 	if (width <= 8) {
620 		outb(value, port);
621 	} else if (width <= 16) {
622 		outw(value, port);
623 	} else if (width <= 32) {
624 		outl(value, port);
625 	} else {
626 		BUG();
627 	}
628 
629 	return AE_OK;
630 }
631 
632 EXPORT_SYMBOL(acpi_os_write_port);
633 
634 acpi_status
635 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
636 {
637 	u32 dummy;
638 	void __iomem *virt_addr;
639 	int size = width / 8, unmap = 0;
640 
641 	rcu_read_lock();
642 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
643 	rcu_read_unlock();
644 	if (!virt_addr) {
645 		virt_addr = ioremap(phys_addr, size);
646 		unmap = 1;
647 	}
648 	if (!value)
649 		value = &dummy;
650 
651 	switch (width) {
652 	case 8:
653 		*(u8 *) value = readb(virt_addr);
654 		break;
655 	case 16:
656 		*(u16 *) value = readw(virt_addr);
657 		break;
658 	case 32:
659 		*(u32 *) value = readl(virt_addr);
660 		break;
661 	default:
662 		BUG();
663 	}
664 
665 	if (unmap)
666 		iounmap(virt_addr);
667 
668 	return AE_OK;
669 }
670 
671 acpi_status
672 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
673 {
674 	void __iomem *virt_addr;
675 	int size = width / 8, unmap = 0;
676 
677 	rcu_read_lock();
678 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
679 	rcu_read_unlock();
680 	if (!virt_addr) {
681 		virt_addr = ioremap(phys_addr, size);
682 		unmap = 1;
683 	}
684 
685 	switch (width) {
686 	case 8:
687 		writeb(value, virt_addr);
688 		break;
689 	case 16:
690 		writew(value, virt_addr);
691 		break;
692 	case 32:
693 		writel(value, virt_addr);
694 		break;
695 	default:
696 		BUG();
697 	}
698 
699 	if (unmap)
700 		iounmap(virt_addr);
701 
702 	return AE_OK;
703 }
704 
705 acpi_status
706 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
707 			       u64 *value, u32 width)
708 {
709 	int result, size;
710 	u32 value32;
711 
712 	if (!value)
713 		return AE_BAD_PARAMETER;
714 
715 	switch (width) {
716 	case 8:
717 		size = 1;
718 		break;
719 	case 16:
720 		size = 2;
721 		break;
722 	case 32:
723 		size = 4;
724 		break;
725 	default:
726 		return AE_ERROR;
727 	}
728 
729 	result = raw_pci_read(pci_id->segment, pci_id->bus,
730 				PCI_DEVFN(pci_id->device, pci_id->function),
731 				reg, size, &value32);
732 	*value = value32;
733 
734 	return (result ? AE_ERROR : AE_OK);
735 }
736 
737 acpi_status
738 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
739 				u64 value, u32 width)
740 {
741 	int result, size;
742 
743 	switch (width) {
744 	case 8:
745 		size = 1;
746 		break;
747 	case 16:
748 		size = 2;
749 		break;
750 	case 32:
751 		size = 4;
752 		break;
753 	default:
754 		return AE_ERROR;
755 	}
756 
757 	result = raw_pci_write(pci_id->segment, pci_id->bus,
758 				PCI_DEVFN(pci_id->device, pci_id->function),
759 				reg, size, value);
760 
761 	return (result ? AE_ERROR : AE_OK);
762 }
763 
764 static void acpi_os_execute_deferred(struct work_struct *work)
765 {
766 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
767 
768 	if (dpc->wait)
769 		acpi_os_wait_events_complete(NULL);
770 
771 	dpc->function(dpc->context);
772 	kfree(dpc);
773 }
774 
775 /*******************************************************************************
776  *
777  * FUNCTION:    acpi_os_execute
778  *
779  * PARAMETERS:  Type               - Type of the callback
780  *              Function           - Function to be executed
781  *              Context            - Function parameters
782  *
783  * RETURN:      Status
784  *
785  * DESCRIPTION: Depending on type, either queues function for deferred execution or
786  *              immediately executes function on a separate thread.
787  *
788  ******************************************************************************/
789 
790 static acpi_status __acpi_os_execute(acpi_execute_type type,
791 	acpi_osd_exec_callback function, void *context, int hp)
792 {
793 	acpi_status status = AE_OK;
794 	struct acpi_os_dpc *dpc;
795 	struct workqueue_struct *queue;
796 	int ret;
797 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
798 			  "Scheduling function [%p(%p)] for deferred execution.\n",
799 			  function, context));
800 
801 	/*
802 	 * Allocate/initialize DPC structure.  Note that this memory will be
803 	 * freed by the callee.  The kernel handles the work_struct list  in a
804 	 * way that allows us to also free its memory inside the callee.
805 	 * Because we may want to schedule several tasks with different
806 	 * parameters we can't use the approach some kernel code uses of
807 	 * having a static work_struct.
808 	 */
809 
810 	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
811 	if (!dpc)
812 		return AE_NO_MEMORY;
813 
814 	dpc->function = function;
815 	dpc->context = context;
816 
817 	/*
818 	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
819 	 * because the hotplug code may call driver .remove() functions,
820 	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
821 	 * to flush these workqueues.
822 	 */
823 	queue = hp ? kacpi_hotplug_wq :
824 		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
825 	dpc->wait = hp ? 1 : 0;
826 
827 	if (queue == kacpi_hotplug_wq)
828 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
829 	else if (queue == kacpi_notify_wq)
830 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
831 	else
832 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
833 
834 	/*
835 	 * On some machines, a software-initiated SMI causes corruption unless
836 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
837 	 * typically it's done in GPE-related methods that are run via
838 	 * workqueues, so we can avoid the known corruption cases by always
839 	 * queueing on CPU 0.
840 	 */
841 	ret = queue_work_on(0, queue, &dpc->work);
842 
843 	if (!ret) {
844 		printk(KERN_ERR PREFIX
845 			  "Call to queue_work() failed.\n");
846 		status = AE_ERROR;
847 		kfree(dpc);
848 	}
849 	return status;
850 }
851 
852 acpi_status acpi_os_execute(acpi_execute_type type,
853 			    acpi_osd_exec_callback function, void *context)
854 {
855 	return __acpi_os_execute(type, function, context, 0);
856 }
857 EXPORT_SYMBOL(acpi_os_execute);
858 
859 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
860 	void *context)
861 {
862 	return __acpi_os_execute(0, function, context, 1);
863 }
864 
865 void acpi_os_wait_events_complete(void *context)
866 {
867 	flush_workqueue(kacpid_wq);
868 	flush_workqueue(kacpi_notify_wq);
869 }
870 
871 EXPORT_SYMBOL(acpi_os_wait_events_complete);
872 
873 /*
874  * Deallocate the memory for a spinlock.
875  */
876 void acpi_os_delete_lock(acpi_spinlock handle)
877 {
878 	return;
879 }
880 
881 acpi_status
882 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
883 {
884 	struct semaphore *sem = NULL;
885 
886 	sem = acpi_os_allocate(sizeof(struct semaphore));
887 	if (!sem)
888 		return AE_NO_MEMORY;
889 	memset(sem, 0, sizeof(struct semaphore));
890 
891 	sema_init(sem, initial_units);
892 
893 	*handle = (acpi_handle *) sem;
894 
895 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
896 			  *handle, initial_units));
897 
898 	return AE_OK;
899 }
900 
901 /*
902  * TODO: A better way to delete semaphores?  Linux doesn't have a
903  * 'delete_semaphore()' function -- may result in an invalid
904  * pointer dereference for non-synchronized consumers.	Should
905  * we at least check for blocked threads and signal/cancel them?
906  */
907 
908 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
909 {
910 	struct semaphore *sem = (struct semaphore *)handle;
911 
912 	if (!sem)
913 		return AE_BAD_PARAMETER;
914 
915 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
916 
917 	BUG_ON(!list_empty(&sem->wait_list));
918 	kfree(sem);
919 	sem = NULL;
920 
921 	return AE_OK;
922 }
923 
924 /*
925  * TODO: Support for units > 1?
926  */
927 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
928 {
929 	acpi_status status = AE_OK;
930 	struct semaphore *sem = (struct semaphore *)handle;
931 	long jiffies;
932 	int ret = 0;
933 
934 	if (!sem || (units < 1))
935 		return AE_BAD_PARAMETER;
936 
937 	if (units > 1)
938 		return AE_SUPPORT;
939 
940 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
941 			  handle, units, timeout));
942 
943 	if (timeout == ACPI_WAIT_FOREVER)
944 		jiffies = MAX_SCHEDULE_TIMEOUT;
945 	else
946 		jiffies = msecs_to_jiffies(timeout);
947 
948 	ret = down_timeout(sem, jiffies);
949 	if (ret)
950 		status = AE_TIME;
951 
952 	if (ACPI_FAILURE(status)) {
953 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
954 				  "Failed to acquire semaphore[%p|%d|%d], %s",
955 				  handle, units, timeout,
956 				  acpi_format_exception(status)));
957 	} else {
958 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
959 				  "Acquired semaphore[%p|%d|%d]", handle,
960 				  units, timeout));
961 	}
962 
963 	return status;
964 }
965 
966 /*
967  * TODO: Support for units > 1?
968  */
969 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
970 {
971 	struct semaphore *sem = (struct semaphore *)handle;
972 
973 	if (!sem || (units < 1))
974 		return AE_BAD_PARAMETER;
975 
976 	if (units > 1)
977 		return AE_SUPPORT;
978 
979 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
980 			  units));
981 
982 	up(sem);
983 
984 	return AE_OK;
985 }
986 
987 #ifdef ACPI_FUTURE_USAGE
988 u32 acpi_os_get_line(char *buffer)
989 {
990 
991 #ifdef ENABLE_DEBUGGER
992 	if (acpi_in_debugger) {
993 		u32 chars;
994 
995 		kdb_read(buffer, sizeof(line_buf));
996 
997 		/* remove the CR kdb includes */
998 		chars = strlen(buffer) - 1;
999 		buffer[chars] = '\0';
1000 	}
1001 #endif
1002 
1003 	return 0;
1004 }
1005 #endif				/*  ACPI_FUTURE_USAGE  */
1006 
1007 acpi_status acpi_os_signal(u32 function, void *info)
1008 {
1009 	switch (function) {
1010 	case ACPI_SIGNAL_FATAL:
1011 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1012 		break;
1013 	case ACPI_SIGNAL_BREAKPOINT:
1014 		/*
1015 		 * AML Breakpoint
1016 		 * ACPI spec. says to treat it as a NOP unless
1017 		 * you are debugging.  So if/when we integrate
1018 		 * AML debugger into the kernel debugger its
1019 		 * hook will go here.  But until then it is
1020 		 * not useful to print anything on breakpoints.
1021 		 */
1022 		break;
1023 	default:
1024 		break;
1025 	}
1026 
1027 	return AE_OK;
1028 }
1029 
1030 static int __init acpi_os_name_setup(char *str)
1031 {
1032 	char *p = acpi_os_name;
1033 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1034 
1035 	if (!str || !*str)
1036 		return 0;
1037 
1038 	for (; count-- && str && *str; str++) {
1039 		if (isalnum(*str) || *str == ' ' || *str == ':')
1040 			*p++ = *str;
1041 		else if (*str == '\'' || *str == '"')
1042 			continue;
1043 		else
1044 			break;
1045 	}
1046 	*p = 0;
1047 
1048 	return 1;
1049 
1050 }
1051 
1052 __setup("acpi_os_name=", acpi_os_name_setup);
1053 
1054 #define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1055 #define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1056 
1057 struct osi_setup_entry {
1058 	char string[OSI_STRING_LENGTH_MAX];
1059 	bool enable;
1060 };
1061 
1062 static struct osi_setup_entry __initdata osi_setup_entries[OSI_STRING_ENTRIES_MAX];
1063 
1064 void __init acpi_osi_setup(char *str)
1065 {
1066 	struct osi_setup_entry *osi;
1067 	bool enable = true;
1068 	int i;
1069 
1070 	if (!acpi_gbl_create_osi_method)
1071 		return;
1072 
1073 	if (str == NULL || *str == '\0') {
1074 		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1075 		acpi_gbl_create_osi_method = FALSE;
1076 		return;
1077 	}
1078 
1079 	if (*str == '!') {
1080 		str++;
1081 		enable = false;
1082 	}
1083 
1084 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1085 		osi = &osi_setup_entries[i];
1086 		if (!strcmp(osi->string, str)) {
1087 			osi->enable = enable;
1088 			break;
1089 		} else if (osi->string[0] == '\0') {
1090 			osi->enable = enable;
1091 			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1092 			break;
1093 		}
1094 	}
1095 }
1096 
1097 static void __init set_osi_linux(unsigned int enable)
1098 {
1099 	if (osi_linux.enable != enable)
1100 		osi_linux.enable = enable;
1101 
1102 	if (osi_linux.enable)
1103 		acpi_osi_setup("Linux");
1104 	else
1105 		acpi_osi_setup("!Linux");
1106 
1107 	return;
1108 }
1109 
1110 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1111 {
1112 	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1113 	osi_linux.dmi = 0;
1114 	set_osi_linux(enable);
1115 
1116 	return;
1117 }
1118 
1119 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1120 {
1121 	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1122 
1123 	if (enable == -1)
1124 		return;
1125 
1126 	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1127 	set_osi_linux(enable);
1128 
1129 	return;
1130 }
1131 
1132 /*
1133  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1134  *
1135  * empty string disables _OSI
1136  * string starting with '!' disables that string
1137  * otherwise string is added to list, augmenting built-in strings
1138  */
1139 static void __init acpi_osi_setup_late(void)
1140 {
1141 	struct osi_setup_entry *osi;
1142 	char *str;
1143 	int i;
1144 	acpi_status status;
1145 
1146 	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1147 		osi = &osi_setup_entries[i];
1148 		str = osi->string;
1149 
1150 		if (*str == '\0')
1151 			break;
1152 		if (osi->enable) {
1153 			status = acpi_install_interface(str);
1154 
1155 			if (ACPI_SUCCESS(status))
1156 				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1157 		} else {
1158 			status = acpi_remove_interface(str);
1159 
1160 			if (ACPI_SUCCESS(status))
1161 				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1162 		}
1163 	}
1164 }
1165 
1166 static int __init osi_setup(char *str)
1167 {
1168 	if (str && !strcmp("Linux", str))
1169 		acpi_cmdline_osi_linux(1);
1170 	else if (str && !strcmp("!Linux", str))
1171 		acpi_cmdline_osi_linux(0);
1172 	else
1173 		acpi_osi_setup(str);
1174 
1175 	return 1;
1176 }
1177 
1178 __setup("acpi_osi=", osi_setup);
1179 
1180 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1181 static int __init acpi_serialize_setup(char *str)
1182 {
1183 	printk(KERN_INFO PREFIX "serialize enabled\n");
1184 
1185 	acpi_gbl_all_methods_serialized = TRUE;
1186 
1187 	return 1;
1188 }
1189 
1190 __setup("acpi_serialize", acpi_serialize_setup);
1191 
1192 /* Check of resource interference between native drivers and ACPI
1193  * OperationRegions (SystemIO and System Memory only).
1194  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1195  * in arbitrary AML code and can interfere with legacy drivers.
1196  * acpi_enforce_resources= can be set to:
1197  *
1198  *   - strict (default) (2)
1199  *     -> further driver trying to access the resources will not load
1200  *   - lax              (1)
1201  *     -> further driver trying to access the resources will load, but you
1202  *     get a system message that something might go wrong...
1203  *
1204  *   - no               (0)
1205  *     -> ACPI Operation Region resources will not be registered
1206  *
1207  */
1208 #define ENFORCE_RESOURCES_STRICT 2
1209 #define ENFORCE_RESOURCES_LAX    1
1210 #define ENFORCE_RESOURCES_NO     0
1211 
1212 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1213 
1214 static int __init acpi_enforce_resources_setup(char *str)
1215 {
1216 	if (str == NULL || *str == '\0')
1217 		return 0;
1218 
1219 	if (!strcmp("strict", str))
1220 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1221 	else if (!strcmp("lax", str))
1222 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1223 	else if (!strcmp("no", str))
1224 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1225 
1226 	return 1;
1227 }
1228 
1229 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1230 
1231 /* Check for resource conflicts between ACPI OperationRegions and native
1232  * drivers */
1233 int acpi_check_resource_conflict(const struct resource *res)
1234 {
1235 	struct acpi_res_list *res_list_elem;
1236 	int ioport;
1237 	int clash = 0;
1238 
1239 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1240 		return 0;
1241 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1242 		return 0;
1243 
1244 	ioport = res->flags & IORESOURCE_IO;
1245 
1246 	spin_lock(&acpi_res_lock);
1247 	list_for_each_entry(res_list_elem, &resource_list_head,
1248 			    resource_list) {
1249 		if (ioport && (res_list_elem->resource_type
1250 			       != ACPI_ADR_SPACE_SYSTEM_IO))
1251 			continue;
1252 		if (!ioport && (res_list_elem->resource_type
1253 				!= ACPI_ADR_SPACE_SYSTEM_MEMORY))
1254 			continue;
1255 
1256 		if (res->end < res_list_elem->start
1257 		    || res_list_elem->end < res->start)
1258 			continue;
1259 		clash = 1;
1260 		break;
1261 	}
1262 	spin_unlock(&acpi_res_lock);
1263 
1264 	if (clash) {
1265 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1266 			printk(KERN_WARNING "ACPI: resource %s %pR"
1267 			       " conflicts with ACPI region %s %pR\n",
1268 			       res->name, res, res_list_elem->name,
1269 			       res_list_elem);
1270 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1271 				printk(KERN_NOTICE "ACPI: This conflict may"
1272 				       " cause random problems and system"
1273 				       " instability\n");
1274 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1275 			       " for this device, you should use it instead of"
1276 			       " the native driver\n");
1277 		}
1278 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1279 			return -EBUSY;
1280 	}
1281 	return 0;
1282 }
1283 EXPORT_SYMBOL(acpi_check_resource_conflict);
1284 
1285 int acpi_check_region(resource_size_t start, resource_size_t n,
1286 		      const char *name)
1287 {
1288 	struct resource res = {
1289 		.start = start,
1290 		.end   = start + n - 1,
1291 		.name  = name,
1292 		.flags = IORESOURCE_IO,
1293 	};
1294 
1295 	return acpi_check_resource_conflict(&res);
1296 }
1297 EXPORT_SYMBOL(acpi_check_region);
1298 
1299 /*
1300  * Let drivers know whether the resource checks are effective
1301  */
1302 int acpi_resources_are_enforced(void)
1303 {
1304 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1305 }
1306 EXPORT_SYMBOL(acpi_resources_are_enforced);
1307 
1308 /*
1309  * Acquire a spinlock.
1310  *
1311  * handle is a pointer to the spinlock_t.
1312  */
1313 
1314 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1315 {
1316 	acpi_cpu_flags flags;
1317 	spin_lock_irqsave(lockp, flags);
1318 	return flags;
1319 }
1320 
1321 /*
1322  * Release a spinlock. See above.
1323  */
1324 
1325 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1326 {
1327 	spin_unlock_irqrestore(lockp, flags);
1328 }
1329 
1330 #ifndef ACPI_USE_LOCAL_CACHE
1331 
1332 /*******************************************************************************
1333  *
1334  * FUNCTION:    acpi_os_create_cache
1335  *
1336  * PARAMETERS:  name      - Ascii name for the cache
1337  *              size      - Size of each cached object
1338  *              depth     - Maximum depth of the cache (in objects) <ignored>
1339  *              cache     - Where the new cache object is returned
1340  *
1341  * RETURN:      status
1342  *
1343  * DESCRIPTION: Create a cache object
1344  *
1345  ******************************************************************************/
1346 
1347 acpi_status
1348 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1349 {
1350 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1351 	if (*cache == NULL)
1352 		return AE_ERROR;
1353 	else
1354 		return AE_OK;
1355 }
1356 
1357 /*******************************************************************************
1358  *
1359  * FUNCTION:    acpi_os_purge_cache
1360  *
1361  * PARAMETERS:  Cache           - Handle to cache object
1362  *
1363  * RETURN:      Status
1364  *
1365  * DESCRIPTION: Free all objects within the requested cache.
1366  *
1367  ******************************************************************************/
1368 
1369 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1370 {
1371 	kmem_cache_shrink(cache);
1372 	return (AE_OK);
1373 }
1374 
1375 /*******************************************************************************
1376  *
1377  * FUNCTION:    acpi_os_delete_cache
1378  *
1379  * PARAMETERS:  Cache           - Handle to cache object
1380  *
1381  * RETURN:      Status
1382  *
1383  * DESCRIPTION: Free all objects within the requested cache and delete the
1384  *              cache object.
1385  *
1386  ******************************************************************************/
1387 
1388 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1389 {
1390 	kmem_cache_destroy(cache);
1391 	return (AE_OK);
1392 }
1393 
1394 /*******************************************************************************
1395  *
1396  * FUNCTION:    acpi_os_release_object
1397  *
1398  * PARAMETERS:  Cache       - Handle to cache object
1399  *              Object      - The object to be released
1400  *
1401  * RETURN:      None
1402  *
1403  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1404  *              the object is deleted.
1405  *
1406  ******************************************************************************/
1407 
1408 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1409 {
1410 	kmem_cache_free(cache, object);
1411 	return (AE_OK);
1412 }
1413 
1414 static inline int acpi_res_list_add(struct acpi_res_list *res)
1415 {
1416 	struct acpi_res_list *res_list_elem;
1417 
1418 	list_for_each_entry(res_list_elem, &resource_list_head,
1419 			    resource_list) {
1420 
1421 		if (res->resource_type == res_list_elem->resource_type &&
1422 		    res->start == res_list_elem->start &&
1423 		    res->end == res_list_elem->end) {
1424 
1425 			/*
1426 			 * The Region(addr,len) already exist in the list,
1427 			 * just increase the count
1428 			 */
1429 
1430 			res_list_elem->count++;
1431 			return 0;
1432 		}
1433 	}
1434 
1435 	res->count = 1;
1436 	list_add(&res->resource_list, &resource_list_head);
1437 	return 1;
1438 }
1439 
1440 static inline void acpi_res_list_del(struct acpi_res_list *res)
1441 {
1442 	struct acpi_res_list *res_list_elem;
1443 
1444 	list_for_each_entry(res_list_elem, &resource_list_head,
1445 			    resource_list) {
1446 
1447 		if (res->resource_type == res_list_elem->resource_type &&
1448 		    res->start == res_list_elem->start &&
1449 		    res->end == res_list_elem->end) {
1450 
1451 			/*
1452 			 * If the res count is decreased to 0,
1453 			 * remove and free it
1454 			 */
1455 
1456 			if (--res_list_elem->count == 0) {
1457 				list_del(&res_list_elem->resource_list);
1458 				kfree(res_list_elem);
1459 			}
1460 			return;
1461 		}
1462 	}
1463 }
1464 
1465 acpi_status
1466 acpi_os_invalidate_address(
1467     u8                   space_id,
1468     acpi_physical_address   address,
1469     acpi_size               length)
1470 {
1471 	struct acpi_res_list res;
1472 
1473 	switch (space_id) {
1474 	case ACPI_ADR_SPACE_SYSTEM_IO:
1475 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1476 		/* Only interference checks against SystemIO and SystemMemory
1477 		   are needed */
1478 		res.start = address;
1479 		res.end = address + length - 1;
1480 		res.resource_type = space_id;
1481 		spin_lock(&acpi_res_lock);
1482 		acpi_res_list_del(&res);
1483 		spin_unlock(&acpi_res_lock);
1484 		break;
1485 	case ACPI_ADR_SPACE_PCI_CONFIG:
1486 	case ACPI_ADR_SPACE_EC:
1487 	case ACPI_ADR_SPACE_SMBUS:
1488 	case ACPI_ADR_SPACE_CMOS:
1489 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1490 	case ACPI_ADR_SPACE_DATA_TABLE:
1491 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1492 		break;
1493 	}
1494 	return AE_OK;
1495 }
1496 
1497 /******************************************************************************
1498  *
1499  * FUNCTION:    acpi_os_validate_address
1500  *
1501  * PARAMETERS:  space_id             - ACPI space ID
1502  *              address             - Physical address
1503  *              length              - Address length
1504  *
1505  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1506  *              should return AE_AML_ILLEGAL_ADDRESS.
1507  *
1508  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1509  *              the addresses accessed by AML operation regions.
1510  *
1511  *****************************************************************************/
1512 
1513 acpi_status
1514 acpi_os_validate_address (
1515     u8                   space_id,
1516     acpi_physical_address   address,
1517     acpi_size               length,
1518     char *name)
1519 {
1520 	struct acpi_res_list *res;
1521 	int added;
1522 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1523 		return AE_OK;
1524 
1525 	switch (space_id) {
1526 	case ACPI_ADR_SPACE_SYSTEM_IO:
1527 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1528 		/* Only interference checks against SystemIO and SystemMemory
1529 		   are needed */
1530 		res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1531 		if (!res)
1532 			return AE_OK;
1533 		/* ACPI names are fixed to 4 bytes, still better use strlcpy */
1534 		strlcpy(res->name, name, 5);
1535 		res->start = address;
1536 		res->end = address + length - 1;
1537 		res->resource_type = space_id;
1538 		spin_lock(&acpi_res_lock);
1539 		added = acpi_res_list_add(res);
1540 		spin_unlock(&acpi_res_lock);
1541 		pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1542 			 "name: %s\n", added ? "Added" : "Already exist",
1543 			 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1544 			 ? "SystemIO" : "System Memory",
1545 			 (unsigned long long)res->start,
1546 			 (unsigned long long)res->end,
1547 			 res->name);
1548 		if (!added)
1549 			kfree(res);
1550 		break;
1551 	case ACPI_ADR_SPACE_PCI_CONFIG:
1552 	case ACPI_ADR_SPACE_EC:
1553 	case ACPI_ADR_SPACE_SMBUS:
1554 	case ACPI_ADR_SPACE_CMOS:
1555 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1556 	case ACPI_ADR_SPACE_DATA_TABLE:
1557 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1558 		break;
1559 	}
1560 	return AE_OK;
1561 }
1562 #endif
1563 
1564 acpi_status __init acpi_os_initialize(void)
1565 {
1566 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1567 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1568 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1569 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1570 
1571 	return AE_OK;
1572 }
1573 
1574 acpi_status __init acpi_os_initialize1(void)
1575 {
1576 	kacpid_wq = create_workqueue("kacpid");
1577 	kacpi_notify_wq = create_workqueue("kacpi_notify");
1578 	kacpi_hotplug_wq = create_workqueue("kacpi_hotplug");
1579 	BUG_ON(!kacpid_wq);
1580 	BUG_ON(!kacpi_notify_wq);
1581 	BUG_ON(!kacpi_hotplug_wq);
1582 	acpi_install_interface_handler(acpi_osi_handler);
1583 	acpi_osi_setup_late();
1584 	return AE_OK;
1585 }
1586 
1587 acpi_status acpi_os_terminate(void)
1588 {
1589 	if (acpi_irq_handler) {
1590 		acpi_os_remove_interrupt_handler(acpi_irq_irq,
1591 						 acpi_irq_handler);
1592 	}
1593 
1594 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1595 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1596 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1597 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1598 
1599 	destroy_workqueue(kacpid_wq);
1600 	destroy_workqueue(kacpi_notify_wq);
1601 	destroy_workqueue(kacpi_hotplug_wq);
1602 
1603 	return AE_OK;
1604 }
1605