xref: /openbmc/linux/drivers/acpi/osl.c (revision b595076a)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/pci.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/acpi.h>
41 #include <linux/efi.h>
42 #include <linux/ioport.h>
43 #include <linux/list.h>
44 #include <linux/jiffies.h>
45 #include <linux/semaphore.h>
46 
47 #include <asm/io.h>
48 #include <asm/uaccess.h>
49 
50 #include <acpi/acpi.h>
51 #include <acpi/acpi_bus.h>
52 #include <acpi/processor.h>
53 
54 #define _COMPONENT		ACPI_OS_SERVICES
55 ACPI_MODULE_NAME("osl");
56 #define PREFIX		"ACPI: "
57 struct acpi_os_dpc {
58 	acpi_osd_exec_callback function;
59 	void *context;
60 	struct work_struct work;
61 	int wait;
62 };
63 
64 #ifdef CONFIG_ACPI_CUSTOM_DSDT
65 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
66 #endif
67 
68 #ifdef ENABLE_DEBUGGER
69 #include <linux/kdb.h>
70 
71 /* stuff for debugger support */
72 int acpi_in_debugger;
73 EXPORT_SYMBOL(acpi_in_debugger);
74 
75 extern char line_buf[80];
76 #endif				/*ENABLE_DEBUGGER */
77 
78 static unsigned int acpi_irq_irq;
79 static acpi_osd_handler acpi_irq_handler;
80 static void *acpi_irq_context;
81 static struct workqueue_struct *kacpid_wq;
82 static struct workqueue_struct *kacpi_notify_wq;
83 static struct workqueue_struct *kacpi_hotplug_wq;
84 
85 struct acpi_res_list {
86 	resource_size_t start;
87 	resource_size_t end;
88 	acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 	char name[5];   /* only can have a length of 4 chars, make use of this
90 			   one instead of res->name, no need to kalloc then */
91 	struct list_head resource_list;
92 	int count;
93 };
94 
95 static LIST_HEAD(resource_list_head);
96 static DEFINE_SPINLOCK(acpi_res_lock);
97 
98 /*
99  * This list of permanent mappings is for memory that may be accessed from
100  * interrupt context, where we can't do the ioremap().
101  */
102 struct acpi_ioremap {
103 	struct list_head list;
104 	void __iomem *virt;
105 	acpi_physical_address phys;
106 	acpi_size size;
107 	struct kref ref;
108 };
109 
110 static LIST_HEAD(acpi_ioremaps);
111 static DEFINE_SPINLOCK(acpi_ioremap_lock);
112 
113 #define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
114 static char osi_setup_string[OSI_STRING_LENGTH_MAX];
115 
116 static void __init acpi_osi_setup_late(void);
117 
118 /*
119  * The story of _OSI(Linux)
120  *
121  * From pre-history through Linux-2.6.22,
122  * Linux responded TRUE upon a BIOS OSI(Linux) query.
123  *
124  * Unfortunately, reference BIOS writers got wind of this
125  * and put OSI(Linux) in their example code, quickly exposing
126  * this string as ill-conceived and opening the door to
127  * an un-bounded number of BIOS incompatibilities.
128  *
129  * For example, OSI(Linux) was used on resume to re-POST a
130  * video card on one system, because Linux at that time
131  * could not do a speedy restore in its native driver.
132  * But then upon gaining quick native restore capability,
133  * Linux has no way to tell the BIOS to skip the time-consuming
134  * POST -- putting Linux at a permanent performance disadvantage.
135  * On another system, the BIOS writer used OSI(Linux)
136  * to infer native OS support for IPMI!  On other systems,
137  * OSI(Linux) simply got in the way of Linux claiming to
138  * be compatible with other operating systems, exposing
139  * BIOS issues such as skipped device initialization.
140  *
141  * So "Linux" turned out to be a really poor chose of
142  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
143  *
144  * BIOS writers should NOT query _OSI(Linux) on future systems.
145  * Linux will complain on the console when it sees it, and return FALSE.
146  * To get Linux to return TRUE for your system  will require
147  * a kernel source update to add a DMI entry,
148  * or boot with "acpi_osi=Linux"
149  */
150 
151 static struct osi_linux {
152 	unsigned int	enable:1;
153 	unsigned int	dmi:1;
154 	unsigned int	cmdline:1;
155 	unsigned int	known:1;
156 } osi_linux = { 0, 0, 0, 0};
157 
158 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
159 {
160 	if (!strcmp("Linux", interface)) {
161 
162 		printk(KERN_NOTICE FW_BUG PREFIX
163 			"BIOS _OSI(Linux) query %s%s\n",
164 			osi_linux.enable ? "honored" : "ignored",
165 			osi_linux.cmdline ? " via cmdline" :
166 			osi_linux.dmi ? " via DMI" : "");
167 	}
168 
169 	return supported;
170 }
171 
172 static void __init acpi_request_region (struct acpi_generic_address *addr,
173 	unsigned int length, char *desc)
174 {
175 	if (!addr->address || !length)
176 		return;
177 
178 	/* Resources are never freed */
179 	if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
180 		request_region(addr->address, length, desc);
181 	else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
182 		request_mem_region(addr->address, length, desc);
183 }
184 
185 static int __init acpi_reserve_resources(void)
186 {
187 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
188 		"ACPI PM1a_EVT_BLK");
189 
190 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
191 		"ACPI PM1b_EVT_BLK");
192 
193 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
194 		"ACPI PM1a_CNT_BLK");
195 
196 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
197 		"ACPI PM1b_CNT_BLK");
198 
199 	if (acpi_gbl_FADT.pm_timer_length == 4)
200 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
201 
202 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
203 		"ACPI PM2_CNT_BLK");
204 
205 	/* Length of GPE blocks must be a non-negative multiple of 2 */
206 
207 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
208 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
209 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
210 
211 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
212 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
213 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
214 
215 	return 0;
216 }
217 device_initcall(acpi_reserve_resources);
218 
219 void acpi_os_printf(const char *fmt, ...)
220 {
221 	va_list args;
222 	va_start(args, fmt);
223 	acpi_os_vprintf(fmt, args);
224 	va_end(args);
225 }
226 
227 void acpi_os_vprintf(const char *fmt, va_list args)
228 {
229 	static char buffer[512];
230 
231 	vsprintf(buffer, fmt, args);
232 
233 #ifdef ENABLE_DEBUGGER
234 	if (acpi_in_debugger) {
235 		kdb_printf("%s", buffer);
236 	} else {
237 		printk(KERN_CONT "%s", buffer);
238 	}
239 #else
240 	printk(KERN_CONT "%s", buffer);
241 #endif
242 }
243 
244 acpi_physical_address __init acpi_os_get_root_pointer(void)
245 {
246 	if (efi_enabled) {
247 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
248 			return efi.acpi20;
249 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
250 			return efi.acpi;
251 		else {
252 			printk(KERN_ERR PREFIX
253 			       "System description tables not found\n");
254 			return 0;
255 		}
256 	} else {
257 		acpi_physical_address pa = 0;
258 
259 		acpi_find_root_pointer(&pa);
260 		return pa;
261 	}
262 }
263 
264 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
265 static struct acpi_ioremap *
266 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
267 {
268 	struct acpi_ioremap *map;
269 
270 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
271 		if (map->phys <= phys &&
272 		    phys + size <= map->phys + map->size)
273 			return map;
274 
275 	return NULL;
276 }
277 
278 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
279 static void __iomem *
280 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
281 {
282 	struct acpi_ioremap *map;
283 
284 	map = acpi_map_lookup(phys, size);
285 	if (map)
286 		return map->virt + (phys - map->phys);
287 
288 	return NULL;
289 }
290 
291 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
292 static struct acpi_ioremap *
293 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
294 {
295 	struct acpi_ioremap *map;
296 
297 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
298 		if (map->virt <= virt &&
299 		    virt + size <= map->virt + map->size)
300 			return map;
301 
302 	return NULL;
303 }
304 
305 void __iomem *__init_refok
306 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
307 {
308 	struct acpi_ioremap *map, *tmp_map;
309 	unsigned long flags, pg_sz;
310 	void __iomem *virt;
311 	phys_addr_t pg_off;
312 
313 	if (phys > ULONG_MAX) {
314 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
315 		return NULL;
316 	}
317 
318 	if (!acpi_gbl_permanent_mmap)
319 		return __acpi_map_table((unsigned long)phys, size);
320 
321 	map = kzalloc(sizeof(*map), GFP_KERNEL);
322 	if (!map)
323 		return NULL;
324 
325 	pg_off = round_down(phys, PAGE_SIZE);
326 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
327 	virt = ioremap(pg_off, pg_sz);
328 	if (!virt) {
329 		kfree(map);
330 		return NULL;
331 	}
332 
333 	INIT_LIST_HEAD(&map->list);
334 	map->virt = virt;
335 	map->phys = pg_off;
336 	map->size = pg_sz;
337 	kref_init(&map->ref);
338 
339 	spin_lock_irqsave(&acpi_ioremap_lock, flags);
340 	/* Check if page has already been mapped. */
341 	tmp_map = acpi_map_lookup(phys, size);
342 	if (tmp_map) {
343 		kref_get(&tmp_map->ref);
344 		spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
345 		iounmap(map->virt);
346 		kfree(map);
347 		return tmp_map->virt + (phys - tmp_map->phys);
348 	}
349 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
350 	spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
351 
352 	return map->virt + (phys - map->phys);
353 }
354 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
355 
356 static void acpi_kref_del_iomap(struct kref *ref)
357 {
358 	struct acpi_ioremap *map;
359 
360 	map = container_of(ref, struct acpi_ioremap, ref);
361 	list_del_rcu(&map->list);
362 }
363 
364 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
365 {
366 	struct acpi_ioremap *map;
367 	unsigned long flags;
368 	int del;
369 
370 	if (!acpi_gbl_permanent_mmap) {
371 		__acpi_unmap_table(virt, size);
372 		return;
373 	}
374 
375 	spin_lock_irqsave(&acpi_ioremap_lock, flags);
376 	map = acpi_map_lookup_virt(virt, size);
377 	if (!map) {
378 		spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
379 		printk(KERN_ERR PREFIX "%s: bad address %p\n", __func__, virt);
380 		dump_stack();
381 		return;
382 	}
383 
384 	del = kref_put(&map->ref, acpi_kref_del_iomap);
385 	spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
386 
387 	if (!del)
388 		return;
389 
390 	synchronize_rcu();
391 	iounmap(map->virt);
392 	kfree(map);
393 }
394 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
395 
396 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
397 {
398 	if (!acpi_gbl_permanent_mmap)
399 		__acpi_unmap_table(virt, size);
400 }
401 
402 int acpi_os_map_generic_address(struct acpi_generic_address *addr)
403 {
404 	void __iomem *virt;
405 
406 	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
407 		return 0;
408 
409 	if (!addr->address || !addr->bit_width)
410 		return -EINVAL;
411 
412 	virt = acpi_os_map_memory(addr->address, addr->bit_width / 8);
413 	if (!virt)
414 		return -EIO;
415 
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(acpi_os_map_generic_address);
419 
420 void acpi_os_unmap_generic_address(struct acpi_generic_address *addr)
421 {
422 	void __iomem *virt;
423 	unsigned long flags;
424 	acpi_size size = addr->bit_width / 8;
425 
426 	if (addr->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
427 		return;
428 
429 	if (!addr->address || !addr->bit_width)
430 		return;
431 
432 	spin_lock_irqsave(&acpi_ioremap_lock, flags);
433 	virt = acpi_map_vaddr_lookup(addr->address, size);
434 	spin_unlock_irqrestore(&acpi_ioremap_lock, flags);
435 
436 	acpi_os_unmap_memory(virt, size);
437 }
438 EXPORT_SYMBOL_GPL(acpi_os_unmap_generic_address);
439 
440 #ifdef ACPI_FUTURE_USAGE
441 acpi_status
442 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
443 {
444 	if (!phys || !virt)
445 		return AE_BAD_PARAMETER;
446 
447 	*phys = virt_to_phys(virt);
448 
449 	return AE_OK;
450 }
451 #endif
452 
453 #define ACPI_MAX_OVERRIDE_LEN 100
454 
455 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
456 
457 acpi_status
458 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
459 			    acpi_string * new_val)
460 {
461 	if (!init_val || !new_val)
462 		return AE_BAD_PARAMETER;
463 
464 	*new_val = NULL;
465 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
466 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
467 		       acpi_os_name);
468 		*new_val = acpi_os_name;
469 	}
470 
471 	return AE_OK;
472 }
473 
474 acpi_status
475 acpi_os_table_override(struct acpi_table_header * existing_table,
476 		       struct acpi_table_header ** new_table)
477 {
478 	if (!existing_table || !new_table)
479 		return AE_BAD_PARAMETER;
480 
481 	*new_table = NULL;
482 
483 #ifdef CONFIG_ACPI_CUSTOM_DSDT
484 	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
485 		*new_table = (struct acpi_table_header *)AmlCode;
486 #endif
487 	if (*new_table != NULL) {
488 		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
489 			   "this is unsafe: tainting kernel\n",
490 		       existing_table->signature,
491 		       existing_table->oem_table_id);
492 		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
493 	}
494 	return AE_OK;
495 }
496 
497 static irqreturn_t acpi_irq(int irq, void *dev_id)
498 {
499 	u32 handled;
500 
501 	handled = (*acpi_irq_handler) (acpi_irq_context);
502 
503 	if (handled) {
504 		acpi_irq_handled++;
505 		return IRQ_HANDLED;
506 	} else {
507 		acpi_irq_not_handled++;
508 		return IRQ_NONE;
509 	}
510 }
511 
512 acpi_status
513 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
514 				  void *context)
515 {
516 	unsigned int irq;
517 
518 	acpi_irq_stats_init();
519 
520 	/*
521 	 * Ignore the GSI from the core, and use the value in our copy of the
522 	 * FADT. It may not be the same if an interrupt source override exists
523 	 * for the SCI.
524 	 */
525 	gsi = acpi_gbl_FADT.sci_interrupt;
526 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
527 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
528 		       gsi);
529 		return AE_OK;
530 	}
531 
532 	acpi_irq_handler = handler;
533 	acpi_irq_context = context;
534 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
535 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
536 		return AE_NOT_ACQUIRED;
537 	}
538 	acpi_irq_irq = irq;
539 
540 	return AE_OK;
541 }
542 
543 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
544 {
545 	if (irq) {
546 		free_irq(irq, acpi_irq);
547 		acpi_irq_handler = NULL;
548 		acpi_irq_irq = 0;
549 	}
550 
551 	return AE_OK;
552 }
553 
554 /*
555  * Running in interpreter thread context, safe to sleep
556  */
557 
558 void acpi_os_sleep(u64 ms)
559 {
560 	schedule_timeout_interruptible(msecs_to_jiffies(ms));
561 }
562 
563 void acpi_os_stall(u32 us)
564 {
565 	while (us) {
566 		u32 delay = 1000;
567 
568 		if (delay > us)
569 			delay = us;
570 		udelay(delay);
571 		touch_nmi_watchdog();
572 		us -= delay;
573 	}
574 }
575 
576 /*
577  * Support ACPI 3.0 AML Timer operand
578  * Returns 64-bit free-running, monotonically increasing timer
579  * with 100ns granularity
580  */
581 u64 acpi_os_get_timer(void)
582 {
583 	static u64 t;
584 
585 #ifdef	CONFIG_HPET
586 	/* TBD: use HPET if available */
587 #endif
588 
589 #ifdef	CONFIG_X86_PM_TIMER
590 	/* TBD: default to PM timer if HPET was not available */
591 #endif
592 	if (!t)
593 		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
594 
595 	return ++t;
596 }
597 
598 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
599 {
600 	u32 dummy;
601 
602 	if (!value)
603 		value = &dummy;
604 
605 	*value = 0;
606 	if (width <= 8) {
607 		*(u8 *) value = inb(port);
608 	} else if (width <= 16) {
609 		*(u16 *) value = inw(port);
610 	} else if (width <= 32) {
611 		*(u32 *) value = inl(port);
612 	} else {
613 		BUG();
614 	}
615 
616 	return AE_OK;
617 }
618 
619 EXPORT_SYMBOL(acpi_os_read_port);
620 
621 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
622 {
623 	if (width <= 8) {
624 		outb(value, port);
625 	} else if (width <= 16) {
626 		outw(value, port);
627 	} else if (width <= 32) {
628 		outl(value, port);
629 	} else {
630 		BUG();
631 	}
632 
633 	return AE_OK;
634 }
635 
636 EXPORT_SYMBOL(acpi_os_write_port);
637 
638 acpi_status
639 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
640 {
641 	u32 dummy;
642 	void __iomem *virt_addr;
643 	int size = width / 8, unmap = 0;
644 
645 	rcu_read_lock();
646 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
647 	rcu_read_unlock();
648 	if (!virt_addr) {
649 		virt_addr = ioremap(phys_addr, size);
650 		unmap = 1;
651 	}
652 	if (!value)
653 		value = &dummy;
654 
655 	switch (width) {
656 	case 8:
657 		*(u8 *) value = readb(virt_addr);
658 		break;
659 	case 16:
660 		*(u16 *) value = readw(virt_addr);
661 		break;
662 	case 32:
663 		*(u32 *) value = readl(virt_addr);
664 		break;
665 	default:
666 		BUG();
667 	}
668 
669 	if (unmap)
670 		iounmap(virt_addr);
671 
672 	return AE_OK;
673 }
674 
675 acpi_status
676 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
677 {
678 	void __iomem *virt_addr;
679 	int size = width / 8, unmap = 0;
680 
681 	rcu_read_lock();
682 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
683 	rcu_read_unlock();
684 	if (!virt_addr) {
685 		virt_addr = ioremap(phys_addr, size);
686 		unmap = 1;
687 	}
688 
689 	switch (width) {
690 	case 8:
691 		writeb(value, virt_addr);
692 		break;
693 	case 16:
694 		writew(value, virt_addr);
695 		break;
696 	case 32:
697 		writel(value, virt_addr);
698 		break;
699 	default:
700 		BUG();
701 	}
702 
703 	if (unmap)
704 		iounmap(virt_addr);
705 
706 	return AE_OK;
707 }
708 
709 acpi_status
710 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
711 			       u64 *value, u32 width)
712 {
713 	int result, size;
714 	u32 value32;
715 
716 	if (!value)
717 		return AE_BAD_PARAMETER;
718 
719 	switch (width) {
720 	case 8:
721 		size = 1;
722 		break;
723 	case 16:
724 		size = 2;
725 		break;
726 	case 32:
727 		size = 4;
728 		break;
729 	default:
730 		return AE_ERROR;
731 	}
732 
733 	result = raw_pci_read(pci_id->segment, pci_id->bus,
734 				PCI_DEVFN(pci_id->device, pci_id->function),
735 				reg, size, &value32);
736 	*value = value32;
737 
738 	return (result ? AE_ERROR : AE_OK);
739 }
740 
741 acpi_status
742 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
743 				u64 value, u32 width)
744 {
745 	int result, size;
746 
747 	switch (width) {
748 	case 8:
749 		size = 1;
750 		break;
751 	case 16:
752 		size = 2;
753 		break;
754 	case 32:
755 		size = 4;
756 		break;
757 	default:
758 		return AE_ERROR;
759 	}
760 
761 	result = raw_pci_write(pci_id->segment, pci_id->bus,
762 				PCI_DEVFN(pci_id->device, pci_id->function),
763 				reg, size, value);
764 
765 	return (result ? AE_ERROR : AE_OK);
766 }
767 
768 static void acpi_os_execute_deferred(struct work_struct *work)
769 {
770 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
771 
772 	if (dpc->wait)
773 		acpi_os_wait_events_complete(NULL);
774 
775 	dpc->function(dpc->context);
776 	kfree(dpc);
777 }
778 
779 /*******************************************************************************
780  *
781  * FUNCTION:    acpi_os_execute
782  *
783  * PARAMETERS:  Type               - Type of the callback
784  *              Function           - Function to be executed
785  *              Context            - Function parameters
786  *
787  * RETURN:      Status
788  *
789  * DESCRIPTION: Depending on type, either queues function for deferred execution or
790  *              immediately executes function on a separate thread.
791  *
792  ******************************************************************************/
793 
794 static acpi_status __acpi_os_execute(acpi_execute_type type,
795 	acpi_osd_exec_callback function, void *context, int hp)
796 {
797 	acpi_status status = AE_OK;
798 	struct acpi_os_dpc *dpc;
799 	struct workqueue_struct *queue;
800 	int ret;
801 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
802 			  "Scheduling function [%p(%p)] for deferred execution.\n",
803 			  function, context));
804 
805 	/*
806 	 * Allocate/initialize DPC structure.  Note that this memory will be
807 	 * freed by the callee.  The kernel handles the work_struct list  in a
808 	 * way that allows us to also free its memory inside the callee.
809 	 * Because we may want to schedule several tasks with different
810 	 * parameters we can't use the approach some kernel code uses of
811 	 * having a static work_struct.
812 	 */
813 
814 	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
815 	if (!dpc)
816 		return AE_NO_MEMORY;
817 
818 	dpc->function = function;
819 	dpc->context = context;
820 
821 	/*
822 	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
823 	 * because the hotplug code may call driver .remove() functions,
824 	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
825 	 * to flush these workqueues.
826 	 */
827 	queue = hp ? kacpi_hotplug_wq :
828 		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
829 	dpc->wait = hp ? 1 : 0;
830 
831 	if (queue == kacpi_hotplug_wq)
832 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
833 	else if (queue == kacpi_notify_wq)
834 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
835 	else
836 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
837 
838 	/*
839 	 * On some machines, a software-initiated SMI causes corruption unless
840 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
841 	 * typically it's done in GPE-related methods that are run via
842 	 * workqueues, so we can avoid the known corruption cases by always
843 	 * queueing on CPU 0.
844 	 */
845 	ret = queue_work_on(0, queue, &dpc->work);
846 
847 	if (!ret) {
848 		printk(KERN_ERR PREFIX
849 			  "Call to queue_work() failed.\n");
850 		status = AE_ERROR;
851 		kfree(dpc);
852 	}
853 	return status;
854 }
855 
856 acpi_status acpi_os_execute(acpi_execute_type type,
857 			    acpi_osd_exec_callback function, void *context)
858 {
859 	return __acpi_os_execute(type, function, context, 0);
860 }
861 EXPORT_SYMBOL(acpi_os_execute);
862 
863 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
864 	void *context)
865 {
866 	return __acpi_os_execute(0, function, context, 1);
867 }
868 
869 void acpi_os_wait_events_complete(void *context)
870 {
871 	flush_workqueue(kacpid_wq);
872 	flush_workqueue(kacpi_notify_wq);
873 }
874 
875 EXPORT_SYMBOL(acpi_os_wait_events_complete);
876 
877 /*
878  * Deallocate the memory for a spinlock.
879  */
880 void acpi_os_delete_lock(acpi_spinlock handle)
881 {
882 	return;
883 }
884 
885 acpi_status
886 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
887 {
888 	struct semaphore *sem = NULL;
889 
890 	sem = acpi_os_allocate(sizeof(struct semaphore));
891 	if (!sem)
892 		return AE_NO_MEMORY;
893 	memset(sem, 0, sizeof(struct semaphore));
894 
895 	sema_init(sem, initial_units);
896 
897 	*handle = (acpi_handle *) sem;
898 
899 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
900 			  *handle, initial_units));
901 
902 	return AE_OK;
903 }
904 
905 /*
906  * TODO: A better way to delete semaphores?  Linux doesn't have a
907  * 'delete_semaphore()' function -- may result in an invalid
908  * pointer dereference for non-synchronized consumers.	Should
909  * we at least check for blocked threads and signal/cancel them?
910  */
911 
912 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
913 {
914 	struct semaphore *sem = (struct semaphore *)handle;
915 
916 	if (!sem)
917 		return AE_BAD_PARAMETER;
918 
919 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
920 
921 	BUG_ON(!list_empty(&sem->wait_list));
922 	kfree(sem);
923 	sem = NULL;
924 
925 	return AE_OK;
926 }
927 
928 /*
929  * TODO: Support for units > 1?
930  */
931 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
932 {
933 	acpi_status status = AE_OK;
934 	struct semaphore *sem = (struct semaphore *)handle;
935 	long jiffies;
936 	int ret = 0;
937 
938 	if (!sem || (units < 1))
939 		return AE_BAD_PARAMETER;
940 
941 	if (units > 1)
942 		return AE_SUPPORT;
943 
944 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
945 			  handle, units, timeout));
946 
947 	if (timeout == ACPI_WAIT_FOREVER)
948 		jiffies = MAX_SCHEDULE_TIMEOUT;
949 	else
950 		jiffies = msecs_to_jiffies(timeout);
951 
952 	ret = down_timeout(sem, jiffies);
953 	if (ret)
954 		status = AE_TIME;
955 
956 	if (ACPI_FAILURE(status)) {
957 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
958 				  "Failed to acquire semaphore[%p|%d|%d], %s",
959 				  handle, units, timeout,
960 				  acpi_format_exception(status)));
961 	} else {
962 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
963 				  "Acquired semaphore[%p|%d|%d]", handle,
964 				  units, timeout));
965 	}
966 
967 	return status;
968 }
969 
970 /*
971  * TODO: Support for units > 1?
972  */
973 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
974 {
975 	struct semaphore *sem = (struct semaphore *)handle;
976 
977 	if (!sem || (units < 1))
978 		return AE_BAD_PARAMETER;
979 
980 	if (units > 1)
981 		return AE_SUPPORT;
982 
983 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
984 			  units));
985 
986 	up(sem);
987 
988 	return AE_OK;
989 }
990 
991 #ifdef ACPI_FUTURE_USAGE
992 u32 acpi_os_get_line(char *buffer)
993 {
994 
995 #ifdef ENABLE_DEBUGGER
996 	if (acpi_in_debugger) {
997 		u32 chars;
998 
999 		kdb_read(buffer, sizeof(line_buf));
1000 
1001 		/* remove the CR kdb includes */
1002 		chars = strlen(buffer) - 1;
1003 		buffer[chars] = '\0';
1004 	}
1005 #endif
1006 
1007 	return 0;
1008 }
1009 #endif				/*  ACPI_FUTURE_USAGE  */
1010 
1011 acpi_status acpi_os_signal(u32 function, void *info)
1012 {
1013 	switch (function) {
1014 	case ACPI_SIGNAL_FATAL:
1015 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1016 		break;
1017 	case ACPI_SIGNAL_BREAKPOINT:
1018 		/*
1019 		 * AML Breakpoint
1020 		 * ACPI spec. says to treat it as a NOP unless
1021 		 * you are debugging.  So if/when we integrate
1022 		 * AML debugger into the kernel debugger its
1023 		 * hook will go here.  But until then it is
1024 		 * not useful to print anything on breakpoints.
1025 		 */
1026 		break;
1027 	default:
1028 		break;
1029 	}
1030 
1031 	return AE_OK;
1032 }
1033 
1034 static int __init acpi_os_name_setup(char *str)
1035 {
1036 	char *p = acpi_os_name;
1037 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1038 
1039 	if (!str || !*str)
1040 		return 0;
1041 
1042 	for (; count-- && str && *str; str++) {
1043 		if (isalnum(*str) || *str == ' ' || *str == ':')
1044 			*p++ = *str;
1045 		else if (*str == '\'' || *str == '"')
1046 			continue;
1047 		else
1048 			break;
1049 	}
1050 	*p = 0;
1051 
1052 	return 1;
1053 
1054 }
1055 
1056 __setup("acpi_os_name=", acpi_os_name_setup);
1057 
1058 static void __init set_osi_linux(unsigned int enable)
1059 {
1060 	if (osi_linux.enable != enable) {
1061 		osi_linux.enable = enable;
1062 		printk(KERN_NOTICE PREFIX "%sed _OSI(Linux)\n",
1063 			enable ? "Add": "Delet");
1064 	}
1065 
1066 	if (osi_linux.enable)
1067 		acpi_osi_setup("Linux");
1068 	else
1069 		acpi_osi_setup("!Linux");
1070 
1071 	return;
1072 }
1073 
1074 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1075 {
1076 	osi_linux.cmdline = 1;	/* cmdline set the default */
1077 	set_osi_linux(enable);
1078 
1079 	return;
1080 }
1081 
1082 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1083 {
1084 	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1085 
1086 	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1087 
1088 	if (enable == -1)
1089 		return;
1090 
1091 	osi_linux.known = 1;	/* DMI knows which OSI(Linux) default needed */
1092 
1093 	set_osi_linux(enable);
1094 
1095 	return;
1096 }
1097 
1098 /*
1099  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1100  *
1101  * empty string disables _OSI
1102  * string starting with '!' disables that string
1103  * otherwise string is added to list, augmenting built-in strings
1104  */
1105 static void __init acpi_osi_setup_late(void)
1106 {
1107 	char *str = osi_setup_string;
1108 
1109 	if (*str == '\0')
1110 		return;
1111 
1112 	if (!strcmp("!Linux", str)) {
1113 		acpi_cmdline_osi_linux(0);	/* !enable */
1114 	} else if (*str == '!') {
1115 		if (acpi_remove_interface(++str) == AE_OK)
1116 			printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1117 	} else if (!strcmp("Linux", str)) {
1118 		acpi_cmdline_osi_linux(1);	/* enable */
1119 	} else {
1120 		if (acpi_install_interface(str) == AE_OK)
1121 			printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1122 	}
1123 }
1124 
1125 int __init acpi_osi_setup(char *str)
1126 {
1127 	if (str == NULL || *str == '\0') {
1128 		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1129 		acpi_gbl_create_osi_method = FALSE;
1130 	} else {
1131 		strncpy(osi_setup_string, str, OSI_STRING_LENGTH_MAX);
1132 	}
1133 
1134 	return 1;
1135 }
1136 
1137 __setup("acpi_osi=", acpi_osi_setup);
1138 
1139 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1140 static int __init acpi_serialize_setup(char *str)
1141 {
1142 	printk(KERN_INFO PREFIX "serialize enabled\n");
1143 
1144 	acpi_gbl_all_methods_serialized = TRUE;
1145 
1146 	return 1;
1147 }
1148 
1149 __setup("acpi_serialize", acpi_serialize_setup);
1150 
1151 /* Check of resource interference between native drivers and ACPI
1152  * OperationRegions (SystemIO and System Memory only).
1153  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1154  * in arbitrary AML code and can interfere with legacy drivers.
1155  * acpi_enforce_resources= can be set to:
1156  *
1157  *   - strict (default) (2)
1158  *     -> further driver trying to access the resources will not load
1159  *   - lax              (1)
1160  *     -> further driver trying to access the resources will load, but you
1161  *     get a system message that something might go wrong...
1162  *
1163  *   - no               (0)
1164  *     -> ACPI Operation Region resources will not be registered
1165  *
1166  */
1167 #define ENFORCE_RESOURCES_STRICT 2
1168 #define ENFORCE_RESOURCES_LAX    1
1169 #define ENFORCE_RESOURCES_NO     0
1170 
1171 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1172 
1173 static int __init acpi_enforce_resources_setup(char *str)
1174 {
1175 	if (str == NULL || *str == '\0')
1176 		return 0;
1177 
1178 	if (!strcmp("strict", str))
1179 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1180 	else if (!strcmp("lax", str))
1181 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1182 	else if (!strcmp("no", str))
1183 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1184 
1185 	return 1;
1186 }
1187 
1188 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1189 
1190 /* Check for resource conflicts between ACPI OperationRegions and native
1191  * drivers */
1192 int acpi_check_resource_conflict(const struct resource *res)
1193 {
1194 	struct acpi_res_list *res_list_elem;
1195 	int ioport;
1196 	int clash = 0;
1197 
1198 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1199 		return 0;
1200 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1201 		return 0;
1202 
1203 	ioport = res->flags & IORESOURCE_IO;
1204 
1205 	spin_lock(&acpi_res_lock);
1206 	list_for_each_entry(res_list_elem, &resource_list_head,
1207 			    resource_list) {
1208 		if (ioport && (res_list_elem->resource_type
1209 			       != ACPI_ADR_SPACE_SYSTEM_IO))
1210 			continue;
1211 		if (!ioport && (res_list_elem->resource_type
1212 				!= ACPI_ADR_SPACE_SYSTEM_MEMORY))
1213 			continue;
1214 
1215 		if (res->end < res_list_elem->start
1216 		    || res_list_elem->end < res->start)
1217 			continue;
1218 		clash = 1;
1219 		break;
1220 	}
1221 	spin_unlock(&acpi_res_lock);
1222 
1223 	if (clash) {
1224 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1225 			printk(KERN_WARNING "ACPI: resource %s %pR"
1226 			       " conflicts with ACPI region %s %pR\n",
1227 			       res->name, res, res_list_elem->name,
1228 			       res_list_elem);
1229 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1230 				printk(KERN_NOTICE "ACPI: This conflict may"
1231 				       " cause random problems and system"
1232 				       " instability\n");
1233 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1234 			       " for this device, you should use it instead of"
1235 			       " the native driver\n");
1236 		}
1237 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1238 			return -EBUSY;
1239 	}
1240 	return 0;
1241 }
1242 EXPORT_SYMBOL(acpi_check_resource_conflict);
1243 
1244 int acpi_check_region(resource_size_t start, resource_size_t n,
1245 		      const char *name)
1246 {
1247 	struct resource res = {
1248 		.start = start,
1249 		.end   = start + n - 1,
1250 		.name  = name,
1251 		.flags = IORESOURCE_IO,
1252 	};
1253 
1254 	return acpi_check_resource_conflict(&res);
1255 }
1256 EXPORT_SYMBOL(acpi_check_region);
1257 
1258 /*
1259  * Let drivers know whether the resource checks are effective
1260  */
1261 int acpi_resources_are_enforced(void)
1262 {
1263 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1264 }
1265 EXPORT_SYMBOL(acpi_resources_are_enforced);
1266 
1267 /*
1268  * Acquire a spinlock.
1269  *
1270  * handle is a pointer to the spinlock_t.
1271  */
1272 
1273 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1274 {
1275 	acpi_cpu_flags flags;
1276 	spin_lock_irqsave(lockp, flags);
1277 	return flags;
1278 }
1279 
1280 /*
1281  * Release a spinlock. See above.
1282  */
1283 
1284 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1285 {
1286 	spin_unlock_irqrestore(lockp, flags);
1287 }
1288 
1289 #ifndef ACPI_USE_LOCAL_CACHE
1290 
1291 /*******************************************************************************
1292  *
1293  * FUNCTION:    acpi_os_create_cache
1294  *
1295  * PARAMETERS:  name      - Ascii name for the cache
1296  *              size      - Size of each cached object
1297  *              depth     - Maximum depth of the cache (in objects) <ignored>
1298  *              cache     - Where the new cache object is returned
1299  *
1300  * RETURN:      status
1301  *
1302  * DESCRIPTION: Create a cache object
1303  *
1304  ******************************************************************************/
1305 
1306 acpi_status
1307 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1308 {
1309 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1310 	if (*cache == NULL)
1311 		return AE_ERROR;
1312 	else
1313 		return AE_OK;
1314 }
1315 
1316 /*******************************************************************************
1317  *
1318  * FUNCTION:    acpi_os_purge_cache
1319  *
1320  * PARAMETERS:  Cache           - Handle to cache object
1321  *
1322  * RETURN:      Status
1323  *
1324  * DESCRIPTION: Free all objects within the requested cache.
1325  *
1326  ******************************************************************************/
1327 
1328 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1329 {
1330 	kmem_cache_shrink(cache);
1331 	return (AE_OK);
1332 }
1333 
1334 /*******************************************************************************
1335  *
1336  * FUNCTION:    acpi_os_delete_cache
1337  *
1338  * PARAMETERS:  Cache           - Handle to cache object
1339  *
1340  * RETURN:      Status
1341  *
1342  * DESCRIPTION: Free all objects within the requested cache and delete the
1343  *              cache object.
1344  *
1345  ******************************************************************************/
1346 
1347 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1348 {
1349 	kmem_cache_destroy(cache);
1350 	return (AE_OK);
1351 }
1352 
1353 /*******************************************************************************
1354  *
1355  * FUNCTION:    acpi_os_release_object
1356  *
1357  * PARAMETERS:  Cache       - Handle to cache object
1358  *              Object      - The object to be released
1359  *
1360  * RETURN:      None
1361  *
1362  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1363  *              the object is deleted.
1364  *
1365  ******************************************************************************/
1366 
1367 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1368 {
1369 	kmem_cache_free(cache, object);
1370 	return (AE_OK);
1371 }
1372 
1373 static inline int acpi_res_list_add(struct acpi_res_list *res)
1374 {
1375 	struct acpi_res_list *res_list_elem;
1376 
1377 	list_for_each_entry(res_list_elem, &resource_list_head,
1378 			    resource_list) {
1379 
1380 		if (res->resource_type == res_list_elem->resource_type &&
1381 		    res->start == res_list_elem->start &&
1382 		    res->end == res_list_elem->end) {
1383 
1384 			/*
1385 			 * The Region(addr,len) already exist in the list,
1386 			 * just increase the count
1387 			 */
1388 
1389 			res_list_elem->count++;
1390 			return 0;
1391 		}
1392 	}
1393 
1394 	res->count = 1;
1395 	list_add(&res->resource_list, &resource_list_head);
1396 	return 1;
1397 }
1398 
1399 static inline void acpi_res_list_del(struct acpi_res_list *res)
1400 {
1401 	struct acpi_res_list *res_list_elem;
1402 
1403 	list_for_each_entry(res_list_elem, &resource_list_head,
1404 			    resource_list) {
1405 
1406 		if (res->resource_type == res_list_elem->resource_type &&
1407 		    res->start == res_list_elem->start &&
1408 		    res->end == res_list_elem->end) {
1409 
1410 			/*
1411 			 * If the res count is decreased to 0,
1412 			 * remove and free it
1413 			 */
1414 
1415 			if (--res_list_elem->count == 0) {
1416 				list_del(&res_list_elem->resource_list);
1417 				kfree(res_list_elem);
1418 			}
1419 			return;
1420 		}
1421 	}
1422 }
1423 
1424 acpi_status
1425 acpi_os_invalidate_address(
1426     u8                   space_id,
1427     acpi_physical_address   address,
1428     acpi_size               length)
1429 {
1430 	struct acpi_res_list res;
1431 
1432 	switch (space_id) {
1433 	case ACPI_ADR_SPACE_SYSTEM_IO:
1434 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1435 		/* Only interference checks against SystemIO and SystemMemory
1436 		   are needed */
1437 		res.start = address;
1438 		res.end = address + length - 1;
1439 		res.resource_type = space_id;
1440 		spin_lock(&acpi_res_lock);
1441 		acpi_res_list_del(&res);
1442 		spin_unlock(&acpi_res_lock);
1443 		break;
1444 	case ACPI_ADR_SPACE_PCI_CONFIG:
1445 	case ACPI_ADR_SPACE_EC:
1446 	case ACPI_ADR_SPACE_SMBUS:
1447 	case ACPI_ADR_SPACE_CMOS:
1448 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1449 	case ACPI_ADR_SPACE_DATA_TABLE:
1450 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1451 		break;
1452 	}
1453 	return AE_OK;
1454 }
1455 
1456 /******************************************************************************
1457  *
1458  * FUNCTION:    acpi_os_validate_address
1459  *
1460  * PARAMETERS:  space_id             - ACPI space ID
1461  *              address             - Physical address
1462  *              length              - Address length
1463  *
1464  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1465  *              should return AE_AML_ILLEGAL_ADDRESS.
1466  *
1467  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1468  *              the addresses accessed by AML operation regions.
1469  *
1470  *****************************************************************************/
1471 
1472 acpi_status
1473 acpi_os_validate_address (
1474     u8                   space_id,
1475     acpi_physical_address   address,
1476     acpi_size               length,
1477     char *name)
1478 {
1479 	struct acpi_res_list *res;
1480 	int added;
1481 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1482 		return AE_OK;
1483 
1484 	switch (space_id) {
1485 	case ACPI_ADR_SPACE_SYSTEM_IO:
1486 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1487 		/* Only interference checks against SystemIO and SystemMemory
1488 		   are needed */
1489 		res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1490 		if (!res)
1491 			return AE_OK;
1492 		/* ACPI names are fixed to 4 bytes, still better use strlcpy */
1493 		strlcpy(res->name, name, 5);
1494 		res->start = address;
1495 		res->end = address + length - 1;
1496 		res->resource_type = space_id;
1497 		spin_lock(&acpi_res_lock);
1498 		added = acpi_res_list_add(res);
1499 		spin_unlock(&acpi_res_lock);
1500 		pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1501 			 "name: %s\n", added ? "Added" : "Already exist",
1502 			 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1503 			 ? "SystemIO" : "System Memory",
1504 			 (unsigned long long)res->start,
1505 			 (unsigned long long)res->end,
1506 			 res->name);
1507 		if (!added)
1508 			kfree(res);
1509 		break;
1510 	case ACPI_ADR_SPACE_PCI_CONFIG:
1511 	case ACPI_ADR_SPACE_EC:
1512 	case ACPI_ADR_SPACE_SMBUS:
1513 	case ACPI_ADR_SPACE_CMOS:
1514 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1515 	case ACPI_ADR_SPACE_DATA_TABLE:
1516 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1517 		break;
1518 	}
1519 	return AE_OK;
1520 }
1521 #endif
1522 
1523 acpi_status __init acpi_os_initialize(void)
1524 {
1525 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1526 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1527 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1528 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1529 
1530 	return AE_OK;
1531 }
1532 
1533 acpi_status acpi_os_initialize1(void)
1534 {
1535 	kacpid_wq = create_workqueue("kacpid");
1536 	kacpi_notify_wq = create_workqueue("kacpi_notify");
1537 	kacpi_hotplug_wq = create_workqueue("kacpi_hotplug");
1538 	BUG_ON(!kacpid_wq);
1539 	BUG_ON(!kacpi_notify_wq);
1540 	BUG_ON(!kacpi_hotplug_wq);
1541 	acpi_install_interface_handler(acpi_osi_handler);
1542 	acpi_osi_setup_late();
1543 	return AE_OK;
1544 }
1545 
1546 acpi_status acpi_os_terminate(void)
1547 {
1548 	if (acpi_irq_handler) {
1549 		acpi_os_remove_interrupt_handler(acpi_irq_irq,
1550 						 acpi_irq_handler);
1551 	}
1552 
1553 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1554 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1555 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1556 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1557 
1558 	destroy_workqueue(kacpid_wq);
1559 	destroy_workqueue(kacpi_notify_wq);
1560 	destroy_workqueue(kacpi_hotplug_wq);
1561 
1562 	return AE_OK;
1563 }
1564