xref: /openbmc/linux/drivers/acpi/osl.c (revision 76a4f7cc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33 
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37 
38 #include "acpica/accommon.h"
39 #include "acpica/acnamesp.h"
40 #include "internal.h"
41 
42 /* Definitions for ACPI_DEBUG_PRINT() */
43 #define _COMPONENT		ACPI_OS_SERVICES
44 ACPI_MODULE_NAME("osl");
45 
46 struct acpi_os_dpc {
47 	acpi_osd_exec_callback function;
48 	void *context;
49 	struct work_struct work;
50 };
51 
52 #ifdef ENABLE_DEBUGGER
53 #include <linux/kdb.h>
54 
55 /* stuff for debugger support */
56 int acpi_in_debugger;
57 EXPORT_SYMBOL(acpi_in_debugger);
58 #endif				/*ENABLE_DEBUGGER */
59 
60 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
61 				      u32 pm1b_ctrl);
62 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
63 				      u32 val_b);
64 
65 static acpi_osd_handler acpi_irq_handler;
66 static void *acpi_irq_context;
67 static struct workqueue_struct *kacpid_wq;
68 static struct workqueue_struct *kacpi_notify_wq;
69 static struct workqueue_struct *kacpi_hotplug_wq;
70 static bool acpi_os_initialized;
71 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
72 bool acpi_permanent_mmap = false;
73 
74 /*
75  * This list of permanent mappings is for memory that may be accessed from
76  * interrupt context, where we can't do the ioremap().
77  */
78 struct acpi_ioremap {
79 	struct list_head list;
80 	void __iomem *virt;
81 	acpi_physical_address phys;
82 	acpi_size size;
83 	union {
84 		unsigned long refcount;
85 		struct rcu_work rwork;
86 	} track;
87 };
88 
89 static LIST_HEAD(acpi_ioremaps);
90 static DEFINE_MUTEX(acpi_ioremap_lock);
91 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
92 
93 static void __init acpi_request_region (struct acpi_generic_address *gas,
94 	unsigned int length, char *desc)
95 {
96 	u64 addr;
97 
98 	/* Handle possible alignment issues */
99 	memcpy(&addr, &gas->address, sizeof(addr));
100 	if (!addr || !length)
101 		return;
102 
103 	/* Resources are never freed */
104 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
105 		request_region(addr, length, desc);
106 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
107 		request_mem_region(addr, length, desc);
108 }
109 
110 static int __init acpi_reserve_resources(void)
111 {
112 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
113 		"ACPI PM1a_EVT_BLK");
114 
115 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
116 		"ACPI PM1b_EVT_BLK");
117 
118 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
119 		"ACPI PM1a_CNT_BLK");
120 
121 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
122 		"ACPI PM1b_CNT_BLK");
123 
124 	if (acpi_gbl_FADT.pm_timer_length == 4)
125 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
126 
127 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
128 		"ACPI PM2_CNT_BLK");
129 
130 	/* Length of GPE blocks must be a non-negative multiple of 2 */
131 
132 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
133 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
134 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
135 
136 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
137 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
138 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
139 
140 	return 0;
141 }
142 fs_initcall_sync(acpi_reserve_resources);
143 
144 void acpi_os_printf(const char *fmt, ...)
145 {
146 	va_list args;
147 	va_start(args, fmt);
148 	acpi_os_vprintf(fmt, args);
149 	va_end(args);
150 }
151 EXPORT_SYMBOL(acpi_os_printf);
152 
153 void acpi_os_vprintf(const char *fmt, va_list args)
154 {
155 	static char buffer[512];
156 
157 	vsprintf(buffer, fmt, args);
158 
159 #ifdef ENABLE_DEBUGGER
160 	if (acpi_in_debugger) {
161 		kdb_printf("%s", buffer);
162 	} else {
163 		if (printk_get_level(buffer))
164 			printk("%s", buffer);
165 		else
166 			printk(KERN_CONT "%s", buffer);
167 	}
168 #else
169 	if (acpi_debugger_write_log(buffer) < 0) {
170 		if (printk_get_level(buffer))
171 			printk("%s", buffer);
172 		else
173 			printk(KERN_CONT "%s", buffer);
174 	}
175 #endif
176 }
177 
178 #ifdef CONFIG_KEXEC
179 static unsigned long acpi_rsdp;
180 static int __init setup_acpi_rsdp(char *arg)
181 {
182 	return kstrtoul(arg, 16, &acpi_rsdp);
183 }
184 early_param("acpi_rsdp", setup_acpi_rsdp);
185 #endif
186 
187 acpi_physical_address __init acpi_os_get_root_pointer(void)
188 {
189 	acpi_physical_address pa;
190 
191 #ifdef CONFIG_KEXEC
192 	/*
193 	 * We may have been provided with an RSDP on the command line,
194 	 * but if a malicious user has done so they may be pointing us
195 	 * at modified ACPI tables that could alter kernel behaviour -
196 	 * so, we check the lockdown status before making use of
197 	 * it. If we trust it then also stash it in an architecture
198 	 * specific location (if appropriate) so it can be carried
199 	 * over further kexec()s.
200 	 */
201 	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
202 		acpi_arch_set_root_pointer(acpi_rsdp);
203 		return acpi_rsdp;
204 	}
205 #endif
206 	pa = acpi_arch_get_root_pointer();
207 	if (pa)
208 		return pa;
209 
210 	if (efi_enabled(EFI_CONFIG_TABLES)) {
211 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
212 			return efi.acpi20;
213 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
214 			return efi.acpi;
215 		pr_err("System description tables not found\n");
216 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
217 		acpi_find_root_pointer(&pa);
218 	}
219 
220 	return pa;
221 }
222 
223 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
224 static struct acpi_ioremap *
225 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
226 {
227 	struct acpi_ioremap *map;
228 
229 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
230 		if (map->phys <= phys &&
231 		    phys + size <= map->phys + map->size)
232 			return map;
233 
234 	return NULL;
235 }
236 
237 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
238 static void __iomem *
239 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
240 {
241 	struct acpi_ioremap *map;
242 
243 	map = acpi_map_lookup(phys, size);
244 	if (map)
245 		return map->virt + (phys - map->phys);
246 
247 	return NULL;
248 }
249 
250 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
251 {
252 	struct acpi_ioremap *map;
253 	void __iomem *virt = NULL;
254 
255 	mutex_lock(&acpi_ioremap_lock);
256 	map = acpi_map_lookup(phys, size);
257 	if (map) {
258 		virt = map->virt + (phys - map->phys);
259 		map->track.refcount++;
260 	}
261 	mutex_unlock(&acpi_ioremap_lock);
262 	return virt;
263 }
264 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
265 
266 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
267 static struct acpi_ioremap *
268 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
269 {
270 	struct acpi_ioremap *map;
271 
272 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
273 		if (map->virt <= virt &&
274 		    virt + size <= map->virt + map->size)
275 			return map;
276 
277 	return NULL;
278 }
279 
280 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
281 /* ioremap will take care of cache attributes */
282 #define should_use_kmap(pfn)   0
283 #else
284 #define should_use_kmap(pfn)   page_is_ram(pfn)
285 #endif
286 
287 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz,
288 			      bool memory)
289 {
290 	unsigned long pfn;
291 
292 	pfn = pg_off >> PAGE_SHIFT;
293 	if (should_use_kmap(pfn)) {
294 		if (pg_sz > PAGE_SIZE)
295 			return NULL;
296 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
297 	} else
298 		return memory ? acpi_os_memmap(pg_off, pg_sz) :
299 				acpi_os_ioremap(pg_off, pg_sz);
300 }
301 
302 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
303 {
304 	unsigned long pfn;
305 
306 	pfn = pg_off >> PAGE_SHIFT;
307 	if (should_use_kmap(pfn))
308 		kunmap(pfn_to_page(pfn));
309 	else
310 		iounmap(vaddr);
311 }
312 
313 /**
314  * __acpi_os_map_iomem - Get a virtual address for a given physical address range.
315  * @phys: Start of the physical address range to map.
316  * @size: Size of the physical address range to map.
317  * @memory: true if remapping memory, false if IO
318  *
319  * Look up the given physical address range in the list of existing ACPI memory
320  * mappings.  If found, get a reference to it and return a pointer to it (its
321  * virtual address).  If not found, map it, add it to that list and return a
322  * pointer to it.
323  *
324  * During early init (when acpi_permanent_mmap has not been set yet) this
325  * routine simply calls __acpi_map_table() to get the job done.
326  */
327 static void __iomem __ref
328 *__acpi_os_map_iomem(acpi_physical_address phys, acpi_size size, bool memory)
329 {
330 	struct acpi_ioremap *map;
331 	void __iomem *virt;
332 	acpi_physical_address pg_off;
333 	acpi_size pg_sz;
334 
335 	if (phys > ULONG_MAX) {
336 		pr_err("Cannot map memory that high: 0x%llx\n", phys);
337 		return NULL;
338 	}
339 
340 	if (!acpi_permanent_mmap)
341 		return __acpi_map_table((unsigned long)phys, size);
342 
343 	mutex_lock(&acpi_ioremap_lock);
344 	/* Check if there's a suitable mapping already. */
345 	map = acpi_map_lookup(phys, size);
346 	if (map) {
347 		map->track.refcount++;
348 		goto out;
349 	}
350 
351 	map = kzalloc(sizeof(*map), GFP_KERNEL);
352 	if (!map) {
353 		mutex_unlock(&acpi_ioremap_lock);
354 		return NULL;
355 	}
356 
357 	pg_off = round_down(phys, PAGE_SIZE);
358 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
359 	virt = acpi_map(phys, size, memory);
360 	if (!virt) {
361 		mutex_unlock(&acpi_ioremap_lock);
362 		kfree(map);
363 		return NULL;
364 	}
365 
366 	INIT_LIST_HEAD(&map->list);
367 	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
368 	map->phys = pg_off;
369 	map->size = pg_sz;
370 	map->track.refcount = 1;
371 
372 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
373 
374 out:
375 	mutex_unlock(&acpi_ioremap_lock);
376 	return map->virt + (phys - map->phys);
377 }
378 
379 void __iomem *__ref
380 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
381 {
382 	return __acpi_os_map_iomem(phys, size, false);
383 }
384 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
385 
386 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
387 {
388 	return (void *)__acpi_os_map_iomem(phys, size, true);
389 }
390 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
391 
392 static void acpi_os_map_remove(struct work_struct *work)
393 {
394 	struct acpi_ioremap *map = container_of(to_rcu_work(work),
395 						struct acpi_ioremap,
396 						track.rwork);
397 
398 	acpi_unmap(map->phys, map->virt);
399 	kfree(map);
400 }
401 
402 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
403 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
404 {
405 	if (--map->track.refcount)
406 		return;
407 
408 	list_del_rcu(&map->list);
409 
410 	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
411 	queue_rcu_work(system_wq, &map->track.rwork);
412 }
413 
414 /**
415  * acpi_os_unmap_iomem - Drop a memory mapping reference.
416  * @virt: Start of the address range to drop a reference to.
417  * @size: Size of the address range to drop a reference to.
418  *
419  * Look up the given virtual address range in the list of existing ACPI memory
420  * mappings, drop a reference to it and if there are no more active references
421  * to it, queue it up for later removal.
422  *
423  * During early init (when acpi_permanent_mmap has not been set yet) this
424  * routine simply calls __acpi_unmap_table() to get the job done.  Since
425  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
426  * here.
427  */
428 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
429 {
430 	struct acpi_ioremap *map;
431 
432 	if (!acpi_permanent_mmap) {
433 		__acpi_unmap_table(virt, size);
434 		return;
435 	}
436 
437 	mutex_lock(&acpi_ioremap_lock);
438 
439 	map = acpi_map_lookup_virt(virt, size);
440 	if (!map) {
441 		mutex_unlock(&acpi_ioremap_lock);
442 		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
443 		return;
444 	}
445 	acpi_os_drop_map_ref(map);
446 
447 	mutex_unlock(&acpi_ioremap_lock);
448 }
449 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
450 
451 /**
452  * acpi_os_unmap_memory - Drop a memory mapping reference.
453  * @virt: Start of the address range to drop a reference to.
454  * @size: Size of the address range to drop a reference to.
455  */
456 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
457 {
458 	acpi_os_unmap_iomem((void __iomem *)virt, size);
459 }
460 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
461 
462 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
463 {
464 	u64 addr;
465 
466 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
467 		return NULL;
468 
469 	/* Handle possible alignment issues */
470 	memcpy(&addr, &gas->address, sizeof(addr));
471 	if (!addr || !gas->bit_width)
472 		return NULL;
473 
474 	return acpi_os_map_iomem(addr, gas->bit_width / 8);
475 }
476 EXPORT_SYMBOL(acpi_os_map_generic_address);
477 
478 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
479 {
480 	u64 addr;
481 	struct acpi_ioremap *map;
482 
483 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
484 		return;
485 
486 	/* Handle possible alignment issues */
487 	memcpy(&addr, &gas->address, sizeof(addr));
488 	if (!addr || !gas->bit_width)
489 		return;
490 
491 	mutex_lock(&acpi_ioremap_lock);
492 
493 	map = acpi_map_lookup(addr, gas->bit_width / 8);
494 	if (!map) {
495 		mutex_unlock(&acpi_ioremap_lock);
496 		return;
497 	}
498 	acpi_os_drop_map_ref(map);
499 
500 	mutex_unlock(&acpi_ioremap_lock);
501 }
502 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
503 
504 #ifdef ACPI_FUTURE_USAGE
505 acpi_status
506 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
507 {
508 	if (!phys || !virt)
509 		return AE_BAD_PARAMETER;
510 
511 	*phys = virt_to_phys(virt);
512 
513 	return AE_OK;
514 }
515 #endif
516 
517 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
518 static bool acpi_rev_override;
519 
520 int __init acpi_rev_override_setup(char *str)
521 {
522 	acpi_rev_override = true;
523 	return 1;
524 }
525 __setup("acpi_rev_override", acpi_rev_override_setup);
526 #else
527 #define acpi_rev_override	false
528 #endif
529 
530 #define ACPI_MAX_OVERRIDE_LEN 100
531 
532 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
533 
534 acpi_status
535 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
536 			    acpi_string *new_val)
537 {
538 	if (!init_val || !new_val)
539 		return AE_BAD_PARAMETER;
540 
541 	*new_val = NULL;
542 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
543 		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
544 		*new_val = acpi_os_name;
545 	}
546 
547 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
548 		pr_info("Overriding _REV return value to 5\n");
549 		*new_val = (char *)5;
550 	}
551 
552 	return AE_OK;
553 }
554 
555 static irqreturn_t acpi_irq(int irq, void *dev_id)
556 {
557 	u32 handled;
558 
559 	handled = (*acpi_irq_handler) (acpi_irq_context);
560 
561 	if (handled) {
562 		acpi_irq_handled++;
563 		return IRQ_HANDLED;
564 	} else {
565 		acpi_irq_not_handled++;
566 		return IRQ_NONE;
567 	}
568 }
569 
570 acpi_status
571 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
572 				  void *context)
573 {
574 	unsigned int irq;
575 
576 	acpi_irq_stats_init();
577 
578 	/*
579 	 * ACPI interrupts different from the SCI in our copy of the FADT are
580 	 * not supported.
581 	 */
582 	if (gsi != acpi_gbl_FADT.sci_interrupt)
583 		return AE_BAD_PARAMETER;
584 
585 	if (acpi_irq_handler)
586 		return AE_ALREADY_ACQUIRED;
587 
588 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
589 		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
590 		return AE_OK;
591 	}
592 
593 	acpi_irq_handler = handler;
594 	acpi_irq_context = context;
595 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
596 		pr_err("SCI (IRQ%d) allocation failed\n", irq);
597 		acpi_irq_handler = NULL;
598 		return AE_NOT_ACQUIRED;
599 	}
600 	acpi_sci_irq = irq;
601 
602 	return AE_OK;
603 }
604 
605 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
606 {
607 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
608 		return AE_BAD_PARAMETER;
609 
610 	free_irq(acpi_sci_irq, acpi_irq);
611 	acpi_irq_handler = NULL;
612 	acpi_sci_irq = INVALID_ACPI_IRQ;
613 
614 	return AE_OK;
615 }
616 
617 /*
618  * Running in interpreter thread context, safe to sleep
619  */
620 
621 void acpi_os_sleep(u64 ms)
622 {
623 	msleep(ms);
624 }
625 
626 void acpi_os_stall(u32 us)
627 {
628 	while (us) {
629 		u32 delay = 1000;
630 
631 		if (delay > us)
632 			delay = us;
633 		udelay(delay);
634 		touch_nmi_watchdog();
635 		us -= delay;
636 	}
637 }
638 
639 /*
640  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
641  * monotonically increasing timer with 100ns granularity. Do not use
642  * ktime_get() to implement this function because this function may get
643  * called after timekeeping has been suspended. Note: calling this function
644  * after timekeeping has been suspended may lead to unexpected results
645  * because when timekeeping is suspended the jiffies counter is not
646  * incremented. See also timekeeping_suspend().
647  */
648 u64 acpi_os_get_timer(void)
649 {
650 	return (get_jiffies_64() - INITIAL_JIFFIES) *
651 		(ACPI_100NSEC_PER_SEC / HZ);
652 }
653 
654 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
655 {
656 	u32 dummy;
657 
658 	if (!value)
659 		value = &dummy;
660 
661 	*value = 0;
662 	if (width <= 8) {
663 		*(u8 *) value = inb(port);
664 	} else if (width <= 16) {
665 		*(u16 *) value = inw(port);
666 	} else if (width <= 32) {
667 		*(u32 *) value = inl(port);
668 	} else {
669 		BUG();
670 	}
671 
672 	return AE_OK;
673 }
674 
675 EXPORT_SYMBOL(acpi_os_read_port);
676 
677 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
678 {
679 	if (width <= 8) {
680 		outb(value, port);
681 	} else if (width <= 16) {
682 		outw(value, port);
683 	} else if (width <= 32) {
684 		outl(value, port);
685 	} else {
686 		BUG();
687 	}
688 
689 	return AE_OK;
690 }
691 
692 EXPORT_SYMBOL(acpi_os_write_port);
693 
694 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
695 {
696 
697 	switch (width) {
698 	case 8:
699 		*(u8 *) value = readb(virt_addr);
700 		break;
701 	case 16:
702 		*(u16 *) value = readw(virt_addr);
703 		break;
704 	case 32:
705 		*(u32 *) value = readl(virt_addr);
706 		break;
707 	case 64:
708 		*(u64 *) value = readq(virt_addr);
709 		break;
710 	default:
711 		return -EINVAL;
712 	}
713 
714 	return 0;
715 }
716 
717 acpi_status
718 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
719 {
720 	void __iomem *virt_addr;
721 	unsigned int size = width / 8;
722 	bool unmap = false;
723 	u64 dummy;
724 	int error;
725 
726 	rcu_read_lock();
727 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
728 	if (!virt_addr) {
729 		rcu_read_unlock();
730 		virt_addr = acpi_os_ioremap(phys_addr, size);
731 		if (!virt_addr)
732 			return AE_BAD_ADDRESS;
733 		unmap = true;
734 	}
735 
736 	if (!value)
737 		value = &dummy;
738 
739 	error = acpi_os_read_iomem(virt_addr, value, width);
740 	BUG_ON(error);
741 
742 	if (unmap)
743 		iounmap(virt_addr);
744 	else
745 		rcu_read_unlock();
746 
747 	return AE_OK;
748 }
749 
750 acpi_status
751 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
752 {
753 	void __iomem *virt_addr;
754 	unsigned int size = width / 8;
755 	bool unmap = false;
756 
757 	rcu_read_lock();
758 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
759 	if (!virt_addr) {
760 		rcu_read_unlock();
761 		virt_addr = acpi_os_ioremap(phys_addr, size);
762 		if (!virt_addr)
763 			return AE_BAD_ADDRESS;
764 		unmap = true;
765 	}
766 
767 	switch (width) {
768 	case 8:
769 		writeb(value, virt_addr);
770 		break;
771 	case 16:
772 		writew(value, virt_addr);
773 		break;
774 	case 32:
775 		writel(value, virt_addr);
776 		break;
777 	case 64:
778 		writeq(value, virt_addr);
779 		break;
780 	default:
781 		BUG();
782 	}
783 
784 	if (unmap)
785 		iounmap(virt_addr);
786 	else
787 		rcu_read_unlock();
788 
789 	return AE_OK;
790 }
791 
792 #ifdef CONFIG_PCI
793 acpi_status
794 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
795 			       u64 *value, u32 width)
796 {
797 	int result, size;
798 	u32 value32;
799 
800 	if (!value)
801 		return AE_BAD_PARAMETER;
802 
803 	switch (width) {
804 	case 8:
805 		size = 1;
806 		break;
807 	case 16:
808 		size = 2;
809 		break;
810 	case 32:
811 		size = 4;
812 		break;
813 	default:
814 		return AE_ERROR;
815 	}
816 
817 	result = raw_pci_read(pci_id->segment, pci_id->bus,
818 				PCI_DEVFN(pci_id->device, pci_id->function),
819 				reg, size, &value32);
820 	*value = value32;
821 
822 	return (result ? AE_ERROR : AE_OK);
823 }
824 
825 acpi_status
826 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
827 				u64 value, u32 width)
828 {
829 	int result, size;
830 
831 	switch (width) {
832 	case 8:
833 		size = 1;
834 		break;
835 	case 16:
836 		size = 2;
837 		break;
838 	case 32:
839 		size = 4;
840 		break;
841 	default:
842 		return AE_ERROR;
843 	}
844 
845 	result = raw_pci_write(pci_id->segment, pci_id->bus,
846 				PCI_DEVFN(pci_id->device, pci_id->function),
847 				reg, size, value);
848 
849 	return (result ? AE_ERROR : AE_OK);
850 }
851 #endif
852 
853 static void acpi_os_execute_deferred(struct work_struct *work)
854 {
855 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
856 
857 	dpc->function(dpc->context);
858 	kfree(dpc);
859 }
860 
861 #ifdef CONFIG_ACPI_DEBUGGER
862 static struct acpi_debugger acpi_debugger;
863 static bool acpi_debugger_initialized;
864 
865 int acpi_register_debugger(struct module *owner,
866 			   const struct acpi_debugger_ops *ops)
867 {
868 	int ret = 0;
869 
870 	mutex_lock(&acpi_debugger.lock);
871 	if (acpi_debugger.ops) {
872 		ret = -EBUSY;
873 		goto err_lock;
874 	}
875 
876 	acpi_debugger.owner = owner;
877 	acpi_debugger.ops = ops;
878 
879 err_lock:
880 	mutex_unlock(&acpi_debugger.lock);
881 	return ret;
882 }
883 EXPORT_SYMBOL(acpi_register_debugger);
884 
885 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
886 {
887 	mutex_lock(&acpi_debugger.lock);
888 	if (ops == acpi_debugger.ops) {
889 		acpi_debugger.ops = NULL;
890 		acpi_debugger.owner = NULL;
891 	}
892 	mutex_unlock(&acpi_debugger.lock);
893 }
894 EXPORT_SYMBOL(acpi_unregister_debugger);
895 
896 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
897 {
898 	int ret;
899 	int (*func)(acpi_osd_exec_callback, void *);
900 	struct module *owner;
901 
902 	if (!acpi_debugger_initialized)
903 		return -ENODEV;
904 	mutex_lock(&acpi_debugger.lock);
905 	if (!acpi_debugger.ops) {
906 		ret = -ENODEV;
907 		goto err_lock;
908 	}
909 	if (!try_module_get(acpi_debugger.owner)) {
910 		ret = -ENODEV;
911 		goto err_lock;
912 	}
913 	func = acpi_debugger.ops->create_thread;
914 	owner = acpi_debugger.owner;
915 	mutex_unlock(&acpi_debugger.lock);
916 
917 	ret = func(function, context);
918 
919 	mutex_lock(&acpi_debugger.lock);
920 	module_put(owner);
921 err_lock:
922 	mutex_unlock(&acpi_debugger.lock);
923 	return ret;
924 }
925 
926 ssize_t acpi_debugger_write_log(const char *msg)
927 {
928 	ssize_t ret;
929 	ssize_t (*func)(const char *);
930 	struct module *owner;
931 
932 	if (!acpi_debugger_initialized)
933 		return -ENODEV;
934 	mutex_lock(&acpi_debugger.lock);
935 	if (!acpi_debugger.ops) {
936 		ret = -ENODEV;
937 		goto err_lock;
938 	}
939 	if (!try_module_get(acpi_debugger.owner)) {
940 		ret = -ENODEV;
941 		goto err_lock;
942 	}
943 	func = acpi_debugger.ops->write_log;
944 	owner = acpi_debugger.owner;
945 	mutex_unlock(&acpi_debugger.lock);
946 
947 	ret = func(msg);
948 
949 	mutex_lock(&acpi_debugger.lock);
950 	module_put(owner);
951 err_lock:
952 	mutex_unlock(&acpi_debugger.lock);
953 	return ret;
954 }
955 
956 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
957 {
958 	ssize_t ret;
959 	ssize_t (*func)(char *, size_t);
960 	struct module *owner;
961 
962 	if (!acpi_debugger_initialized)
963 		return -ENODEV;
964 	mutex_lock(&acpi_debugger.lock);
965 	if (!acpi_debugger.ops) {
966 		ret = -ENODEV;
967 		goto err_lock;
968 	}
969 	if (!try_module_get(acpi_debugger.owner)) {
970 		ret = -ENODEV;
971 		goto err_lock;
972 	}
973 	func = acpi_debugger.ops->read_cmd;
974 	owner = acpi_debugger.owner;
975 	mutex_unlock(&acpi_debugger.lock);
976 
977 	ret = func(buffer, buffer_length);
978 
979 	mutex_lock(&acpi_debugger.lock);
980 	module_put(owner);
981 err_lock:
982 	mutex_unlock(&acpi_debugger.lock);
983 	return ret;
984 }
985 
986 int acpi_debugger_wait_command_ready(void)
987 {
988 	int ret;
989 	int (*func)(bool, char *, size_t);
990 	struct module *owner;
991 
992 	if (!acpi_debugger_initialized)
993 		return -ENODEV;
994 	mutex_lock(&acpi_debugger.lock);
995 	if (!acpi_debugger.ops) {
996 		ret = -ENODEV;
997 		goto err_lock;
998 	}
999 	if (!try_module_get(acpi_debugger.owner)) {
1000 		ret = -ENODEV;
1001 		goto err_lock;
1002 	}
1003 	func = acpi_debugger.ops->wait_command_ready;
1004 	owner = acpi_debugger.owner;
1005 	mutex_unlock(&acpi_debugger.lock);
1006 
1007 	ret = func(acpi_gbl_method_executing,
1008 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1009 
1010 	mutex_lock(&acpi_debugger.lock);
1011 	module_put(owner);
1012 err_lock:
1013 	mutex_unlock(&acpi_debugger.lock);
1014 	return ret;
1015 }
1016 
1017 int acpi_debugger_notify_command_complete(void)
1018 {
1019 	int ret;
1020 	int (*func)(void);
1021 	struct module *owner;
1022 
1023 	if (!acpi_debugger_initialized)
1024 		return -ENODEV;
1025 	mutex_lock(&acpi_debugger.lock);
1026 	if (!acpi_debugger.ops) {
1027 		ret = -ENODEV;
1028 		goto err_lock;
1029 	}
1030 	if (!try_module_get(acpi_debugger.owner)) {
1031 		ret = -ENODEV;
1032 		goto err_lock;
1033 	}
1034 	func = acpi_debugger.ops->notify_command_complete;
1035 	owner = acpi_debugger.owner;
1036 	mutex_unlock(&acpi_debugger.lock);
1037 
1038 	ret = func();
1039 
1040 	mutex_lock(&acpi_debugger.lock);
1041 	module_put(owner);
1042 err_lock:
1043 	mutex_unlock(&acpi_debugger.lock);
1044 	return ret;
1045 }
1046 
1047 int __init acpi_debugger_init(void)
1048 {
1049 	mutex_init(&acpi_debugger.lock);
1050 	acpi_debugger_initialized = true;
1051 	return 0;
1052 }
1053 #endif
1054 
1055 /*******************************************************************************
1056  *
1057  * FUNCTION:    acpi_os_execute
1058  *
1059  * PARAMETERS:  Type               - Type of the callback
1060  *              Function           - Function to be executed
1061  *              Context            - Function parameters
1062  *
1063  * RETURN:      Status
1064  *
1065  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1066  *              immediately executes function on a separate thread.
1067  *
1068  ******************************************************************************/
1069 
1070 acpi_status acpi_os_execute(acpi_execute_type type,
1071 			    acpi_osd_exec_callback function, void *context)
1072 {
1073 	acpi_status status = AE_OK;
1074 	struct acpi_os_dpc *dpc;
1075 	struct workqueue_struct *queue;
1076 	int ret;
1077 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1078 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1079 			  function, context));
1080 
1081 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1082 		ret = acpi_debugger_create_thread(function, context);
1083 		if (ret) {
1084 			pr_err("Kernel thread creation failed\n");
1085 			status = AE_ERROR;
1086 		}
1087 		goto out_thread;
1088 	}
1089 
1090 	/*
1091 	 * Allocate/initialize DPC structure.  Note that this memory will be
1092 	 * freed by the callee.  The kernel handles the work_struct list  in a
1093 	 * way that allows us to also free its memory inside the callee.
1094 	 * Because we may want to schedule several tasks with different
1095 	 * parameters we can't use the approach some kernel code uses of
1096 	 * having a static work_struct.
1097 	 */
1098 
1099 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1100 	if (!dpc)
1101 		return AE_NO_MEMORY;
1102 
1103 	dpc->function = function;
1104 	dpc->context = context;
1105 
1106 	/*
1107 	 * To prevent lockdep from complaining unnecessarily, make sure that
1108 	 * there is a different static lockdep key for each workqueue by using
1109 	 * INIT_WORK() for each of them separately.
1110 	 */
1111 	if (type == OSL_NOTIFY_HANDLER) {
1112 		queue = kacpi_notify_wq;
1113 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1114 	} else if (type == OSL_GPE_HANDLER) {
1115 		queue = kacpid_wq;
1116 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1117 	} else {
1118 		pr_err("Unsupported os_execute type %d.\n", type);
1119 		status = AE_ERROR;
1120 	}
1121 
1122 	if (ACPI_FAILURE(status))
1123 		goto err_workqueue;
1124 
1125 	/*
1126 	 * On some machines, a software-initiated SMI causes corruption unless
1127 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1128 	 * typically it's done in GPE-related methods that are run via
1129 	 * workqueues, so we can avoid the known corruption cases by always
1130 	 * queueing on CPU 0.
1131 	 */
1132 	ret = queue_work_on(0, queue, &dpc->work);
1133 	if (!ret) {
1134 		pr_err("Unable to queue work\n");
1135 		status = AE_ERROR;
1136 	}
1137 err_workqueue:
1138 	if (ACPI_FAILURE(status))
1139 		kfree(dpc);
1140 out_thread:
1141 	return status;
1142 }
1143 EXPORT_SYMBOL(acpi_os_execute);
1144 
1145 void acpi_os_wait_events_complete(void)
1146 {
1147 	/*
1148 	 * Make sure the GPE handler or the fixed event handler is not used
1149 	 * on another CPU after removal.
1150 	 */
1151 	if (acpi_sci_irq_valid())
1152 		synchronize_hardirq(acpi_sci_irq);
1153 	flush_workqueue(kacpid_wq);
1154 	flush_workqueue(kacpi_notify_wq);
1155 }
1156 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1157 
1158 struct acpi_hp_work {
1159 	struct work_struct work;
1160 	struct acpi_device *adev;
1161 	u32 src;
1162 };
1163 
1164 static void acpi_hotplug_work_fn(struct work_struct *work)
1165 {
1166 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1167 
1168 	acpi_os_wait_events_complete();
1169 	acpi_device_hotplug(hpw->adev, hpw->src);
1170 	kfree(hpw);
1171 }
1172 
1173 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1174 {
1175 	struct acpi_hp_work *hpw;
1176 
1177 	acpi_handle_debug(adev->handle,
1178 			  "Scheduling hotplug event %u for deferred handling\n",
1179 			   src);
1180 
1181 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1182 	if (!hpw)
1183 		return AE_NO_MEMORY;
1184 
1185 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1186 	hpw->adev = adev;
1187 	hpw->src = src;
1188 	/*
1189 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1190 	 * the hotplug code may call driver .remove() functions, which may
1191 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1192 	 * these workqueues.
1193 	 */
1194 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1195 		kfree(hpw);
1196 		return AE_ERROR;
1197 	}
1198 	return AE_OK;
1199 }
1200 
1201 bool acpi_queue_hotplug_work(struct work_struct *work)
1202 {
1203 	return queue_work(kacpi_hotplug_wq, work);
1204 }
1205 
1206 acpi_status
1207 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1208 {
1209 	struct semaphore *sem = NULL;
1210 
1211 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1212 	if (!sem)
1213 		return AE_NO_MEMORY;
1214 
1215 	sema_init(sem, initial_units);
1216 
1217 	*handle = (acpi_handle *) sem;
1218 
1219 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1220 			  *handle, initial_units));
1221 
1222 	return AE_OK;
1223 }
1224 
1225 /*
1226  * TODO: A better way to delete semaphores?  Linux doesn't have a
1227  * 'delete_semaphore()' function -- may result in an invalid
1228  * pointer dereference for non-synchronized consumers.	Should
1229  * we at least check for blocked threads and signal/cancel them?
1230  */
1231 
1232 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1233 {
1234 	struct semaphore *sem = (struct semaphore *)handle;
1235 
1236 	if (!sem)
1237 		return AE_BAD_PARAMETER;
1238 
1239 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1240 
1241 	BUG_ON(!list_empty(&sem->wait_list));
1242 	kfree(sem);
1243 	sem = NULL;
1244 
1245 	return AE_OK;
1246 }
1247 
1248 /*
1249  * TODO: Support for units > 1?
1250  */
1251 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1252 {
1253 	acpi_status status = AE_OK;
1254 	struct semaphore *sem = (struct semaphore *)handle;
1255 	long jiffies;
1256 	int ret = 0;
1257 
1258 	if (!acpi_os_initialized)
1259 		return AE_OK;
1260 
1261 	if (!sem || (units < 1))
1262 		return AE_BAD_PARAMETER;
1263 
1264 	if (units > 1)
1265 		return AE_SUPPORT;
1266 
1267 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1268 			  handle, units, timeout));
1269 
1270 	if (timeout == ACPI_WAIT_FOREVER)
1271 		jiffies = MAX_SCHEDULE_TIMEOUT;
1272 	else
1273 		jiffies = msecs_to_jiffies(timeout);
1274 
1275 	ret = down_timeout(sem, jiffies);
1276 	if (ret)
1277 		status = AE_TIME;
1278 
1279 	if (ACPI_FAILURE(status)) {
1280 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1281 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1282 				  handle, units, timeout,
1283 				  acpi_format_exception(status)));
1284 	} else {
1285 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1286 				  "Acquired semaphore[%p|%d|%d]", handle,
1287 				  units, timeout));
1288 	}
1289 
1290 	return status;
1291 }
1292 
1293 /*
1294  * TODO: Support for units > 1?
1295  */
1296 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1297 {
1298 	struct semaphore *sem = (struct semaphore *)handle;
1299 
1300 	if (!acpi_os_initialized)
1301 		return AE_OK;
1302 
1303 	if (!sem || (units < 1))
1304 		return AE_BAD_PARAMETER;
1305 
1306 	if (units > 1)
1307 		return AE_SUPPORT;
1308 
1309 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1310 			  units));
1311 
1312 	up(sem);
1313 
1314 	return AE_OK;
1315 }
1316 
1317 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1318 {
1319 #ifdef ENABLE_DEBUGGER
1320 	if (acpi_in_debugger) {
1321 		u32 chars;
1322 
1323 		kdb_read(buffer, buffer_length);
1324 
1325 		/* remove the CR kdb includes */
1326 		chars = strlen(buffer) - 1;
1327 		buffer[chars] = '\0';
1328 	}
1329 #else
1330 	int ret;
1331 
1332 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1333 	if (ret < 0)
1334 		return AE_ERROR;
1335 	if (bytes_read)
1336 		*bytes_read = ret;
1337 #endif
1338 
1339 	return AE_OK;
1340 }
1341 EXPORT_SYMBOL(acpi_os_get_line);
1342 
1343 acpi_status acpi_os_wait_command_ready(void)
1344 {
1345 	int ret;
1346 
1347 	ret = acpi_debugger_wait_command_ready();
1348 	if (ret < 0)
1349 		return AE_ERROR;
1350 	return AE_OK;
1351 }
1352 
1353 acpi_status acpi_os_notify_command_complete(void)
1354 {
1355 	int ret;
1356 
1357 	ret = acpi_debugger_notify_command_complete();
1358 	if (ret < 0)
1359 		return AE_ERROR;
1360 	return AE_OK;
1361 }
1362 
1363 acpi_status acpi_os_signal(u32 function, void *info)
1364 {
1365 	switch (function) {
1366 	case ACPI_SIGNAL_FATAL:
1367 		pr_err("Fatal opcode executed\n");
1368 		break;
1369 	case ACPI_SIGNAL_BREAKPOINT:
1370 		/*
1371 		 * AML Breakpoint
1372 		 * ACPI spec. says to treat it as a NOP unless
1373 		 * you are debugging.  So if/when we integrate
1374 		 * AML debugger into the kernel debugger its
1375 		 * hook will go here.  But until then it is
1376 		 * not useful to print anything on breakpoints.
1377 		 */
1378 		break;
1379 	default:
1380 		break;
1381 	}
1382 
1383 	return AE_OK;
1384 }
1385 
1386 static int __init acpi_os_name_setup(char *str)
1387 {
1388 	char *p = acpi_os_name;
1389 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1390 
1391 	if (!str || !*str)
1392 		return 0;
1393 
1394 	for (; count-- && *str; str++) {
1395 		if (isalnum(*str) || *str == ' ' || *str == ':')
1396 			*p++ = *str;
1397 		else if (*str == '\'' || *str == '"')
1398 			continue;
1399 		else
1400 			break;
1401 	}
1402 	*p = 0;
1403 
1404 	return 1;
1405 
1406 }
1407 
1408 __setup("acpi_os_name=", acpi_os_name_setup);
1409 
1410 /*
1411  * Disable the auto-serialization of named objects creation methods.
1412  *
1413  * This feature is enabled by default.  It marks the AML control methods
1414  * that contain the opcodes to create named objects as "Serialized".
1415  */
1416 static int __init acpi_no_auto_serialize_setup(char *str)
1417 {
1418 	acpi_gbl_auto_serialize_methods = FALSE;
1419 	pr_info("Auto-serialization disabled\n");
1420 
1421 	return 1;
1422 }
1423 
1424 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1425 
1426 /* Check of resource interference between native drivers and ACPI
1427  * OperationRegions (SystemIO and System Memory only).
1428  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1429  * in arbitrary AML code and can interfere with legacy drivers.
1430  * acpi_enforce_resources= can be set to:
1431  *
1432  *   - strict (default) (2)
1433  *     -> further driver trying to access the resources will not load
1434  *   - lax              (1)
1435  *     -> further driver trying to access the resources will load, but you
1436  *     get a system message that something might go wrong...
1437  *
1438  *   - no               (0)
1439  *     -> ACPI Operation Region resources will not be registered
1440  *
1441  */
1442 #define ENFORCE_RESOURCES_STRICT 2
1443 #define ENFORCE_RESOURCES_LAX    1
1444 #define ENFORCE_RESOURCES_NO     0
1445 
1446 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1447 
1448 static int __init acpi_enforce_resources_setup(char *str)
1449 {
1450 	if (str == NULL || *str == '\0')
1451 		return 0;
1452 
1453 	if (!strcmp("strict", str))
1454 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1455 	else if (!strcmp("lax", str))
1456 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1457 	else if (!strcmp("no", str))
1458 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1459 
1460 	return 1;
1461 }
1462 
1463 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1464 
1465 /* Check for resource conflicts between ACPI OperationRegions and native
1466  * drivers */
1467 int acpi_check_resource_conflict(const struct resource *res)
1468 {
1469 	acpi_adr_space_type space_id;
1470 
1471 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1472 		return 0;
1473 
1474 	if (res->flags & IORESOURCE_IO)
1475 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1476 	else if (res->flags & IORESOURCE_MEM)
1477 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1478 	else
1479 		return 0;
1480 
1481 	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1482 		return 0;
1483 
1484 	pr_info("Resource conflict; ACPI support missing from driver?\n");
1485 
1486 	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1487 		return -EBUSY;
1488 
1489 	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1490 		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL(acpi_check_resource_conflict);
1495 
1496 int acpi_check_region(resource_size_t start, resource_size_t n,
1497 		      const char *name)
1498 {
1499 	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1500 
1501 	return acpi_check_resource_conflict(&res);
1502 }
1503 EXPORT_SYMBOL(acpi_check_region);
1504 
1505 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1506 					      void *_res, void **return_value)
1507 {
1508 	struct acpi_mem_space_context **mem_ctx;
1509 	union acpi_operand_object *handler_obj;
1510 	union acpi_operand_object *region_obj2;
1511 	union acpi_operand_object *region_obj;
1512 	struct resource *res = _res;
1513 	acpi_status status;
1514 
1515 	region_obj = acpi_ns_get_attached_object(handle);
1516 	if (!region_obj)
1517 		return AE_OK;
1518 
1519 	handler_obj = region_obj->region.handler;
1520 	if (!handler_obj)
1521 		return AE_OK;
1522 
1523 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1524 		return AE_OK;
1525 
1526 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1527 		return AE_OK;
1528 
1529 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1530 	if (!region_obj2)
1531 		return AE_OK;
1532 
1533 	mem_ctx = (void *)&region_obj2->extra.region_context;
1534 
1535 	if (!(mem_ctx[0]->address >= res->start &&
1536 	      mem_ctx[0]->address < res->end))
1537 		return AE_OK;
1538 
1539 	status = handler_obj->address_space.setup(region_obj,
1540 						  ACPI_REGION_DEACTIVATE,
1541 						  NULL, (void **)mem_ctx);
1542 	if (ACPI_SUCCESS(status))
1543 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1544 
1545 	return status;
1546 }
1547 
1548 /**
1549  * acpi_release_memory - Release any mappings done to a memory region
1550  * @handle: Handle to namespace node
1551  * @res: Memory resource
1552  * @level: A level that terminates the search
1553  *
1554  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1555  * overlap with @res and that have already been activated (mapped).
1556  *
1557  * This is a helper that allows drivers to place special requirements on memory
1558  * region that may overlap with operation regions, primarily allowing them to
1559  * safely map the region as non-cached memory.
1560  *
1561  * The unmapped Operation Regions will be automatically remapped next time they
1562  * are called, so the drivers do not need to do anything else.
1563  */
1564 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1565 				u32 level)
1566 {
1567 	acpi_status status;
1568 
1569 	if (!(res->flags & IORESOURCE_MEM))
1570 		return AE_TYPE;
1571 
1572 	status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1573 				     acpi_deactivate_mem_region, NULL,
1574 				     res, NULL);
1575 	if (ACPI_FAILURE(status))
1576 		return status;
1577 
1578 	/*
1579 	 * Wait for all of the mappings queued up for removal by
1580 	 * acpi_deactivate_mem_region() to actually go away.
1581 	 */
1582 	synchronize_rcu();
1583 	rcu_barrier();
1584 	flush_scheduled_work();
1585 
1586 	return AE_OK;
1587 }
1588 EXPORT_SYMBOL_GPL(acpi_release_memory);
1589 
1590 /*
1591  * Let drivers know whether the resource checks are effective
1592  */
1593 int acpi_resources_are_enforced(void)
1594 {
1595 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1596 }
1597 EXPORT_SYMBOL(acpi_resources_are_enforced);
1598 
1599 /*
1600  * Deallocate the memory for a spinlock.
1601  */
1602 void acpi_os_delete_lock(acpi_spinlock handle)
1603 {
1604 	ACPI_FREE(handle);
1605 }
1606 
1607 /*
1608  * Acquire a spinlock.
1609  *
1610  * handle is a pointer to the spinlock_t.
1611  */
1612 
1613 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1614 	__acquires(lockp)
1615 {
1616 	acpi_cpu_flags flags;
1617 	spin_lock_irqsave(lockp, flags);
1618 	return flags;
1619 }
1620 
1621 /*
1622  * Release a spinlock. See above.
1623  */
1624 
1625 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1626 	__releases(lockp)
1627 {
1628 	spin_unlock_irqrestore(lockp, flags);
1629 }
1630 
1631 #ifndef ACPI_USE_LOCAL_CACHE
1632 
1633 /*******************************************************************************
1634  *
1635  * FUNCTION:    acpi_os_create_cache
1636  *
1637  * PARAMETERS:  name      - Ascii name for the cache
1638  *              size      - Size of each cached object
1639  *              depth     - Maximum depth of the cache (in objects) <ignored>
1640  *              cache     - Where the new cache object is returned
1641  *
1642  * RETURN:      status
1643  *
1644  * DESCRIPTION: Create a cache object
1645  *
1646  ******************************************************************************/
1647 
1648 acpi_status
1649 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1650 {
1651 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1652 	if (*cache == NULL)
1653 		return AE_ERROR;
1654 	else
1655 		return AE_OK;
1656 }
1657 
1658 /*******************************************************************************
1659  *
1660  * FUNCTION:    acpi_os_purge_cache
1661  *
1662  * PARAMETERS:  Cache           - Handle to cache object
1663  *
1664  * RETURN:      Status
1665  *
1666  * DESCRIPTION: Free all objects within the requested cache.
1667  *
1668  ******************************************************************************/
1669 
1670 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1671 {
1672 	kmem_cache_shrink(cache);
1673 	return (AE_OK);
1674 }
1675 
1676 /*******************************************************************************
1677  *
1678  * FUNCTION:    acpi_os_delete_cache
1679  *
1680  * PARAMETERS:  Cache           - Handle to cache object
1681  *
1682  * RETURN:      Status
1683  *
1684  * DESCRIPTION: Free all objects within the requested cache and delete the
1685  *              cache object.
1686  *
1687  ******************************************************************************/
1688 
1689 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1690 {
1691 	kmem_cache_destroy(cache);
1692 	return (AE_OK);
1693 }
1694 
1695 /*******************************************************************************
1696  *
1697  * FUNCTION:    acpi_os_release_object
1698  *
1699  * PARAMETERS:  Cache       - Handle to cache object
1700  *              Object      - The object to be released
1701  *
1702  * RETURN:      None
1703  *
1704  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1705  *              the object is deleted.
1706  *
1707  ******************************************************************************/
1708 
1709 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1710 {
1711 	kmem_cache_free(cache, object);
1712 	return (AE_OK);
1713 }
1714 #endif
1715 
1716 static int __init acpi_no_static_ssdt_setup(char *s)
1717 {
1718 	acpi_gbl_disable_ssdt_table_install = TRUE;
1719 	pr_info("Static SSDT installation disabled\n");
1720 
1721 	return 0;
1722 }
1723 
1724 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1725 
1726 static int __init acpi_disable_return_repair(char *s)
1727 {
1728 	pr_notice("Predefined validation mechanism disabled\n");
1729 	acpi_gbl_disable_auto_repair = TRUE;
1730 
1731 	return 1;
1732 }
1733 
1734 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1735 
1736 acpi_status __init acpi_os_initialize(void)
1737 {
1738 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1739 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1740 
1741 	acpi_gbl_xgpe0_block_logical_address =
1742 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1743 	acpi_gbl_xgpe1_block_logical_address =
1744 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1745 
1746 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1747 		/*
1748 		 * Use acpi_os_map_generic_address to pre-map the reset
1749 		 * register if it's in system memory.
1750 		 */
1751 		void *rv;
1752 
1753 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1754 		pr_debug("%s: Reset register mapping %s\n", __func__,
1755 			 rv ? "successful" : "failed");
1756 	}
1757 	acpi_os_initialized = true;
1758 
1759 	return AE_OK;
1760 }
1761 
1762 acpi_status __init acpi_os_initialize1(void)
1763 {
1764 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1765 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1766 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1767 	BUG_ON(!kacpid_wq);
1768 	BUG_ON(!kacpi_notify_wq);
1769 	BUG_ON(!kacpi_hotplug_wq);
1770 	acpi_osi_init();
1771 	return AE_OK;
1772 }
1773 
1774 acpi_status acpi_os_terminate(void)
1775 {
1776 	if (acpi_irq_handler) {
1777 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1778 						 acpi_irq_handler);
1779 	}
1780 
1781 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1782 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1783 	acpi_gbl_xgpe0_block_logical_address = 0UL;
1784 	acpi_gbl_xgpe1_block_logical_address = 0UL;
1785 
1786 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1787 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1788 
1789 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1790 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1791 
1792 	destroy_workqueue(kacpid_wq);
1793 	destroy_workqueue(kacpi_notify_wq);
1794 	destroy_workqueue(kacpi_hotplug_wq);
1795 
1796 	return AE_OK;
1797 }
1798 
1799 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1800 				  u32 pm1b_control)
1801 {
1802 	int rc = 0;
1803 	if (__acpi_os_prepare_sleep)
1804 		rc = __acpi_os_prepare_sleep(sleep_state,
1805 					     pm1a_control, pm1b_control);
1806 	if (rc < 0)
1807 		return AE_ERROR;
1808 	else if (rc > 0)
1809 		return AE_CTRL_TERMINATE;
1810 
1811 	return AE_OK;
1812 }
1813 
1814 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1815 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1816 {
1817 	__acpi_os_prepare_sleep = func;
1818 }
1819 
1820 #if (ACPI_REDUCED_HARDWARE)
1821 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1822 				  u32 val_b)
1823 {
1824 	int rc = 0;
1825 	if (__acpi_os_prepare_extended_sleep)
1826 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1827 					     val_a, val_b);
1828 	if (rc < 0)
1829 		return AE_ERROR;
1830 	else if (rc > 0)
1831 		return AE_CTRL_TERMINATE;
1832 
1833 	return AE_OK;
1834 }
1835 #else
1836 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1837 				  u32 val_b)
1838 {
1839 	return AE_OK;
1840 }
1841 #endif
1842 
1843 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1844 			       u32 val_a, u32 val_b))
1845 {
1846 	__acpi_os_prepare_extended_sleep = func;
1847 }
1848 
1849 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1850 				u32 reg_a_value, u32 reg_b_value)
1851 {
1852 	acpi_status status;
1853 
1854 	if (acpi_gbl_reduced_hardware)
1855 		status = acpi_os_prepare_extended_sleep(sleep_state,
1856 							reg_a_value,
1857 							reg_b_value);
1858 	else
1859 		status = acpi_os_prepare_sleep(sleep_state,
1860 					       reg_a_value, reg_b_value);
1861 	return status;
1862 }
1863