xref: /openbmc/linux/drivers/acpi/osl.c (revision 6ee73861)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/pci.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <linux/acpi.h>
41 #include <linux/efi.h>
42 #include <linux/ioport.h>
43 #include <linux/list.h>
44 #include <linux/jiffies.h>
45 #include <linux/semaphore.h>
46 
47 #include <asm/io.h>
48 #include <asm/uaccess.h>
49 
50 #include <acpi/acpi.h>
51 #include <acpi/acpi_bus.h>
52 #include <acpi/processor.h>
53 
54 #define _COMPONENT		ACPI_OS_SERVICES
55 ACPI_MODULE_NAME("osl");
56 #define PREFIX		"ACPI: "
57 struct acpi_os_dpc {
58 	acpi_osd_exec_callback function;
59 	void *context;
60 	struct work_struct work;
61 	int wait;
62 };
63 
64 #ifdef CONFIG_ACPI_CUSTOM_DSDT
65 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
66 #endif
67 
68 #ifdef ENABLE_DEBUGGER
69 #include <linux/kdb.h>
70 
71 /* stuff for debugger support */
72 int acpi_in_debugger;
73 EXPORT_SYMBOL(acpi_in_debugger);
74 
75 extern char line_buf[80];
76 #endif				/*ENABLE_DEBUGGER */
77 
78 static unsigned int acpi_irq_irq;
79 static acpi_osd_handler acpi_irq_handler;
80 static void *acpi_irq_context;
81 static struct workqueue_struct *kacpid_wq;
82 static struct workqueue_struct *kacpi_notify_wq;
83 static struct workqueue_struct *kacpi_hotplug_wq;
84 
85 struct acpi_res_list {
86 	resource_size_t start;
87 	resource_size_t end;
88 	acpi_adr_space_type resource_type; /* IO port, System memory, ...*/
89 	char name[5];   /* only can have a length of 4 chars, make use of this
90 			   one instead of res->name, no need to kalloc then */
91 	struct list_head resource_list;
92 	int count;
93 };
94 
95 static LIST_HEAD(resource_list_head);
96 static DEFINE_SPINLOCK(acpi_res_lock);
97 
98 #define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
99 static char osi_additional_string[OSI_STRING_LENGTH_MAX];
100 
101 /*
102  * The story of _OSI(Linux)
103  *
104  * From pre-history through Linux-2.6.22,
105  * Linux responded TRUE upon a BIOS OSI(Linux) query.
106  *
107  * Unfortunately, reference BIOS writers got wind of this
108  * and put OSI(Linux) in their example code, quickly exposing
109  * this string as ill-conceived and opening the door to
110  * an un-bounded number of BIOS incompatibilities.
111  *
112  * For example, OSI(Linux) was used on resume to re-POST a
113  * video card on one system, because Linux at that time
114  * could not do a speedy restore in its native driver.
115  * But then upon gaining quick native restore capability,
116  * Linux has no way to tell the BIOS to skip the time-consuming
117  * POST -- putting Linux at a permanent performance disadvantage.
118  * On another system, the BIOS writer used OSI(Linux)
119  * to infer native OS support for IPMI!  On other systems,
120  * OSI(Linux) simply got in the way of Linux claiming to
121  * be compatible with other operating systems, exposing
122  * BIOS issues such as skipped device initialization.
123  *
124  * So "Linux" turned out to be a really poor chose of
125  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
126  *
127  * BIOS writers should NOT query _OSI(Linux) on future systems.
128  * Linux will complain on the console when it sees it, and return FALSE.
129  * To get Linux to return TRUE for your system  will require
130  * a kernel source update to add a DMI entry,
131  * or boot with "acpi_osi=Linux"
132  */
133 
134 static struct osi_linux {
135 	unsigned int	enable:1;
136 	unsigned int	dmi:1;
137 	unsigned int	cmdline:1;
138 	unsigned int	known:1;
139 } osi_linux = { 0, 0, 0, 0};
140 
141 static void __init acpi_request_region (struct acpi_generic_address *addr,
142 	unsigned int length, char *desc)
143 {
144 	struct resource *res;
145 
146 	if (!addr->address || !length)
147 		return;
148 
149 	if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
150 		res = request_region(addr->address, length, desc);
151 	else if (addr->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
152 		res = request_mem_region(addr->address, length, desc);
153 }
154 
155 static int __init acpi_reserve_resources(void)
156 {
157 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
158 		"ACPI PM1a_EVT_BLK");
159 
160 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
161 		"ACPI PM1b_EVT_BLK");
162 
163 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
164 		"ACPI PM1a_CNT_BLK");
165 
166 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
167 		"ACPI PM1b_CNT_BLK");
168 
169 	if (acpi_gbl_FADT.pm_timer_length == 4)
170 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
171 
172 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
173 		"ACPI PM2_CNT_BLK");
174 
175 	/* Length of GPE blocks must be a non-negative multiple of 2 */
176 
177 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
178 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
179 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
180 
181 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
182 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
183 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
184 
185 	return 0;
186 }
187 device_initcall(acpi_reserve_resources);
188 
189 acpi_status __init acpi_os_initialize(void)
190 {
191 	return AE_OK;
192 }
193 
194 static void bind_to_cpu0(struct work_struct *work)
195 {
196 	set_cpus_allowed_ptr(current, cpumask_of(0));
197 	kfree(work);
198 }
199 
200 static void bind_workqueue(struct workqueue_struct *wq)
201 {
202 	struct work_struct *work;
203 
204 	work = kzalloc(sizeof(struct work_struct), GFP_KERNEL);
205 	INIT_WORK(work, bind_to_cpu0);
206 	queue_work(wq, work);
207 }
208 
209 acpi_status acpi_os_initialize1(void)
210 {
211 	/*
212 	 * On some machines, a software-initiated SMI causes corruption unless
213 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
214 	 * typically it's done in GPE-related methods that are run via
215 	 * workqueues, so we can avoid the known corruption cases by binding
216 	 * the workqueues to CPU 0.
217 	 */
218 	kacpid_wq = create_singlethread_workqueue("kacpid");
219 	bind_workqueue(kacpid_wq);
220 	kacpi_notify_wq = create_singlethread_workqueue("kacpi_notify");
221 	bind_workqueue(kacpi_notify_wq);
222 	kacpi_hotplug_wq = create_singlethread_workqueue("kacpi_hotplug");
223 	bind_workqueue(kacpi_hotplug_wq);
224 	BUG_ON(!kacpid_wq);
225 	BUG_ON(!kacpi_notify_wq);
226 	BUG_ON(!kacpi_hotplug_wq);
227 	return AE_OK;
228 }
229 
230 acpi_status acpi_os_terminate(void)
231 {
232 	if (acpi_irq_handler) {
233 		acpi_os_remove_interrupt_handler(acpi_irq_irq,
234 						 acpi_irq_handler);
235 	}
236 
237 	destroy_workqueue(kacpid_wq);
238 	destroy_workqueue(kacpi_notify_wq);
239 	destroy_workqueue(kacpi_hotplug_wq);
240 
241 	return AE_OK;
242 }
243 
244 void acpi_os_printf(const char *fmt, ...)
245 {
246 	va_list args;
247 	va_start(args, fmt);
248 	acpi_os_vprintf(fmt, args);
249 	va_end(args);
250 }
251 
252 void acpi_os_vprintf(const char *fmt, va_list args)
253 {
254 	static char buffer[512];
255 
256 	vsprintf(buffer, fmt, args);
257 
258 #ifdef ENABLE_DEBUGGER
259 	if (acpi_in_debugger) {
260 		kdb_printf("%s", buffer);
261 	} else {
262 		printk(KERN_CONT "%s", buffer);
263 	}
264 #else
265 	printk(KERN_CONT "%s", buffer);
266 #endif
267 }
268 
269 acpi_physical_address __init acpi_os_get_root_pointer(void)
270 {
271 	if (efi_enabled) {
272 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
273 			return efi.acpi20;
274 		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
275 			return efi.acpi;
276 		else {
277 			printk(KERN_ERR PREFIX
278 			       "System description tables not found\n");
279 			return 0;
280 		}
281 	} else {
282 		acpi_physical_address pa = 0;
283 
284 		acpi_find_root_pointer(&pa);
285 		return pa;
286 	}
287 }
288 
289 void __iomem *__init_refok
290 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
291 {
292 	if (phys > ULONG_MAX) {
293 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
294 		return NULL;
295 	}
296 	if (acpi_gbl_permanent_mmap)
297 		/*
298 		* ioremap checks to ensure this is in reserved space
299 		*/
300 		return ioremap((unsigned long)phys, size);
301 	else
302 		return __acpi_map_table((unsigned long)phys, size);
303 }
304 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
305 
306 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
307 {
308 	if (acpi_gbl_permanent_mmap)
309 		iounmap(virt);
310 	else
311 		__acpi_unmap_table(virt, size);
312 }
313 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
314 
315 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
316 {
317 	if (!acpi_gbl_permanent_mmap)
318 		__acpi_unmap_table(virt, size);
319 }
320 
321 #ifdef ACPI_FUTURE_USAGE
322 acpi_status
323 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
324 {
325 	if (!phys || !virt)
326 		return AE_BAD_PARAMETER;
327 
328 	*phys = virt_to_phys(virt);
329 
330 	return AE_OK;
331 }
332 #endif
333 
334 #define ACPI_MAX_OVERRIDE_LEN 100
335 
336 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
337 
338 acpi_status
339 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
340 			    acpi_string * new_val)
341 {
342 	if (!init_val || !new_val)
343 		return AE_BAD_PARAMETER;
344 
345 	*new_val = NULL;
346 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
347 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
348 		       acpi_os_name);
349 		*new_val = acpi_os_name;
350 	}
351 
352 	return AE_OK;
353 }
354 
355 acpi_status
356 acpi_os_table_override(struct acpi_table_header * existing_table,
357 		       struct acpi_table_header ** new_table)
358 {
359 	if (!existing_table || !new_table)
360 		return AE_BAD_PARAMETER;
361 
362 	*new_table = NULL;
363 
364 #ifdef CONFIG_ACPI_CUSTOM_DSDT
365 	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
366 		*new_table = (struct acpi_table_header *)AmlCode;
367 #endif
368 	if (*new_table != NULL) {
369 		printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
370 			   "this is unsafe: tainting kernel\n",
371 		       existing_table->signature,
372 		       existing_table->oem_table_id);
373 		add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
374 	}
375 	return AE_OK;
376 }
377 
378 static irqreturn_t acpi_irq(int irq, void *dev_id)
379 {
380 	u32 handled;
381 
382 	handled = (*acpi_irq_handler) (acpi_irq_context);
383 
384 	if (handled) {
385 		acpi_irq_handled++;
386 		return IRQ_HANDLED;
387 	} else {
388 		acpi_irq_not_handled++;
389 		return IRQ_NONE;
390 	}
391 }
392 
393 acpi_status
394 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
395 				  void *context)
396 {
397 	unsigned int irq;
398 
399 	acpi_irq_stats_init();
400 
401 	/*
402 	 * Ignore the GSI from the core, and use the value in our copy of the
403 	 * FADT. It may not be the same if an interrupt source override exists
404 	 * for the SCI.
405 	 */
406 	gsi = acpi_gbl_FADT.sci_interrupt;
407 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
408 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
409 		       gsi);
410 		return AE_OK;
411 	}
412 
413 	acpi_irq_handler = handler;
414 	acpi_irq_context = context;
415 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
416 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
417 		return AE_NOT_ACQUIRED;
418 	}
419 	acpi_irq_irq = irq;
420 
421 	return AE_OK;
422 }
423 
424 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
425 {
426 	if (irq) {
427 		free_irq(irq, acpi_irq);
428 		acpi_irq_handler = NULL;
429 		acpi_irq_irq = 0;
430 	}
431 
432 	return AE_OK;
433 }
434 
435 /*
436  * Running in interpreter thread context, safe to sleep
437  */
438 
439 void acpi_os_sleep(acpi_integer ms)
440 {
441 	schedule_timeout_interruptible(msecs_to_jiffies(ms));
442 }
443 
444 void acpi_os_stall(u32 us)
445 {
446 	while (us) {
447 		u32 delay = 1000;
448 
449 		if (delay > us)
450 			delay = us;
451 		udelay(delay);
452 		touch_nmi_watchdog();
453 		us -= delay;
454 	}
455 }
456 
457 /*
458  * Support ACPI 3.0 AML Timer operand
459  * Returns 64-bit free-running, monotonically increasing timer
460  * with 100ns granularity
461  */
462 u64 acpi_os_get_timer(void)
463 {
464 	static u64 t;
465 
466 #ifdef	CONFIG_HPET
467 	/* TBD: use HPET if available */
468 #endif
469 
470 #ifdef	CONFIG_X86_PM_TIMER
471 	/* TBD: default to PM timer if HPET was not available */
472 #endif
473 	if (!t)
474 		printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
475 
476 	return ++t;
477 }
478 
479 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
480 {
481 	u32 dummy;
482 
483 	if (!value)
484 		value = &dummy;
485 
486 	*value = 0;
487 	if (width <= 8) {
488 		*(u8 *) value = inb(port);
489 	} else if (width <= 16) {
490 		*(u16 *) value = inw(port);
491 	} else if (width <= 32) {
492 		*(u32 *) value = inl(port);
493 	} else {
494 		BUG();
495 	}
496 
497 	return AE_OK;
498 }
499 
500 EXPORT_SYMBOL(acpi_os_read_port);
501 
502 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
503 {
504 	if (width <= 8) {
505 		outb(value, port);
506 	} else if (width <= 16) {
507 		outw(value, port);
508 	} else if (width <= 32) {
509 		outl(value, port);
510 	} else {
511 		BUG();
512 	}
513 
514 	return AE_OK;
515 }
516 
517 EXPORT_SYMBOL(acpi_os_write_port);
518 
519 acpi_status
520 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
521 {
522 	u32 dummy;
523 	void __iomem *virt_addr;
524 
525 	virt_addr = ioremap(phys_addr, width);
526 	if (!value)
527 		value = &dummy;
528 
529 	switch (width) {
530 	case 8:
531 		*(u8 *) value = readb(virt_addr);
532 		break;
533 	case 16:
534 		*(u16 *) value = readw(virt_addr);
535 		break;
536 	case 32:
537 		*(u32 *) value = readl(virt_addr);
538 		break;
539 	default:
540 		BUG();
541 	}
542 
543 	iounmap(virt_addr);
544 
545 	return AE_OK;
546 }
547 
548 acpi_status
549 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
550 {
551 	void __iomem *virt_addr;
552 
553 	virt_addr = ioremap(phys_addr, width);
554 
555 	switch (width) {
556 	case 8:
557 		writeb(value, virt_addr);
558 		break;
559 	case 16:
560 		writew(value, virt_addr);
561 		break;
562 	case 32:
563 		writel(value, virt_addr);
564 		break;
565 	default:
566 		BUG();
567 	}
568 
569 	iounmap(virt_addr);
570 
571 	return AE_OK;
572 }
573 
574 acpi_status
575 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
576 			       u32 *value, u32 width)
577 {
578 	int result, size;
579 
580 	if (!value)
581 		return AE_BAD_PARAMETER;
582 
583 	switch (width) {
584 	case 8:
585 		size = 1;
586 		break;
587 	case 16:
588 		size = 2;
589 		break;
590 	case 32:
591 		size = 4;
592 		break;
593 	default:
594 		return AE_ERROR;
595 	}
596 
597 	result = raw_pci_read(pci_id->segment, pci_id->bus,
598 				PCI_DEVFN(pci_id->device, pci_id->function),
599 				reg, size, value);
600 
601 	return (result ? AE_ERROR : AE_OK);
602 }
603 
604 acpi_status
605 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
606 				acpi_integer value, u32 width)
607 {
608 	int result, size;
609 
610 	switch (width) {
611 	case 8:
612 		size = 1;
613 		break;
614 	case 16:
615 		size = 2;
616 		break;
617 	case 32:
618 		size = 4;
619 		break;
620 	default:
621 		return AE_ERROR;
622 	}
623 
624 	result = raw_pci_write(pci_id->segment, pci_id->bus,
625 				PCI_DEVFN(pci_id->device, pci_id->function),
626 				reg, size, value);
627 
628 	return (result ? AE_ERROR : AE_OK);
629 }
630 
631 /* TODO: Change code to take advantage of driver model more */
632 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,	/* upper bound  */
633 				    acpi_handle chandle,	/* current node */
634 				    struct acpi_pci_id **id,
635 				    int *is_bridge, u8 * bus_number)
636 {
637 	acpi_handle handle;
638 	struct acpi_pci_id *pci_id = *id;
639 	acpi_status status;
640 	unsigned long long temp;
641 	acpi_object_type type;
642 
643 	acpi_get_parent(chandle, &handle);
644 	if (handle != rhandle) {
645 		acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
646 					bus_number);
647 
648 		status = acpi_get_type(handle, &type);
649 		if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
650 			return;
651 
652 		status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
653 					  &temp);
654 		if (ACPI_SUCCESS(status)) {
655 			u32 val;
656 			pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
657 			pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
658 
659 			if (*is_bridge)
660 				pci_id->bus = *bus_number;
661 
662 			/* any nicer way to get bus number of bridge ? */
663 			status =
664 			    acpi_os_read_pci_configuration(pci_id, 0x0e, &val,
665 							   8);
666 			if (ACPI_SUCCESS(status)
667 			    && ((val & 0x7f) == 1 || (val & 0x7f) == 2)) {
668 				status =
669 				    acpi_os_read_pci_configuration(pci_id, 0x18,
670 								   &val, 8);
671 				if (!ACPI_SUCCESS(status)) {
672 					/* Certainly broken...  FIX ME */
673 					return;
674 				}
675 				*is_bridge = 1;
676 				pci_id->bus = val;
677 				status =
678 				    acpi_os_read_pci_configuration(pci_id, 0x19,
679 								   &val, 8);
680 				if (ACPI_SUCCESS(status)) {
681 					*bus_number = val;
682 				}
683 			} else
684 				*is_bridge = 0;
685 		}
686 	}
687 }
688 
689 void acpi_os_derive_pci_id(acpi_handle rhandle,	/* upper bound  */
690 			   acpi_handle chandle,	/* current node */
691 			   struct acpi_pci_id **id)
692 {
693 	int is_bridge = 1;
694 	u8 bus_number = (*id)->bus;
695 
696 	acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
697 }
698 
699 static void acpi_os_execute_deferred(struct work_struct *work)
700 {
701 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
702 
703 	if (dpc->wait)
704 		acpi_os_wait_events_complete(NULL);
705 
706 	dpc->function(dpc->context);
707 	kfree(dpc);
708 }
709 
710 /*******************************************************************************
711  *
712  * FUNCTION:    acpi_os_execute
713  *
714  * PARAMETERS:  Type               - Type of the callback
715  *              Function           - Function to be executed
716  *              Context            - Function parameters
717  *
718  * RETURN:      Status
719  *
720  * DESCRIPTION: Depending on type, either queues function for deferred execution or
721  *              immediately executes function on a separate thread.
722  *
723  ******************************************************************************/
724 
725 static acpi_status __acpi_os_execute(acpi_execute_type type,
726 	acpi_osd_exec_callback function, void *context, int hp)
727 {
728 	acpi_status status = AE_OK;
729 	struct acpi_os_dpc *dpc;
730 	struct workqueue_struct *queue;
731 	int ret;
732 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
733 			  "Scheduling function [%p(%p)] for deferred execution.\n",
734 			  function, context));
735 
736 	/*
737 	 * Allocate/initialize DPC structure.  Note that this memory will be
738 	 * freed by the callee.  The kernel handles the work_struct list  in a
739 	 * way that allows us to also free its memory inside the callee.
740 	 * Because we may want to schedule several tasks with different
741 	 * parameters we can't use the approach some kernel code uses of
742 	 * having a static work_struct.
743 	 */
744 
745 	dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
746 	if (!dpc)
747 		return AE_NO_MEMORY;
748 
749 	dpc->function = function;
750 	dpc->context = context;
751 
752 	/*
753 	 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
754 	 * because the hotplug code may call driver .remove() functions,
755 	 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
756 	 * to flush these workqueues.
757 	 */
758 	queue = hp ? kacpi_hotplug_wq :
759 		(type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
760 	dpc->wait = hp ? 1 : 0;
761 	INIT_WORK(&dpc->work, acpi_os_execute_deferred);
762 	ret = queue_work(queue, &dpc->work);
763 
764 	if (!ret) {
765 		printk(KERN_ERR PREFIX
766 			  "Call to queue_work() failed.\n");
767 		status = AE_ERROR;
768 		kfree(dpc);
769 	}
770 	return status;
771 }
772 
773 acpi_status acpi_os_execute(acpi_execute_type type,
774 			    acpi_osd_exec_callback function, void *context)
775 {
776 	return __acpi_os_execute(type, function, context, 0);
777 }
778 EXPORT_SYMBOL(acpi_os_execute);
779 
780 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
781 	void *context)
782 {
783 	return __acpi_os_execute(0, function, context, 1);
784 }
785 
786 void acpi_os_wait_events_complete(void *context)
787 {
788 	flush_workqueue(kacpid_wq);
789 	flush_workqueue(kacpi_notify_wq);
790 }
791 
792 EXPORT_SYMBOL(acpi_os_wait_events_complete);
793 
794 /*
795  * Allocate the memory for a spinlock and initialize it.
796  */
797 acpi_status acpi_os_create_lock(acpi_spinlock * handle)
798 {
799 	spin_lock_init(*handle);
800 
801 	return AE_OK;
802 }
803 
804 /*
805  * Deallocate the memory for a spinlock.
806  */
807 void acpi_os_delete_lock(acpi_spinlock handle)
808 {
809 	return;
810 }
811 
812 acpi_status
813 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
814 {
815 	struct semaphore *sem = NULL;
816 
817 	sem = acpi_os_allocate(sizeof(struct semaphore));
818 	if (!sem)
819 		return AE_NO_MEMORY;
820 	memset(sem, 0, sizeof(struct semaphore));
821 
822 	sema_init(sem, initial_units);
823 
824 	*handle = (acpi_handle *) sem;
825 
826 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
827 			  *handle, initial_units));
828 
829 	return AE_OK;
830 }
831 
832 /*
833  * TODO: A better way to delete semaphores?  Linux doesn't have a
834  * 'delete_semaphore()' function -- may result in an invalid
835  * pointer dereference for non-synchronized consumers.	Should
836  * we at least check for blocked threads and signal/cancel them?
837  */
838 
839 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
840 {
841 	struct semaphore *sem = (struct semaphore *)handle;
842 
843 	if (!sem)
844 		return AE_BAD_PARAMETER;
845 
846 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
847 
848 	BUG_ON(!list_empty(&sem->wait_list));
849 	kfree(sem);
850 	sem = NULL;
851 
852 	return AE_OK;
853 }
854 
855 /*
856  * TODO: Support for units > 1?
857  */
858 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
859 {
860 	acpi_status status = AE_OK;
861 	struct semaphore *sem = (struct semaphore *)handle;
862 	long jiffies;
863 	int ret = 0;
864 
865 	if (!sem || (units < 1))
866 		return AE_BAD_PARAMETER;
867 
868 	if (units > 1)
869 		return AE_SUPPORT;
870 
871 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
872 			  handle, units, timeout));
873 
874 	if (timeout == ACPI_WAIT_FOREVER)
875 		jiffies = MAX_SCHEDULE_TIMEOUT;
876 	else
877 		jiffies = msecs_to_jiffies(timeout);
878 
879 	ret = down_timeout(sem, jiffies);
880 	if (ret)
881 		status = AE_TIME;
882 
883 	if (ACPI_FAILURE(status)) {
884 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
885 				  "Failed to acquire semaphore[%p|%d|%d], %s",
886 				  handle, units, timeout,
887 				  acpi_format_exception(status)));
888 	} else {
889 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
890 				  "Acquired semaphore[%p|%d|%d]", handle,
891 				  units, timeout));
892 	}
893 
894 	return status;
895 }
896 
897 /*
898  * TODO: Support for units > 1?
899  */
900 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
901 {
902 	struct semaphore *sem = (struct semaphore *)handle;
903 
904 	if (!sem || (units < 1))
905 		return AE_BAD_PARAMETER;
906 
907 	if (units > 1)
908 		return AE_SUPPORT;
909 
910 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
911 			  units));
912 
913 	up(sem);
914 
915 	return AE_OK;
916 }
917 
918 #ifdef ACPI_FUTURE_USAGE
919 u32 acpi_os_get_line(char *buffer)
920 {
921 
922 #ifdef ENABLE_DEBUGGER
923 	if (acpi_in_debugger) {
924 		u32 chars;
925 
926 		kdb_read(buffer, sizeof(line_buf));
927 
928 		/* remove the CR kdb includes */
929 		chars = strlen(buffer) - 1;
930 		buffer[chars] = '\0';
931 	}
932 #endif
933 
934 	return 0;
935 }
936 #endif				/*  ACPI_FUTURE_USAGE  */
937 
938 acpi_status acpi_os_signal(u32 function, void *info)
939 {
940 	switch (function) {
941 	case ACPI_SIGNAL_FATAL:
942 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
943 		break;
944 	case ACPI_SIGNAL_BREAKPOINT:
945 		/*
946 		 * AML Breakpoint
947 		 * ACPI spec. says to treat it as a NOP unless
948 		 * you are debugging.  So if/when we integrate
949 		 * AML debugger into the kernel debugger its
950 		 * hook will go here.  But until then it is
951 		 * not useful to print anything on breakpoints.
952 		 */
953 		break;
954 	default:
955 		break;
956 	}
957 
958 	return AE_OK;
959 }
960 
961 static int __init acpi_os_name_setup(char *str)
962 {
963 	char *p = acpi_os_name;
964 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
965 
966 	if (!str || !*str)
967 		return 0;
968 
969 	for (; count-- && str && *str; str++) {
970 		if (isalnum(*str) || *str == ' ' || *str == ':')
971 			*p++ = *str;
972 		else if (*str == '\'' || *str == '"')
973 			continue;
974 		else
975 			break;
976 	}
977 	*p = 0;
978 
979 	return 1;
980 
981 }
982 
983 __setup("acpi_os_name=", acpi_os_name_setup);
984 
985 static void __init set_osi_linux(unsigned int enable)
986 {
987 	if (osi_linux.enable != enable) {
988 		osi_linux.enable = enable;
989 		printk(KERN_NOTICE PREFIX "%sed _OSI(Linux)\n",
990 			enable ? "Add": "Delet");
991 	}
992 	return;
993 }
994 
995 static void __init acpi_cmdline_osi_linux(unsigned int enable)
996 {
997 	osi_linux.cmdline = 1;	/* cmdline set the default */
998 	set_osi_linux(enable);
999 
1000 	return;
1001 }
1002 
1003 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1004 {
1005 	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1006 
1007 	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1008 
1009 	if (enable == -1)
1010 		return;
1011 
1012 	osi_linux.known = 1;	/* DMI knows which OSI(Linux) default needed */
1013 
1014 	set_osi_linux(enable);
1015 
1016 	return;
1017 }
1018 
1019 /*
1020  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1021  *
1022  * empty string disables _OSI
1023  * string starting with '!' disables that string
1024  * otherwise string is added to list, augmenting built-in strings
1025  */
1026 int __init acpi_osi_setup(char *str)
1027 {
1028 	if (str == NULL || *str == '\0') {
1029 		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1030 		acpi_gbl_create_osi_method = FALSE;
1031 	} else if (!strcmp("!Linux", str)) {
1032 		acpi_cmdline_osi_linux(0);	/* !enable */
1033 	} else if (*str == '!') {
1034 		if (acpi_osi_invalidate(++str) == AE_OK)
1035 			printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1036 	} else if (!strcmp("Linux", str)) {
1037 		acpi_cmdline_osi_linux(1);	/* enable */
1038 	} else if (*osi_additional_string == '\0') {
1039 		strncpy(osi_additional_string, str, OSI_STRING_LENGTH_MAX);
1040 		printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1041 	}
1042 
1043 	return 1;
1044 }
1045 
1046 __setup("acpi_osi=", acpi_osi_setup);
1047 
1048 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1049 static int __init acpi_serialize_setup(char *str)
1050 {
1051 	printk(KERN_INFO PREFIX "serialize enabled\n");
1052 
1053 	acpi_gbl_all_methods_serialized = TRUE;
1054 
1055 	return 1;
1056 }
1057 
1058 __setup("acpi_serialize", acpi_serialize_setup);
1059 
1060 /*
1061  * Wake and Run-Time GPES are expected to be separate.
1062  * We disable wake-GPEs at run-time to prevent spurious
1063  * interrupts.
1064  *
1065  * However, if a system exists that shares Wake and
1066  * Run-time events on the same GPE this flag is available
1067  * to tell Linux to keep the wake-time GPEs enabled at run-time.
1068  */
1069 static int __init acpi_wake_gpes_always_on_setup(char *str)
1070 {
1071 	printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1072 
1073 	acpi_gbl_leave_wake_gpes_disabled = FALSE;
1074 
1075 	return 1;
1076 }
1077 
1078 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1079 
1080 /* Check of resource interference between native drivers and ACPI
1081  * OperationRegions (SystemIO and System Memory only).
1082  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1083  * in arbitrary AML code and can interfere with legacy drivers.
1084  * acpi_enforce_resources= can be set to:
1085  *
1086  *   - strict (default) (2)
1087  *     -> further driver trying to access the resources will not load
1088  *   - lax              (1)
1089  *     -> further driver trying to access the resources will load, but you
1090  *     get a system message that something might go wrong...
1091  *
1092  *   - no               (0)
1093  *     -> ACPI Operation Region resources will not be registered
1094  *
1095  */
1096 #define ENFORCE_RESOURCES_STRICT 2
1097 #define ENFORCE_RESOURCES_LAX    1
1098 #define ENFORCE_RESOURCES_NO     0
1099 
1100 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1101 
1102 static int __init acpi_enforce_resources_setup(char *str)
1103 {
1104 	if (str == NULL || *str == '\0')
1105 		return 0;
1106 
1107 	if (!strcmp("strict", str))
1108 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1109 	else if (!strcmp("lax", str))
1110 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1111 	else if (!strcmp("no", str))
1112 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1113 
1114 	return 1;
1115 }
1116 
1117 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1118 
1119 /* Check for resource conflicts between ACPI OperationRegions and native
1120  * drivers */
1121 int acpi_check_resource_conflict(struct resource *res)
1122 {
1123 	struct acpi_res_list *res_list_elem;
1124 	int ioport;
1125 	int clash = 0;
1126 
1127 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1128 		return 0;
1129 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1130 		return 0;
1131 
1132 	ioport = res->flags & IORESOURCE_IO;
1133 
1134 	spin_lock(&acpi_res_lock);
1135 	list_for_each_entry(res_list_elem, &resource_list_head,
1136 			    resource_list) {
1137 		if (ioport && (res_list_elem->resource_type
1138 			       != ACPI_ADR_SPACE_SYSTEM_IO))
1139 			continue;
1140 		if (!ioport && (res_list_elem->resource_type
1141 				!= ACPI_ADR_SPACE_SYSTEM_MEMORY))
1142 			continue;
1143 
1144 		if (res->end < res_list_elem->start
1145 		    || res_list_elem->end < res->start)
1146 			continue;
1147 		clash = 1;
1148 		break;
1149 	}
1150 	spin_unlock(&acpi_res_lock);
1151 
1152 	if (clash) {
1153 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1154 			printk("%sACPI: %s resource %s [0x%llx-0x%llx]"
1155 			       " conflicts with ACPI region %s"
1156 			       " [0x%llx-0x%llx]\n",
1157 			       acpi_enforce_resources == ENFORCE_RESOURCES_LAX
1158 			       ? KERN_WARNING : KERN_ERR,
1159 			       ioport ? "I/O" : "Memory", res->name,
1160 			       (long long) res->start, (long long) res->end,
1161 			       res_list_elem->name,
1162 			       (long long) res_list_elem->start,
1163 			       (long long) res_list_elem->end);
1164 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1165 				printk(KERN_NOTICE "ACPI: This conflict may"
1166 				       " cause random problems and system"
1167 				       " instability\n");
1168 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1169 			       " for this device, you should use it instead of"
1170 			       " the native driver\n");
1171 		}
1172 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1173 			return -EBUSY;
1174 	}
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL(acpi_check_resource_conflict);
1178 
1179 int acpi_check_region(resource_size_t start, resource_size_t n,
1180 		      const char *name)
1181 {
1182 	struct resource res = {
1183 		.start = start,
1184 		.end   = start + n - 1,
1185 		.name  = name,
1186 		.flags = IORESOURCE_IO,
1187 	};
1188 
1189 	return acpi_check_resource_conflict(&res);
1190 }
1191 EXPORT_SYMBOL(acpi_check_region);
1192 
1193 int acpi_check_mem_region(resource_size_t start, resource_size_t n,
1194 		      const char *name)
1195 {
1196 	struct resource res = {
1197 		.start = start,
1198 		.end   = start + n - 1,
1199 		.name  = name,
1200 		.flags = IORESOURCE_MEM,
1201 	};
1202 
1203 	return acpi_check_resource_conflict(&res);
1204 
1205 }
1206 EXPORT_SYMBOL(acpi_check_mem_region);
1207 
1208 /*
1209  * Acquire a spinlock.
1210  *
1211  * handle is a pointer to the spinlock_t.
1212  */
1213 
1214 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1215 {
1216 	acpi_cpu_flags flags;
1217 	spin_lock_irqsave(lockp, flags);
1218 	return flags;
1219 }
1220 
1221 /*
1222  * Release a spinlock. See above.
1223  */
1224 
1225 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1226 {
1227 	spin_unlock_irqrestore(lockp, flags);
1228 }
1229 
1230 #ifndef ACPI_USE_LOCAL_CACHE
1231 
1232 /*******************************************************************************
1233  *
1234  * FUNCTION:    acpi_os_create_cache
1235  *
1236  * PARAMETERS:  name      - Ascii name for the cache
1237  *              size      - Size of each cached object
1238  *              depth     - Maximum depth of the cache (in objects) <ignored>
1239  *              cache     - Where the new cache object is returned
1240  *
1241  * RETURN:      status
1242  *
1243  * DESCRIPTION: Create a cache object
1244  *
1245  ******************************************************************************/
1246 
1247 acpi_status
1248 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1249 {
1250 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1251 	if (*cache == NULL)
1252 		return AE_ERROR;
1253 	else
1254 		return AE_OK;
1255 }
1256 
1257 /*******************************************************************************
1258  *
1259  * FUNCTION:    acpi_os_purge_cache
1260  *
1261  * PARAMETERS:  Cache           - Handle to cache object
1262  *
1263  * RETURN:      Status
1264  *
1265  * DESCRIPTION: Free all objects within the requested cache.
1266  *
1267  ******************************************************************************/
1268 
1269 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1270 {
1271 	kmem_cache_shrink(cache);
1272 	return (AE_OK);
1273 }
1274 
1275 /*******************************************************************************
1276  *
1277  * FUNCTION:    acpi_os_delete_cache
1278  *
1279  * PARAMETERS:  Cache           - Handle to cache object
1280  *
1281  * RETURN:      Status
1282  *
1283  * DESCRIPTION: Free all objects within the requested cache and delete the
1284  *              cache object.
1285  *
1286  ******************************************************************************/
1287 
1288 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1289 {
1290 	kmem_cache_destroy(cache);
1291 	return (AE_OK);
1292 }
1293 
1294 /*******************************************************************************
1295  *
1296  * FUNCTION:    acpi_os_release_object
1297  *
1298  * PARAMETERS:  Cache       - Handle to cache object
1299  *              Object      - The object to be released
1300  *
1301  * RETURN:      None
1302  *
1303  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1304  *              the object is deleted.
1305  *
1306  ******************************************************************************/
1307 
1308 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1309 {
1310 	kmem_cache_free(cache, object);
1311 	return (AE_OK);
1312 }
1313 
1314 /******************************************************************************
1315  *
1316  * FUNCTION:    acpi_os_validate_interface
1317  *
1318  * PARAMETERS:  interface           - Requested interface to be validated
1319  *
1320  * RETURN:      AE_OK if interface is supported, AE_SUPPORT otherwise
1321  *
1322  * DESCRIPTION: Match an interface string to the interfaces supported by the
1323  *              host. Strings originate from an AML call to the _OSI method.
1324  *
1325  *****************************************************************************/
1326 
1327 acpi_status
1328 acpi_os_validate_interface (char *interface)
1329 {
1330 	if (!strncmp(osi_additional_string, interface, OSI_STRING_LENGTH_MAX))
1331 		return AE_OK;
1332 	if (!strcmp("Linux", interface)) {
1333 
1334 		printk(KERN_NOTICE PREFIX
1335 			"BIOS _OSI(Linux) query %s%s\n",
1336 			osi_linux.enable ? "honored" : "ignored",
1337 			osi_linux.cmdline ? " via cmdline" :
1338 			osi_linux.dmi ? " via DMI" : "");
1339 
1340 		if (osi_linux.enable)
1341 			return AE_OK;
1342 	}
1343 	return AE_SUPPORT;
1344 }
1345 
1346 static inline int acpi_res_list_add(struct acpi_res_list *res)
1347 {
1348 	struct acpi_res_list *res_list_elem;
1349 
1350 	list_for_each_entry(res_list_elem, &resource_list_head,
1351 			    resource_list) {
1352 
1353 		if (res->resource_type == res_list_elem->resource_type &&
1354 		    res->start == res_list_elem->start &&
1355 		    res->end == res_list_elem->end) {
1356 
1357 			/*
1358 			 * The Region(addr,len) already exist in the list,
1359 			 * just increase the count
1360 			 */
1361 
1362 			res_list_elem->count++;
1363 			return 0;
1364 		}
1365 	}
1366 
1367 	res->count = 1;
1368 	list_add(&res->resource_list, &resource_list_head);
1369 	return 1;
1370 }
1371 
1372 static inline void acpi_res_list_del(struct acpi_res_list *res)
1373 {
1374 	struct acpi_res_list *res_list_elem;
1375 
1376 	list_for_each_entry(res_list_elem, &resource_list_head,
1377 			    resource_list) {
1378 
1379 		if (res->resource_type == res_list_elem->resource_type &&
1380 		    res->start == res_list_elem->start &&
1381 		    res->end == res_list_elem->end) {
1382 
1383 			/*
1384 			 * If the res count is decreased to 0,
1385 			 * remove and free it
1386 			 */
1387 
1388 			if (--res_list_elem->count == 0) {
1389 				list_del(&res_list_elem->resource_list);
1390 				kfree(res_list_elem);
1391 			}
1392 			return;
1393 		}
1394 	}
1395 }
1396 
1397 acpi_status
1398 acpi_os_invalidate_address(
1399     u8                   space_id,
1400     acpi_physical_address   address,
1401     acpi_size               length)
1402 {
1403 	struct acpi_res_list res;
1404 
1405 	switch (space_id) {
1406 	case ACPI_ADR_SPACE_SYSTEM_IO:
1407 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1408 		/* Only interference checks against SystemIO and SytemMemory
1409 		   are needed */
1410 		res.start = address;
1411 		res.end = address + length - 1;
1412 		res.resource_type = space_id;
1413 		spin_lock(&acpi_res_lock);
1414 		acpi_res_list_del(&res);
1415 		spin_unlock(&acpi_res_lock);
1416 		break;
1417 	case ACPI_ADR_SPACE_PCI_CONFIG:
1418 	case ACPI_ADR_SPACE_EC:
1419 	case ACPI_ADR_SPACE_SMBUS:
1420 	case ACPI_ADR_SPACE_CMOS:
1421 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1422 	case ACPI_ADR_SPACE_DATA_TABLE:
1423 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1424 		break;
1425 	}
1426 	return AE_OK;
1427 }
1428 
1429 /******************************************************************************
1430  *
1431  * FUNCTION:    acpi_os_validate_address
1432  *
1433  * PARAMETERS:  space_id             - ACPI space ID
1434  *              address             - Physical address
1435  *              length              - Address length
1436  *
1437  * RETURN:      AE_OK if address/length is valid for the space_id. Otherwise,
1438  *              should return AE_AML_ILLEGAL_ADDRESS.
1439  *
1440  * DESCRIPTION: Validate a system address via the host OS. Used to validate
1441  *              the addresses accessed by AML operation regions.
1442  *
1443  *****************************************************************************/
1444 
1445 acpi_status
1446 acpi_os_validate_address (
1447     u8                   space_id,
1448     acpi_physical_address   address,
1449     acpi_size               length,
1450     char *name)
1451 {
1452 	struct acpi_res_list *res;
1453 	int added;
1454 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1455 		return AE_OK;
1456 
1457 	switch (space_id) {
1458 	case ACPI_ADR_SPACE_SYSTEM_IO:
1459 	case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1460 		/* Only interference checks against SystemIO and SytemMemory
1461 		   are needed */
1462 		res = kzalloc(sizeof(struct acpi_res_list), GFP_KERNEL);
1463 		if (!res)
1464 			return AE_OK;
1465 		/* ACPI names are fixed to 4 bytes, still better use strlcpy */
1466 		strlcpy(res->name, name, 5);
1467 		res->start = address;
1468 		res->end = address + length - 1;
1469 		res->resource_type = space_id;
1470 		spin_lock(&acpi_res_lock);
1471 		added = acpi_res_list_add(res);
1472 		spin_unlock(&acpi_res_lock);
1473 		pr_debug("%s %s resource: start: 0x%llx, end: 0x%llx, "
1474 			 "name: %s\n", added ? "Added" : "Already exist",
1475 			 (space_id == ACPI_ADR_SPACE_SYSTEM_IO)
1476 			 ? "SystemIO" : "System Memory",
1477 			 (unsigned long long)res->start,
1478 			 (unsigned long long)res->end,
1479 			 res->name);
1480 		if (!added)
1481 			kfree(res);
1482 		break;
1483 	case ACPI_ADR_SPACE_PCI_CONFIG:
1484 	case ACPI_ADR_SPACE_EC:
1485 	case ACPI_ADR_SPACE_SMBUS:
1486 	case ACPI_ADR_SPACE_CMOS:
1487 	case ACPI_ADR_SPACE_PCI_BAR_TARGET:
1488 	case ACPI_ADR_SPACE_DATA_TABLE:
1489 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1490 		break;
1491 	}
1492 	return AE_OK;
1493 }
1494 
1495 #endif
1496