xref: /openbmc/linux/drivers/acpi/osl.c (revision 5ec17af7)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51 
52 #define _COMPONENT		ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54 
55 struct acpi_os_dpc {
56 	acpi_osd_exec_callback function;
57 	void *context;
58 	struct work_struct work;
59 };
60 
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63 
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif				/*ENABLE_DEBUGGER */
68 
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 				      u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 				      u32 val_b);
73 
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82 
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88 	struct list_head list;
89 	void __iomem *virt;
90 	acpi_physical_address phys;
91 	acpi_size size;
92 	unsigned long refcount;
93 };
94 
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97 
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99 	unsigned int length, char *desc)
100 {
101 	u64 addr;
102 
103 	/* Handle possible alignment issues */
104 	memcpy(&addr, &gas->address, sizeof(addr));
105 	if (!addr || !length)
106 		return;
107 
108 	/* Resources are never freed */
109 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 		request_region(addr, length, desc);
111 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 		request_mem_region(addr, length, desc);
113 }
114 
115 static int __init acpi_reserve_resources(void)
116 {
117 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 		"ACPI PM1a_EVT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 		"ACPI PM1b_EVT_BLK");
122 
123 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 		"ACPI PM1a_CNT_BLK");
125 
126 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 		"ACPI PM1b_CNT_BLK");
128 
129 	if (acpi_gbl_FADT.pm_timer_length == 4)
130 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131 
132 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 		"ACPI PM2_CNT_BLK");
134 
135 	/* Length of GPE blocks must be a non-negative multiple of 2 */
136 
137 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140 
141 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144 
145 	return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148 
149 void acpi_os_printf(const char *fmt, ...)
150 {
151 	va_list args;
152 	va_start(args, fmt);
153 	acpi_os_vprintf(fmt, args);
154 	va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157 
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160 	static char buffer[512];
161 
162 	vsprintf(buffer, fmt, args);
163 
164 #ifdef ENABLE_DEBUGGER
165 	if (acpi_in_debugger) {
166 		kdb_printf("%s", buffer);
167 	} else {
168 		if (printk_get_level(buffer))
169 			printk("%s", buffer);
170 		else
171 			printk(KERN_CONT "%s", buffer);
172 	}
173 #else
174 	if (acpi_debugger_write_log(buffer) < 0) {
175 		if (printk_get_level(buffer))
176 			printk("%s", buffer);
177 		else
178 			printk(KERN_CONT "%s", buffer);
179 	}
180 #endif
181 }
182 
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187 	return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191 
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194 	acpi_physical_address pa;
195 
196 #ifdef CONFIG_KEXEC
197 	if (acpi_rsdp)
198 		return acpi_rsdp;
199 #endif
200 	pa = acpi_arch_get_root_pointer();
201 	if (pa)
202 		return pa;
203 
204 	if (efi_enabled(EFI_CONFIG_TABLES)) {
205 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 			return efi.acpi20;
207 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 			return efi.acpi;
209 		pr_err(PREFIX "System description tables not found\n");
210 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 		acpi_find_root_pointer(&pa);
212 	}
213 
214 	return pa;
215 }
216 
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221 	struct acpi_ioremap *map;
222 
223 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224 		if (map->phys <= phys &&
225 		    phys + size <= map->phys + map->size)
226 			return map;
227 
228 	return NULL;
229 }
230 
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235 	struct acpi_ioremap *map;
236 
237 	map = acpi_map_lookup(phys, size);
238 	if (map)
239 		return map->virt + (phys - map->phys);
240 
241 	return NULL;
242 }
243 
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246 	struct acpi_ioremap *map;
247 	void __iomem *virt = NULL;
248 
249 	mutex_lock(&acpi_ioremap_lock);
250 	map = acpi_map_lookup(phys, size);
251 	if (map) {
252 		virt = map->virt + (phys - map->phys);
253 		map->refcount++;
254 	}
255 	mutex_unlock(&acpi_ioremap_lock);
256 	return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259 
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264 	struct acpi_ioremap *map;
265 
266 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 		if (map->virt <= virt &&
268 		    virt + size <= map->virt + map->size)
269 			return map;
270 
271 	return NULL;
272 }
273 
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280 
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283 	unsigned long pfn;
284 
285 	pfn = pg_off >> PAGE_SHIFT;
286 	if (should_use_kmap(pfn)) {
287 		if (pg_sz > PAGE_SIZE)
288 			return NULL;
289 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 	} else
291 		return acpi_os_ioremap(pg_off, pg_sz);
292 }
293 
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296 	unsigned long pfn;
297 
298 	pfn = pg_off >> PAGE_SHIFT;
299 	if (should_use_kmap(pfn))
300 		kunmap(pfn_to_page(pfn));
301 	else
302 		iounmap(vaddr);
303 }
304 
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem *__ref
319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321 	struct acpi_ioremap *map;
322 	void __iomem *virt;
323 	acpi_physical_address pg_off;
324 	acpi_size pg_sz;
325 
326 	if (phys > ULONG_MAX) {
327 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 		return NULL;
329 	}
330 
331 	if (!acpi_permanent_mmap)
332 		return __acpi_map_table((unsigned long)phys, size);
333 
334 	mutex_lock(&acpi_ioremap_lock);
335 	/* Check if there's a suitable mapping already. */
336 	map = acpi_map_lookup(phys, size);
337 	if (map) {
338 		map->refcount++;
339 		goto out;
340 	}
341 
342 	map = kzalloc(sizeof(*map), GFP_KERNEL);
343 	if (!map) {
344 		mutex_unlock(&acpi_ioremap_lock);
345 		return NULL;
346 	}
347 
348 	pg_off = round_down(phys, PAGE_SIZE);
349 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 	virt = acpi_map(pg_off, pg_sz);
351 	if (!virt) {
352 		mutex_unlock(&acpi_ioremap_lock);
353 		kfree(map);
354 		return NULL;
355 	}
356 
357 	INIT_LIST_HEAD(&map->list);
358 	map->virt = virt;
359 	map->phys = pg_off;
360 	map->size = pg_sz;
361 	map->refcount = 1;
362 
363 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
364 
365 out:
366 	mutex_unlock(&acpi_ioremap_lock);
367 	return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370 
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373 	return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376 
377 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378 {
379 	if (!--map->refcount)
380 		list_del_rcu(&map->list);
381 }
382 
383 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384 {
385 	if (!map->refcount) {
386 		synchronize_rcu_expedited();
387 		acpi_unmap(map->phys, map->virt);
388 		kfree(map);
389 	}
390 }
391 
392 /**
393  * acpi_os_unmap_iomem - Drop a memory mapping reference.
394  * @virt: Start of the address range to drop a reference to.
395  * @size: Size of the address range to drop a reference to.
396  *
397  * Look up the given virtual address range in the list of existing ACPI memory
398  * mappings, drop a reference to it and unmap it if there are no more active
399  * references to it.
400  *
401  * During early init (when acpi_permanent_mmap has not been set yet) this
402  * routine simply calls __acpi_unmap_table() to get the job done.  Since
403  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404  * here.
405  */
406 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407 {
408 	struct acpi_ioremap *map;
409 
410 	if (!acpi_permanent_mmap) {
411 		__acpi_unmap_table(virt, size);
412 		return;
413 	}
414 
415 	mutex_lock(&acpi_ioremap_lock);
416 	map = acpi_map_lookup_virt(virt, size);
417 	if (!map) {
418 		mutex_unlock(&acpi_ioremap_lock);
419 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 		return;
421 	}
422 	acpi_os_drop_map_ref(map);
423 	mutex_unlock(&acpi_ioremap_lock);
424 
425 	acpi_os_map_cleanup(map);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428 
429 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430 {
431 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434 
435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437 	u64 addr;
438 	void __iomem *virt;
439 
440 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 		return 0;
442 
443 	/* Handle possible alignment issues */
444 	memcpy(&addr, &gas->address, sizeof(addr));
445 	if (!addr || !gas->bit_width)
446 		return -EINVAL;
447 
448 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 	if (!virt)
450 		return -EIO;
451 
452 	return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455 
456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458 	u64 addr;
459 	struct acpi_ioremap *map;
460 
461 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 		return;
463 
464 	/* Handle possible alignment issues */
465 	memcpy(&addr, &gas->address, sizeof(addr));
466 	if (!addr || !gas->bit_width)
467 		return;
468 
469 	mutex_lock(&acpi_ioremap_lock);
470 	map = acpi_map_lookup(addr, gas->bit_width / 8);
471 	if (!map) {
472 		mutex_unlock(&acpi_ioremap_lock);
473 		return;
474 	}
475 	acpi_os_drop_map_ref(map);
476 	mutex_unlock(&acpi_ioremap_lock);
477 
478 	acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481 
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486 	if (!phys || !virt)
487 		return AE_BAD_PARAMETER;
488 
489 	*phys = virt_to_phys(virt);
490 
491 	return AE_OK;
492 }
493 #endif
494 
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497 
498 int __init acpi_rev_override_setup(char *str)
499 {
500 	acpi_rev_override = true;
501 	return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override	false
506 #endif
507 
508 #define ACPI_MAX_OVERRIDE_LEN 100
509 
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511 
512 acpi_status
513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 			    acpi_string *new_val)
515 {
516 	if (!init_val || !new_val)
517 		return AE_BAD_PARAMETER;
518 
519 	*new_val = NULL;
520 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 		       acpi_os_name);
523 		*new_val = acpi_os_name;
524 	}
525 
526 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 		*new_val = (char *)5;
529 	}
530 
531 	return AE_OK;
532 }
533 
534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536 	u32 handled;
537 
538 	handled = (*acpi_irq_handler) (acpi_irq_context);
539 
540 	if (handled) {
541 		acpi_irq_handled++;
542 		return IRQ_HANDLED;
543 	} else {
544 		acpi_irq_not_handled++;
545 		return IRQ_NONE;
546 	}
547 }
548 
549 acpi_status
550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 				  void *context)
552 {
553 	unsigned int irq;
554 
555 	acpi_irq_stats_init();
556 
557 	/*
558 	 * ACPI interrupts different from the SCI in our copy of the FADT are
559 	 * not supported.
560 	 */
561 	if (gsi != acpi_gbl_FADT.sci_interrupt)
562 		return AE_BAD_PARAMETER;
563 
564 	if (acpi_irq_handler)
565 		return AE_ALREADY_ACQUIRED;
566 
567 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 		       gsi);
570 		return AE_OK;
571 	}
572 
573 	acpi_irq_handler = handler;
574 	acpi_irq_context = context;
575 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 		acpi_irq_handler = NULL;
578 		return AE_NOT_ACQUIRED;
579 	}
580 	acpi_sci_irq = irq;
581 
582 	return AE_OK;
583 }
584 
585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 		return AE_BAD_PARAMETER;
589 
590 	free_irq(acpi_sci_irq, acpi_irq);
591 	acpi_irq_handler = NULL;
592 	acpi_sci_irq = INVALID_ACPI_IRQ;
593 
594 	return AE_OK;
595 }
596 
597 /*
598  * Running in interpreter thread context, safe to sleep
599  */
600 
601 void acpi_os_sleep(u64 ms)
602 {
603 	msleep(ms);
604 }
605 
606 void acpi_os_stall(u32 us)
607 {
608 	while (us) {
609 		u32 delay = 1000;
610 
611 		if (delay > us)
612 			delay = us;
613 		udelay(delay);
614 		touch_nmi_watchdog();
615 		us -= delay;
616 	}
617 }
618 
619 /*
620  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621  * monotonically increasing timer with 100ns granularity. Do not use
622  * ktime_get() to implement this function because this function may get
623  * called after timekeeping has been suspended. Note: calling this function
624  * after timekeeping has been suspended may lead to unexpected results
625  * because when timekeeping is suspended the jiffies counter is not
626  * incremented. See also timekeeping_suspend().
627  */
628 u64 acpi_os_get_timer(void)
629 {
630 	return (get_jiffies_64() - INITIAL_JIFFIES) *
631 		(ACPI_100NSEC_PER_SEC / HZ);
632 }
633 
634 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635 {
636 	u32 dummy;
637 
638 	if (!value)
639 		value = &dummy;
640 
641 	*value = 0;
642 	if (width <= 8) {
643 		*(u8 *) value = inb(port);
644 	} else if (width <= 16) {
645 		*(u16 *) value = inw(port);
646 	} else if (width <= 32) {
647 		*(u32 *) value = inl(port);
648 	} else {
649 		BUG();
650 	}
651 
652 	return AE_OK;
653 }
654 
655 EXPORT_SYMBOL(acpi_os_read_port);
656 
657 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658 {
659 	if (width <= 8) {
660 		outb(value, port);
661 	} else if (width <= 16) {
662 		outw(value, port);
663 	} else if (width <= 32) {
664 		outl(value, port);
665 	} else {
666 		BUG();
667 	}
668 
669 	return AE_OK;
670 }
671 
672 EXPORT_SYMBOL(acpi_os_write_port);
673 
674 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675 {
676 
677 	switch (width) {
678 	case 8:
679 		*(u8 *) value = readb(virt_addr);
680 		break;
681 	case 16:
682 		*(u16 *) value = readw(virt_addr);
683 		break;
684 	case 32:
685 		*(u32 *) value = readl(virt_addr);
686 		break;
687 	case 64:
688 		*(u64 *) value = readq(virt_addr);
689 		break;
690 	default:
691 		return -EINVAL;
692 	}
693 
694 	return 0;
695 }
696 
697 acpi_status
698 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699 {
700 	void __iomem *virt_addr;
701 	unsigned int size = width / 8;
702 	bool unmap = false;
703 	u64 dummy;
704 	int error;
705 
706 	rcu_read_lock();
707 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708 	if (!virt_addr) {
709 		rcu_read_unlock();
710 		virt_addr = acpi_os_ioremap(phys_addr, size);
711 		if (!virt_addr)
712 			return AE_BAD_ADDRESS;
713 		unmap = true;
714 	}
715 
716 	if (!value)
717 		value = &dummy;
718 
719 	error = acpi_os_read_iomem(virt_addr, value, width);
720 	BUG_ON(error);
721 
722 	if (unmap)
723 		iounmap(virt_addr);
724 	else
725 		rcu_read_unlock();
726 
727 	return AE_OK;
728 }
729 
730 acpi_status
731 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732 {
733 	void __iomem *virt_addr;
734 	unsigned int size = width / 8;
735 	bool unmap = false;
736 
737 	rcu_read_lock();
738 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 	if (!virt_addr) {
740 		rcu_read_unlock();
741 		virt_addr = acpi_os_ioremap(phys_addr, size);
742 		if (!virt_addr)
743 			return AE_BAD_ADDRESS;
744 		unmap = true;
745 	}
746 
747 	switch (width) {
748 	case 8:
749 		writeb(value, virt_addr);
750 		break;
751 	case 16:
752 		writew(value, virt_addr);
753 		break;
754 	case 32:
755 		writel(value, virt_addr);
756 		break;
757 	case 64:
758 		writeq(value, virt_addr);
759 		break;
760 	default:
761 		BUG();
762 	}
763 
764 	if (unmap)
765 		iounmap(virt_addr);
766 	else
767 		rcu_read_unlock();
768 
769 	return AE_OK;
770 }
771 
772 acpi_status
773 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
774 			       u64 *value, u32 width)
775 {
776 	int result, size;
777 	u32 value32;
778 
779 	if (!value)
780 		return AE_BAD_PARAMETER;
781 
782 	switch (width) {
783 	case 8:
784 		size = 1;
785 		break;
786 	case 16:
787 		size = 2;
788 		break;
789 	case 32:
790 		size = 4;
791 		break;
792 	default:
793 		return AE_ERROR;
794 	}
795 
796 	result = raw_pci_read(pci_id->segment, pci_id->bus,
797 				PCI_DEVFN(pci_id->device, pci_id->function),
798 				reg, size, &value32);
799 	*value = value32;
800 
801 	return (result ? AE_ERROR : AE_OK);
802 }
803 
804 acpi_status
805 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
806 				u64 value, u32 width)
807 {
808 	int result, size;
809 
810 	switch (width) {
811 	case 8:
812 		size = 1;
813 		break;
814 	case 16:
815 		size = 2;
816 		break;
817 	case 32:
818 		size = 4;
819 		break;
820 	default:
821 		return AE_ERROR;
822 	}
823 
824 	result = raw_pci_write(pci_id->segment, pci_id->bus,
825 				PCI_DEVFN(pci_id->device, pci_id->function),
826 				reg, size, value);
827 
828 	return (result ? AE_ERROR : AE_OK);
829 }
830 
831 static void acpi_os_execute_deferred(struct work_struct *work)
832 {
833 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
834 
835 	dpc->function(dpc->context);
836 	kfree(dpc);
837 }
838 
839 #ifdef CONFIG_ACPI_DEBUGGER
840 static struct acpi_debugger acpi_debugger;
841 static bool acpi_debugger_initialized;
842 
843 int acpi_register_debugger(struct module *owner,
844 			   const struct acpi_debugger_ops *ops)
845 {
846 	int ret = 0;
847 
848 	mutex_lock(&acpi_debugger.lock);
849 	if (acpi_debugger.ops) {
850 		ret = -EBUSY;
851 		goto err_lock;
852 	}
853 
854 	acpi_debugger.owner = owner;
855 	acpi_debugger.ops = ops;
856 
857 err_lock:
858 	mutex_unlock(&acpi_debugger.lock);
859 	return ret;
860 }
861 EXPORT_SYMBOL(acpi_register_debugger);
862 
863 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
864 {
865 	mutex_lock(&acpi_debugger.lock);
866 	if (ops == acpi_debugger.ops) {
867 		acpi_debugger.ops = NULL;
868 		acpi_debugger.owner = NULL;
869 	}
870 	mutex_unlock(&acpi_debugger.lock);
871 }
872 EXPORT_SYMBOL(acpi_unregister_debugger);
873 
874 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
875 {
876 	int ret;
877 	int (*func)(acpi_osd_exec_callback, void *);
878 	struct module *owner;
879 
880 	if (!acpi_debugger_initialized)
881 		return -ENODEV;
882 	mutex_lock(&acpi_debugger.lock);
883 	if (!acpi_debugger.ops) {
884 		ret = -ENODEV;
885 		goto err_lock;
886 	}
887 	if (!try_module_get(acpi_debugger.owner)) {
888 		ret = -ENODEV;
889 		goto err_lock;
890 	}
891 	func = acpi_debugger.ops->create_thread;
892 	owner = acpi_debugger.owner;
893 	mutex_unlock(&acpi_debugger.lock);
894 
895 	ret = func(function, context);
896 
897 	mutex_lock(&acpi_debugger.lock);
898 	module_put(owner);
899 err_lock:
900 	mutex_unlock(&acpi_debugger.lock);
901 	return ret;
902 }
903 
904 ssize_t acpi_debugger_write_log(const char *msg)
905 {
906 	ssize_t ret;
907 	ssize_t (*func)(const char *);
908 	struct module *owner;
909 
910 	if (!acpi_debugger_initialized)
911 		return -ENODEV;
912 	mutex_lock(&acpi_debugger.lock);
913 	if (!acpi_debugger.ops) {
914 		ret = -ENODEV;
915 		goto err_lock;
916 	}
917 	if (!try_module_get(acpi_debugger.owner)) {
918 		ret = -ENODEV;
919 		goto err_lock;
920 	}
921 	func = acpi_debugger.ops->write_log;
922 	owner = acpi_debugger.owner;
923 	mutex_unlock(&acpi_debugger.lock);
924 
925 	ret = func(msg);
926 
927 	mutex_lock(&acpi_debugger.lock);
928 	module_put(owner);
929 err_lock:
930 	mutex_unlock(&acpi_debugger.lock);
931 	return ret;
932 }
933 
934 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
935 {
936 	ssize_t ret;
937 	ssize_t (*func)(char *, size_t);
938 	struct module *owner;
939 
940 	if (!acpi_debugger_initialized)
941 		return -ENODEV;
942 	mutex_lock(&acpi_debugger.lock);
943 	if (!acpi_debugger.ops) {
944 		ret = -ENODEV;
945 		goto err_lock;
946 	}
947 	if (!try_module_get(acpi_debugger.owner)) {
948 		ret = -ENODEV;
949 		goto err_lock;
950 	}
951 	func = acpi_debugger.ops->read_cmd;
952 	owner = acpi_debugger.owner;
953 	mutex_unlock(&acpi_debugger.lock);
954 
955 	ret = func(buffer, buffer_length);
956 
957 	mutex_lock(&acpi_debugger.lock);
958 	module_put(owner);
959 err_lock:
960 	mutex_unlock(&acpi_debugger.lock);
961 	return ret;
962 }
963 
964 int acpi_debugger_wait_command_ready(void)
965 {
966 	int ret;
967 	int (*func)(bool, char *, size_t);
968 	struct module *owner;
969 
970 	if (!acpi_debugger_initialized)
971 		return -ENODEV;
972 	mutex_lock(&acpi_debugger.lock);
973 	if (!acpi_debugger.ops) {
974 		ret = -ENODEV;
975 		goto err_lock;
976 	}
977 	if (!try_module_get(acpi_debugger.owner)) {
978 		ret = -ENODEV;
979 		goto err_lock;
980 	}
981 	func = acpi_debugger.ops->wait_command_ready;
982 	owner = acpi_debugger.owner;
983 	mutex_unlock(&acpi_debugger.lock);
984 
985 	ret = func(acpi_gbl_method_executing,
986 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
987 
988 	mutex_lock(&acpi_debugger.lock);
989 	module_put(owner);
990 err_lock:
991 	mutex_unlock(&acpi_debugger.lock);
992 	return ret;
993 }
994 
995 int acpi_debugger_notify_command_complete(void)
996 {
997 	int ret;
998 	int (*func)(void);
999 	struct module *owner;
1000 
1001 	if (!acpi_debugger_initialized)
1002 		return -ENODEV;
1003 	mutex_lock(&acpi_debugger.lock);
1004 	if (!acpi_debugger.ops) {
1005 		ret = -ENODEV;
1006 		goto err_lock;
1007 	}
1008 	if (!try_module_get(acpi_debugger.owner)) {
1009 		ret = -ENODEV;
1010 		goto err_lock;
1011 	}
1012 	func = acpi_debugger.ops->notify_command_complete;
1013 	owner = acpi_debugger.owner;
1014 	mutex_unlock(&acpi_debugger.lock);
1015 
1016 	ret = func();
1017 
1018 	mutex_lock(&acpi_debugger.lock);
1019 	module_put(owner);
1020 err_lock:
1021 	mutex_unlock(&acpi_debugger.lock);
1022 	return ret;
1023 }
1024 
1025 int __init acpi_debugger_init(void)
1026 {
1027 	mutex_init(&acpi_debugger.lock);
1028 	acpi_debugger_initialized = true;
1029 	return 0;
1030 }
1031 #endif
1032 
1033 /*******************************************************************************
1034  *
1035  * FUNCTION:    acpi_os_execute
1036  *
1037  * PARAMETERS:  Type               - Type of the callback
1038  *              Function           - Function to be executed
1039  *              Context            - Function parameters
1040  *
1041  * RETURN:      Status
1042  *
1043  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1044  *              immediately executes function on a separate thread.
1045  *
1046  ******************************************************************************/
1047 
1048 acpi_status acpi_os_execute(acpi_execute_type type,
1049 			    acpi_osd_exec_callback function, void *context)
1050 {
1051 	acpi_status status = AE_OK;
1052 	struct acpi_os_dpc *dpc;
1053 	struct workqueue_struct *queue;
1054 	int ret;
1055 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1056 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1057 			  function, context));
1058 
1059 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1060 		ret = acpi_debugger_create_thread(function, context);
1061 		if (ret) {
1062 			pr_err("Call to kthread_create() failed.\n");
1063 			status = AE_ERROR;
1064 		}
1065 		goto out_thread;
1066 	}
1067 
1068 	/*
1069 	 * Allocate/initialize DPC structure.  Note that this memory will be
1070 	 * freed by the callee.  The kernel handles the work_struct list  in a
1071 	 * way that allows us to also free its memory inside the callee.
1072 	 * Because we may want to schedule several tasks with different
1073 	 * parameters we can't use the approach some kernel code uses of
1074 	 * having a static work_struct.
1075 	 */
1076 
1077 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1078 	if (!dpc)
1079 		return AE_NO_MEMORY;
1080 
1081 	dpc->function = function;
1082 	dpc->context = context;
1083 
1084 	/*
1085 	 * To prevent lockdep from complaining unnecessarily, make sure that
1086 	 * there is a different static lockdep key for each workqueue by using
1087 	 * INIT_WORK() for each of them separately.
1088 	 */
1089 	if (type == OSL_NOTIFY_HANDLER) {
1090 		queue = kacpi_notify_wq;
1091 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1092 	} else if (type == OSL_GPE_HANDLER) {
1093 		queue = kacpid_wq;
1094 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095 	} else {
1096 		pr_err("Unsupported os_execute type %d.\n", type);
1097 		status = AE_ERROR;
1098 	}
1099 
1100 	if (ACPI_FAILURE(status))
1101 		goto err_workqueue;
1102 
1103 	/*
1104 	 * On some machines, a software-initiated SMI causes corruption unless
1105 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1106 	 * typically it's done in GPE-related methods that are run via
1107 	 * workqueues, so we can avoid the known corruption cases by always
1108 	 * queueing on CPU 0.
1109 	 */
1110 	ret = queue_work_on(0, queue, &dpc->work);
1111 	if (!ret) {
1112 		printk(KERN_ERR PREFIX
1113 			  "Call to queue_work() failed.\n");
1114 		status = AE_ERROR;
1115 	}
1116 err_workqueue:
1117 	if (ACPI_FAILURE(status))
1118 		kfree(dpc);
1119 out_thread:
1120 	return status;
1121 }
1122 EXPORT_SYMBOL(acpi_os_execute);
1123 
1124 void acpi_os_wait_events_complete(void)
1125 {
1126 	/*
1127 	 * Make sure the GPE handler or the fixed event handler is not used
1128 	 * on another CPU after removal.
1129 	 */
1130 	if (acpi_sci_irq_valid())
1131 		synchronize_hardirq(acpi_sci_irq);
1132 	flush_workqueue(kacpid_wq);
1133 	flush_workqueue(kacpi_notify_wq);
1134 }
1135 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1136 
1137 struct acpi_hp_work {
1138 	struct work_struct work;
1139 	struct acpi_device *adev;
1140 	u32 src;
1141 };
1142 
1143 static void acpi_hotplug_work_fn(struct work_struct *work)
1144 {
1145 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1146 
1147 	acpi_os_wait_events_complete();
1148 	acpi_device_hotplug(hpw->adev, hpw->src);
1149 	kfree(hpw);
1150 }
1151 
1152 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1153 {
1154 	struct acpi_hp_work *hpw;
1155 
1156 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1157 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1158 		  adev, src));
1159 
1160 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1161 	if (!hpw)
1162 		return AE_NO_MEMORY;
1163 
1164 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1165 	hpw->adev = adev;
1166 	hpw->src = src;
1167 	/*
1168 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1169 	 * the hotplug code may call driver .remove() functions, which may
1170 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1171 	 * these workqueues.
1172 	 */
1173 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1174 		kfree(hpw);
1175 		return AE_ERROR;
1176 	}
1177 	return AE_OK;
1178 }
1179 
1180 bool acpi_queue_hotplug_work(struct work_struct *work)
1181 {
1182 	return queue_work(kacpi_hotplug_wq, work);
1183 }
1184 
1185 acpi_status
1186 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1187 {
1188 	struct semaphore *sem = NULL;
1189 
1190 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1191 	if (!sem)
1192 		return AE_NO_MEMORY;
1193 
1194 	sema_init(sem, initial_units);
1195 
1196 	*handle = (acpi_handle *) sem;
1197 
1198 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1199 			  *handle, initial_units));
1200 
1201 	return AE_OK;
1202 }
1203 
1204 /*
1205  * TODO: A better way to delete semaphores?  Linux doesn't have a
1206  * 'delete_semaphore()' function -- may result in an invalid
1207  * pointer dereference for non-synchronized consumers.	Should
1208  * we at least check for blocked threads and signal/cancel them?
1209  */
1210 
1211 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1212 {
1213 	struct semaphore *sem = (struct semaphore *)handle;
1214 
1215 	if (!sem)
1216 		return AE_BAD_PARAMETER;
1217 
1218 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1219 
1220 	BUG_ON(!list_empty(&sem->wait_list));
1221 	kfree(sem);
1222 	sem = NULL;
1223 
1224 	return AE_OK;
1225 }
1226 
1227 /*
1228  * TODO: Support for units > 1?
1229  */
1230 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1231 {
1232 	acpi_status status = AE_OK;
1233 	struct semaphore *sem = (struct semaphore *)handle;
1234 	long jiffies;
1235 	int ret = 0;
1236 
1237 	if (!acpi_os_initialized)
1238 		return AE_OK;
1239 
1240 	if (!sem || (units < 1))
1241 		return AE_BAD_PARAMETER;
1242 
1243 	if (units > 1)
1244 		return AE_SUPPORT;
1245 
1246 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1247 			  handle, units, timeout));
1248 
1249 	if (timeout == ACPI_WAIT_FOREVER)
1250 		jiffies = MAX_SCHEDULE_TIMEOUT;
1251 	else
1252 		jiffies = msecs_to_jiffies(timeout);
1253 
1254 	ret = down_timeout(sem, jiffies);
1255 	if (ret)
1256 		status = AE_TIME;
1257 
1258 	if (ACPI_FAILURE(status)) {
1259 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1260 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1261 				  handle, units, timeout,
1262 				  acpi_format_exception(status)));
1263 	} else {
1264 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1265 				  "Acquired semaphore[%p|%d|%d]", handle,
1266 				  units, timeout));
1267 	}
1268 
1269 	return status;
1270 }
1271 
1272 /*
1273  * TODO: Support for units > 1?
1274  */
1275 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1276 {
1277 	struct semaphore *sem = (struct semaphore *)handle;
1278 
1279 	if (!acpi_os_initialized)
1280 		return AE_OK;
1281 
1282 	if (!sem || (units < 1))
1283 		return AE_BAD_PARAMETER;
1284 
1285 	if (units > 1)
1286 		return AE_SUPPORT;
1287 
1288 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1289 			  units));
1290 
1291 	up(sem);
1292 
1293 	return AE_OK;
1294 }
1295 
1296 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1297 {
1298 #ifdef ENABLE_DEBUGGER
1299 	if (acpi_in_debugger) {
1300 		u32 chars;
1301 
1302 		kdb_read(buffer, buffer_length);
1303 
1304 		/* remove the CR kdb includes */
1305 		chars = strlen(buffer) - 1;
1306 		buffer[chars] = '\0';
1307 	}
1308 #else
1309 	int ret;
1310 
1311 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1312 	if (ret < 0)
1313 		return AE_ERROR;
1314 	if (bytes_read)
1315 		*bytes_read = ret;
1316 #endif
1317 
1318 	return AE_OK;
1319 }
1320 EXPORT_SYMBOL(acpi_os_get_line);
1321 
1322 acpi_status acpi_os_wait_command_ready(void)
1323 {
1324 	int ret;
1325 
1326 	ret = acpi_debugger_wait_command_ready();
1327 	if (ret < 0)
1328 		return AE_ERROR;
1329 	return AE_OK;
1330 }
1331 
1332 acpi_status acpi_os_notify_command_complete(void)
1333 {
1334 	int ret;
1335 
1336 	ret = acpi_debugger_notify_command_complete();
1337 	if (ret < 0)
1338 		return AE_ERROR;
1339 	return AE_OK;
1340 }
1341 
1342 acpi_status acpi_os_signal(u32 function, void *info)
1343 {
1344 	switch (function) {
1345 	case ACPI_SIGNAL_FATAL:
1346 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1347 		break;
1348 	case ACPI_SIGNAL_BREAKPOINT:
1349 		/*
1350 		 * AML Breakpoint
1351 		 * ACPI spec. says to treat it as a NOP unless
1352 		 * you are debugging.  So if/when we integrate
1353 		 * AML debugger into the kernel debugger its
1354 		 * hook will go here.  But until then it is
1355 		 * not useful to print anything on breakpoints.
1356 		 */
1357 		break;
1358 	default:
1359 		break;
1360 	}
1361 
1362 	return AE_OK;
1363 }
1364 
1365 static int __init acpi_os_name_setup(char *str)
1366 {
1367 	char *p = acpi_os_name;
1368 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1369 
1370 	if (!str || !*str)
1371 		return 0;
1372 
1373 	for (; count-- && *str; str++) {
1374 		if (isalnum(*str) || *str == ' ' || *str == ':')
1375 			*p++ = *str;
1376 		else if (*str == '\'' || *str == '"')
1377 			continue;
1378 		else
1379 			break;
1380 	}
1381 	*p = 0;
1382 
1383 	return 1;
1384 
1385 }
1386 
1387 __setup("acpi_os_name=", acpi_os_name_setup);
1388 
1389 /*
1390  * Disable the auto-serialization of named objects creation methods.
1391  *
1392  * This feature is enabled by default.  It marks the AML control methods
1393  * that contain the opcodes to create named objects as "Serialized".
1394  */
1395 static int __init acpi_no_auto_serialize_setup(char *str)
1396 {
1397 	acpi_gbl_auto_serialize_methods = FALSE;
1398 	pr_info("ACPI: auto-serialization disabled\n");
1399 
1400 	return 1;
1401 }
1402 
1403 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1404 
1405 /* Check of resource interference between native drivers and ACPI
1406  * OperationRegions (SystemIO and System Memory only).
1407  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1408  * in arbitrary AML code and can interfere with legacy drivers.
1409  * acpi_enforce_resources= can be set to:
1410  *
1411  *   - strict (default) (2)
1412  *     -> further driver trying to access the resources will not load
1413  *   - lax              (1)
1414  *     -> further driver trying to access the resources will load, but you
1415  *     get a system message that something might go wrong...
1416  *
1417  *   - no               (0)
1418  *     -> ACPI Operation Region resources will not be registered
1419  *
1420  */
1421 #define ENFORCE_RESOURCES_STRICT 2
1422 #define ENFORCE_RESOURCES_LAX    1
1423 #define ENFORCE_RESOURCES_NO     0
1424 
1425 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1426 
1427 static int __init acpi_enforce_resources_setup(char *str)
1428 {
1429 	if (str == NULL || *str == '\0')
1430 		return 0;
1431 
1432 	if (!strcmp("strict", str))
1433 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434 	else if (!strcmp("lax", str))
1435 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1436 	else if (!strcmp("no", str))
1437 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1438 
1439 	return 1;
1440 }
1441 
1442 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1443 
1444 /* Check for resource conflicts between ACPI OperationRegions and native
1445  * drivers */
1446 int acpi_check_resource_conflict(const struct resource *res)
1447 {
1448 	acpi_adr_space_type space_id;
1449 	acpi_size length;
1450 	u8 warn = 0;
1451 	int clash = 0;
1452 
1453 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1454 		return 0;
1455 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1456 		return 0;
1457 
1458 	if (res->flags & IORESOURCE_IO)
1459 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1460 	else
1461 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1462 
1463 	length = resource_size(res);
1464 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1465 		warn = 1;
1466 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1467 
1468 	if (clash) {
1469 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1470 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1471 				printk(KERN_NOTICE "ACPI: This conflict may"
1472 				       " cause random problems and system"
1473 				       " instability\n");
1474 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1475 			       " for this device, you should use it instead of"
1476 			       " the native driver\n");
1477 		}
1478 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1479 			return -EBUSY;
1480 	}
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(acpi_check_resource_conflict);
1484 
1485 int acpi_check_region(resource_size_t start, resource_size_t n,
1486 		      const char *name)
1487 {
1488 	struct resource res = {
1489 		.start = start,
1490 		.end   = start + n - 1,
1491 		.name  = name,
1492 		.flags = IORESOURCE_IO,
1493 	};
1494 
1495 	return acpi_check_resource_conflict(&res);
1496 }
1497 EXPORT_SYMBOL(acpi_check_region);
1498 
1499 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1500 					      void *_res, void **return_value)
1501 {
1502 	struct acpi_mem_space_context **mem_ctx;
1503 	union acpi_operand_object *handler_obj;
1504 	union acpi_operand_object *region_obj2;
1505 	union acpi_operand_object *region_obj;
1506 	struct resource *res = _res;
1507 	acpi_status status;
1508 
1509 	region_obj = acpi_ns_get_attached_object(handle);
1510 	if (!region_obj)
1511 		return AE_OK;
1512 
1513 	handler_obj = region_obj->region.handler;
1514 	if (!handler_obj)
1515 		return AE_OK;
1516 
1517 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1518 		return AE_OK;
1519 
1520 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1521 		return AE_OK;
1522 
1523 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1524 	if (!region_obj2)
1525 		return AE_OK;
1526 
1527 	mem_ctx = (void *)&region_obj2->extra.region_context;
1528 
1529 	if (!(mem_ctx[0]->address >= res->start &&
1530 	      mem_ctx[0]->address < res->end))
1531 		return AE_OK;
1532 
1533 	status = handler_obj->address_space.setup(region_obj,
1534 						  ACPI_REGION_DEACTIVATE,
1535 						  NULL, (void **)mem_ctx);
1536 	if (ACPI_SUCCESS(status))
1537 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1538 
1539 	return status;
1540 }
1541 
1542 /**
1543  * acpi_release_memory - Release any mappings done to a memory region
1544  * @handle: Handle to namespace node
1545  * @res: Memory resource
1546  * @level: A level that terminates the search
1547  *
1548  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1549  * overlap with @res and that have already been activated (mapped).
1550  *
1551  * This is a helper that allows drivers to place special requirements on memory
1552  * region that may overlap with operation regions, primarily allowing them to
1553  * safely map the region as non-cached memory.
1554  *
1555  * The unmapped Operation Regions will be automatically remapped next time they
1556  * are called, so the drivers do not need to do anything else.
1557  */
1558 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1559 				u32 level)
1560 {
1561 	if (!(res->flags & IORESOURCE_MEM))
1562 		return AE_TYPE;
1563 
1564 	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1565 				   acpi_deactivate_mem_region, NULL, res, NULL);
1566 }
1567 EXPORT_SYMBOL_GPL(acpi_release_memory);
1568 
1569 /*
1570  * Let drivers know whether the resource checks are effective
1571  */
1572 int acpi_resources_are_enforced(void)
1573 {
1574 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1575 }
1576 EXPORT_SYMBOL(acpi_resources_are_enforced);
1577 
1578 /*
1579  * Deallocate the memory for a spinlock.
1580  */
1581 void acpi_os_delete_lock(acpi_spinlock handle)
1582 {
1583 	ACPI_FREE(handle);
1584 }
1585 
1586 /*
1587  * Acquire a spinlock.
1588  *
1589  * handle is a pointer to the spinlock_t.
1590  */
1591 
1592 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1593 {
1594 	acpi_cpu_flags flags;
1595 	spin_lock_irqsave(lockp, flags);
1596 	return flags;
1597 }
1598 
1599 /*
1600  * Release a spinlock. See above.
1601  */
1602 
1603 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1604 {
1605 	spin_unlock_irqrestore(lockp, flags);
1606 }
1607 
1608 #ifndef ACPI_USE_LOCAL_CACHE
1609 
1610 /*******************************************************************************
1611  *
1612  * FUNCTION:    acpi_os_create_cache
1613  *
1614  * PARAMETERS:  name      - Ascii name for the cache
1615  *              size      - Size of each cached object
1616  *              depth     - Maximum depth of the cache (in objects) <ignored>
1617  *              cache     - Where the new cache object is returned
1618  *
1619  * RETURN:      status
1620  *
1621  * DESCRIPTION: Create a cache object
1622  *
1623  ******************************************************************************/
1624 
1625 acpi_status
1626 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1627 {
1628 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1629 	if (*cache == NULL)
1630 		return AE_ERROR;
1631 	else
1632 		return AE_OK;
1633 }
1634 
1635 /*******************************************************************************
1636  *
1637  * FUNCTION:    acpi_os_purge_cache
1638  *
1639  * PARAMETERS:  Cache           - Handle to cache object
1640  *
1641  * RETURN:      Status
1642  *
1643  * DESCRIPTION: Free all objects within the requested cache.
1644  *
1645  ******************************************************************************/
1646 
1647 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1648 {
1649 	kmem_cache_shrink(cache);
1650 	return (AE_OK);
1651 }
1652 
1653 /*******************************************************************************
1654  *
1655  * FUNCTION:    acpi_os_delete_cache
1656  *
1657  * PARAMETERS:  Cache           - Handle to cache object
1658  *
1659  * RETURN:      Status
1660  *
1661  * DESCRIPTION: Free all objects within the requested cache and delete the
1662  *              cache object.
1663  *
1664  ******************************************************************************/
1665 
1666 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1667 {
1668 	kmem_cache_destroy(cache);
1669 	return (AE_OK);
1670 }
1671 
1672 /*******************************************************************************
1673  *
1674  * FUNCTION:    acpi_os_release_object
1675  *
1676  * PARAMETERS:  Cache       - Handle to cache object
1677  *              Object      - The object to be released
1678  *
1679  * RETURN:      None
1680  *
1681  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1682  *              the object is deleted.
1683  *
1684  ******************************************************************************/
1685 
1686 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1687 {
1688 	kmem_cache_free(cache, object);
1689 	return (AE_OK);
1690 }
1691 #endif
1692 
1693 static int __init acpi_no_static_ssdt_setup(char *s)
1694 {
1695 	acpi_gbl_disable_ssdt_table_install = TRUE;
1696 	pr_info("ACPI: static SSDT installation disabled\n");
1697 
1698 	return 0;
1699 }
1700 
1701 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1702 
1703 static int __init acpi_disable_return_repair(char *s)
1704 {
1705 	printk(KERN_NOTICE PREFIX
1706 	       "ACPI: Predefined validation mechanism disabled\n");
1707 	acpi_gbl_disable_auto_repair = TRUE;
1708 
1709 	return 1;
1710 }
1711 
1712 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1713 
1714 acpi_status __init acpi_os_initialize(void)
1715 {
1716 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1717 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1718 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1719 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1720 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1721 		/*
1722 		 * Use acpi_os_map_generic_address to pre-map the reset
1723 		 * register if it's in system memory.
1724 		 */
1725 		int rv;
1726 
1727 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1728 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1729 	}
1730 	acpi_os_initialized = true;
1731 
1732 	return AE_OK;
1733 }
1734 
1735 acpi_status __init acpi_os_initialize1(void)
1736 {
1737 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1738 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1739 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1740 	BUG_ON(!kacpid_wq);
1741 	BUG_ON(!kacpi_notify_wq);
1742 	BUG_ON(!kacpi_hotplug_wq);
1743 	acpi_osi_init();
1744 	return AE_OK;
1745 }
1746 
1747 acpi_status acpi_os_terminate(void)
1748 {
1749 	if (acpi_irq_handler) {
1750 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1751 						 acpi_irq_handler);
1752 	}
1753 
1754 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1755 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1756 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1757 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1758 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1759 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1760 
1761 	destroy_workqueue(kacpid_wq);
1762 	destroy_workqueue(kacpi_notify_wq);
1763 	destroy_workqueue(kacpi_hotplug_wq);
1764 
1765 	return AE_OK;
1766 }
1767 
1768 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1769 				  u32 pm1b_control)
1770 {
1771 	int rc = 0;
1772 	if (__acpi_os_prepare_sleep)
1773 		rc = __acpi_os_prepare_sleep(sleep_state,
1774 					     pm1a_control, pm1b_control);
1775 	if (rc < 0)
1776 		return AE_ERROR;
1777 	else if (rc > 0)
1778 		return AE_CTRL_TERMINATE;
1779 
1780 	return AE_OK;
1781 }
1782 
1783 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1784 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1785 {
1786 	__acpi_os_prepare_sleep = func;
1787 }
1788 
1789 #if (ACPI_REDUCED_HARDWARE)
1790 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1791 				  u32 val_b)
1792 {
1793 	int rc = 0;
1794 	if (__acpi_os_prepare_extended_sleep)
1795 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1796 					     val_a, val_b);
1797 	if (rc < 0)
1798 		return AE_ERROR;
1799 	else if (rc > 0)
1800 		return AE_CTRL_TERMINATE;
1801 
1802 	return AE_OK;
1803 }
1804 #else
1805 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1806 				  u32 val_b)
1807 {
1808 	return AE_OK;
1809 }
1810 #endif
1811 
1812 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1813 			       u32 val_a, u32 val_b))
1814 {
1815 	__acpi_os_prepare_extended_sleep = func;
1816 }
1817 
1818 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1819 				u32 reg_a_value, u32 reg_b_value)
1820 {
1821 	acpi_status status;
1822 
1823 	if (acpi_gbl_reduced_hardware)
1824 		status = acpi_os_prepare_extended_sleep(sleep_state,
1825 							reg_a_value,
1826 							reg_b_value);
1827 	else
1828 		status = acpi_os_prepare_sleep(sleep_state,
1829 					       reg_a_value, reg_b_value);
1830 	return status;
1831 }
1832