xref: /openbmc/linux/drivers/acpi/osl.c (revision 5b394b2d)
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51 
52 #define _COMPONENT		ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54 
55 struct acpi_os_dpc {
56 	acpi_osd_exec_callback function;
57 	void *context;
58 	struct work_struct work;
59 };
60 
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63 
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif				/*ENABLE_DEBUGGER */
68 
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 				      u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 				      u32 val_b);
73 
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82 
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88 	struct list_head list;
89 	void __iomem *virt;
90 	acpi_physical_address phys;
91 	acpi_size size;
92 	unsigned long refcount;
93 };
94 
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97 
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99 	unsigned int length, char *desc)
100 {
101 	u64 addr;
102 
103 	/* Handle possible alignment issues */
104 	memcpy(&addr, &gas->address, sizeof(addr));
105 	if (!addr || !length)
106 		return;
107 
108 	/* Resources are never freed */
109 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 		request_region(addr, length, desc);
111 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 		request_mem_region(addr, length, desc);
113 }
114 
115 static int __init acpi_reserve_resources(void)
116 {
117 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 		"ACPI PM1a_EVT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 		"ACPI PM1b_EVT_BLK");
122 
123 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 		"ACPI PM1a_CNT_BLK");
125 
126 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 		"ACPI PM1b_CNT_BLK");
128 
129 	if (acpi_gbl_FADT.pm_timer_length == 4)
130 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131 
132 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 		"ACPI PM2_CNT_BLK");
134 
135 	/* Length of GPE blocks must be a non-negative multiple of 2 */
136 
137 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140 
141 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144 
145 	return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148 
149 void acpi_os_printf(const char *fmt, ...)
150 {
151 	va_list args;
152 	va_start(args, fmt);
153 	acpi_os_vprintf(fmt, args);
154 	va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157 
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160 	static char buffer[512];
161 
162 	vsprintf(buffer, fmt, args);
163 
164 #ifdef ENABLE_DEBUGGER
165 	if (acpi_in_debugger) {
166 		kdb_printf("%s", buffer);
167 	} else {
168 		if (printk_get_level(buffer))
169 			printk("%s", buffer);
170 		else
171 			printk(KERN_CONT "%s", buffer);
172 	}
173 #else
174 	if (acpi_debugger_write_log(buffer) < 0) {
175 		if (printk_get_level(buffer))
176 			printk("%s", buffer);
177 		else
178 			printk(KERN_CONT "%s", buffer);
179 	}
180 #endif
181 }
182 
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187 	return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191 
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194 	acpi_physical_address pa;
195 
196 #ifdef CONFIG_KEXEC
197 	if (acpi_rsdp)
198 		return acpi_rsdp;
199 #endif
200 	pa = acpi_arch_get_root_pointer();
201 	if (pa)
202 		return pa;
203 
204 	if (efi_enabled(EFI_CONFIG_TABLES)) {
205 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 			return efi.acpi20;
207 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 			return efi.acpi;
209 		pr_err(PREFIX "System description tables not found\n");
210 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 		acpi_find_root_pointer(&pa);
212 	}
213 
214 	return pa;
215 }
216 
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221 	struct acpi_ioremap *map;
222 
223 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224 		if (map->phys <= phys &&
225 		    phys + size <= map->phys + map->size)
226 			return map;
227 
228 	return NULL;
229 }
230 
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235 	struct acpi_ioremap *map;
236 
237 	map = acpi_map_lookup(phys, size);
238 	if (map)
239 		return map->virt + (phys - map->phys);
240 
241 	return NULL;
242 }
243 
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246 	struct acpi_ioremap *map;
247 	void __iomem *virt = NULL;
248 
249 	mutex_lock(&acpi_ioremap_lock);
250 	map = acpi_map_lookup(phys, size);
251 	if (map) {
252 		virt = map->virt + (phys - map->phys);
253 		map->refcount++;
254 	}
255 	mutex_unlock(&acpi_ioremap_lock);
256 	return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259 
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264 	struct acpi_ioremap *map;
265 
266 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 		if (map->virt <= virt &&
268 		    virt + size <= map->virt + map->size)
269 			return map;
270 
271 	return NULL;
272 }
273 
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280 
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283 	unsigned long pfn;
284 
285 	pfn = pg_off >> PAGE_SHIFT;
286 	if (should_use_kmap(pfn)) {
287 		if (pg_sz > PAGE_SIZE)
288 			return NULL;
289 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 	} else
291 		return acpi_os_ioremap(pg_off, pg_sz);
292 }
293 
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296 	unsigned long pfn;
297 
298 	pfn = pg_off >> PAGE_SHIFT;
299 	if (should_use_kmap(pfn))
300 		kunmap(pfn_to_page(pfn));
301 	else
302 		iounmap(vaddr);
303 }
304 
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem *__ref
319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321 	struct acpi_ioremap *map;
322 	void __iomem *virt;
323 	acpi_physical_address pg_off;
324 	acpi_size pg_sz;
325 
326 	if (phys > ULONG_MAX) {
327 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 		return NULL;
329 	}
330 
331 	if (!acpi_permanent_mmap)
332 		return __acpi_map_table((unsigned long)phys, size);
333 
334 	mutex_lock(&acpi_ioremap_lock);
335 	/* Check if there's a suitable mapping already. */
336 	map = acpi_map_lookup(phys, size);
337 	if (map) {
338 		map->refcount++;
339 		goto out;
340 	}
341 
342 	map = kzalloc(sizeof(*map), GFP_KERNEL);
343 	if (!map) {
344 		mutex_unlock(&acpi_ioremap_lock);
345 		return NULL;
346 	}
347 
348 	pg_off = round_down(phys, PAGE_SIZE);
349 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 	virt = acpi_map(pg_off, pg_sz);
351 	if (!virt) {
352 		mutex_unlock(&acpi_ioremap_lock);
353 		kfree(map);
354 		return NULL;
355 	}
356 
357 	INIT_LIST_HEAD(&map->list);
358 	map->virt = virt;
359 	map->phys = pg_off;
360 	map->size = pg_sz;
361 	map->refcount = 1;
362 
363 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
364 
365 out:
366 	mutex_unlock(&acpi_ioremap_lock);
367 	return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370 
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373 	return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376 
377 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378 {
379 	if (!--map->refcount)
380 		list_del_rcu(&map->list);
381 }
382 
383 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384 {
385 	if (!map->refcount) {
386 		synchronize_rcu_expedited();
387 		acpi_unmap(map->phys, map->virt);
388 		kfree(map);
389 	}
390 }
391 
392 /**
393  * acpi_os_unmap_iomem - Drop a memory mapping reference.
394  * @virt: Start of the address range to drop a reference to.
395  * @size: Size of the address range to drop a reference to.
396  *
397  * Look up the given virtual address range in the list of existing ACPI memory
398  * mappings, drop a reference to it and unmap it if there are no more active
399  * references to it.
400  *
401  * During early init (when acpi_permanent_mmap has not been set yet) this
402  * routine simply calls __acpi_unmap_table() to get the job done.  Since
403  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404  * here.
405  */
406 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407 {
408 	struct acpi_ioremap *map;
409 
410 	if (!acpi_permanent_mmap) {
411 		__acpi_unmap_table(virt, size);
412 		return;
413 	}
414 
415 	mutex_lock(&acpi_ioremap_lock);
416 	map = acpi_map_lookup_virt(virt, size);
417 	if (!map) {
418 		mutex_unlock(&acpi_ioremap_lock);
419 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 		return;
421 	}
422 	acpi_os_drop_map_ref(map);
423 	mutex_unlock(&acpi_ioremap_lock);
424 
425 	acpi_os_map_cleanup(map);
426 }
427 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428 
429 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430 {
431 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
432 }
433 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434 
435 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436 {
437 	u64 addr;
438 	void __iomem *virt;
439 
440 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 		return 0;
442 
443 	/* Handle possible alignment issues */
444 	memcpy(&addr, &gas->address, sizeof(addr));
445 	if (!addr || !gas->bit_width)
446 		return -EINVAL;
447 
448 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 	if (!virt)
450 		return -EIO;
451 
452 	return 0;
453 }
454 EXPORT_SYMBOL(acpi_os_map_generic_address);
455 
456 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457 {
458 	u64 addr;
459 	struct acpi_ioremap *map;
460 
461 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 		return;
463 
464 	/* Handle possible alignment issues */
465 	memcpy(&addr, &gas->address, sizeof(addr));
466 	if (!addr || !gas->bit_width)
467 		return;
468 
469 	mutex_lock(&acpi_ioremap_lock);
470 	map = acpi_map_lookup(addr, gas->bit_width / 8);
471 	if (!map) {
472 		mutex_unlock(&acpi_ioremap_lock);
473 		return;
474 	}
475 	acpi_os_drop_map_ref(map);
476 	mutex_unlock(&acpi_ioremap_lock);
477 
478 	acpi_os_map_cleanup(map);
479 }
480 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481 
482 #ifdef ACPI_FUTURE_USAGE
483 acpi_status
484 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485 {
486 	if (!phys || !virt)
487 		return AE_BAD_PARAMETER;
488 
489 	*phys = virt_to_phys(virt);
490 
491 	return AE_OK;
492 }
493 #endif
494 
495 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496 static bool acpi_rev_override;
497 
498 int __init acpi_rev_override_setup(char *str)
499 {
500 	acpi_rev_override = true;
501 	return 1;
502 }
503 __setup("acpi_rev_override", acpi_rev_override_setup);
504 #else
505 #define acpi_rev_override	false
506 #endif
507 
508 #define ACPI_MAX_OVERRIDE_LEN 100
509 
510 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511 
512 acpi_status
513 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 			    acpi_string *new_val)
515 {
516 	if (!init_val || !new_val)
517 		return AE_BAD_PARAMETER;
518 
519 	*new_val = NULL;
520 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 		       acpi_os_name);
523 		*new_val = acpi_os_name;
524 	}
525 
526 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 		*new_val = (char *)5;
529 	}
530 
531 	return AE_OK;
532 }
533 
534 static irqreturn_t acpi_irq(int irq, void *dev_id)
535 {
536 	u32 handled;
537 
538 	handled = (*acpi_irq_handler) (acpi_irq_context);
539 
540 	if (handled) {
541 		acpi_irq_handled++;
542 		return IRQ_HANDLED;
543 	} else {
544 		acpi_irq_not_handled++;
545 		return IRQ_NONE;
546 	}
547 }
548 
549 acpi_status
550 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 				  void *context)
552 {
553 	unsigned int irq;
554 
555 	acpi_irq_stats_init();
556 
557 	/*
558 	 * ACPI interrupts different from the SCI in our copy of the FADT are
559 	 * not supported.
560 	 */
561 	if (gsi != acpi_gbl_FADT.sci_interrupt)
562 		return AE_BAD_PARAMETER;
563 
564 	if (acpi_irq_handler)
565 		return AE_ALREADY_ACQUIRED;
566 
567 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 		       gsi);
570 		return AE_OK;
571 	}
572 
573 	acpi_irq_handler = handler;
574 	acpi_irq_context = context;
575 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 		acpi_irq_handler = NULL;
578 		return AE_NOT_ACQUIRED;
579 	}
580 	acpi_sci_irq = irq;
581 
582 	return AE_OK;
583 }
584 
585 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586 {
587 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 		return AE_BAD_PARAMETER;
589 
590 	free_irq(acpi_sci_irq, acpi_irq);
591 	acpi_irq_handler = NULL;
592 	acpi_sci_irq = INVALID_ACPI_IRQ;
593 
594 	return AE_OK;
595 }
596 
597 /*
598  * Running in interpreter thread context, safe to sleep
599  */
600 
601 void acpi_os_sleep(u64 ms)
602 {
603 	msleep(ms);
604 }
605 
606 void acpi_os_stall(u32 us)
607 {
608 	while (us) {
609 		u32 delay = 1000;
610 
611 		if (delay > us)
612 			delay = us;
613 		udelay(delay);
614 		touch_nmi_watchdog();
615 		us -= delay;
616 	}
617 }
618 
619 /*
620  * Support ACPI 3.0 AML Timer operand
621  * Returns 64-bit free-running, monotonically increasing timer
622  * with 100ns granularity
623  */
624 u64 acpi_os_get_timer(void)
625 {
626 	u64 time_ns = ktime_to_ns(ktime_get());
627 	do_div(time_ns, 100);
628 	return time_ns;
629 }
630 
631 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
632 {
633 	u32 dummy;
634 
635 	if (!value)
636 		value = &dummy;
637 
638 	*value = 0;
639 	if (width <= 8) {
640 		*(u8 *) value = inb(port);
641 	} else if (width <= 16) {
642 		*(u16 *) value = inw(port);
643 	} else if (width <= 32) {
644 		*(u32 *) value = inl(port);
645 	} else {
646 		BUG();
647 	}
648 
649 	return AE_OK;
650 }
651 
652 EXPORT_SYMBOL(acpi_os_read_port);
653 
654 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
655 {
656 	if (width <= 8) {
657 		outb(value, port);
658 	} else if (width <= 16) {
659 		outw(value, port);
660 	} else if (width <= 32) {
661 		outl(value, port);
662 	} else {
663 		BUG();
664 	}
665 
666 	return AE_OK;
667 }
668 
669 EXPORT_SYMBOL(acpi_os_write_port);
670 
671 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
672 {
673 
674 	switch (width) {
675 	case 8:
676 		*(u8 *) value = readb(virt_addr);
677 		break;
678 	case 16:
679 		*(u16 *) value = readw(virt_addr);
680 		break;
681 	case 32:
682 		*(u32 *) value = readl(virt_addr);
683 		break;
684 	case 64:
685 		*(u64 *) value = readq(virt_addr);
686 		break;
687 	default:
688 		return -EINVAL;
689 	}
690 
691 	return 0;
692 }
693 
694 acpi_status
695 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
696 {
697 	void __iomem *virt_addr;
698 	unsigned int size = width / 8;
699 	bool unmap = false;
700 	u64 dummy;
701 	int error;
702 
703 	rcu_read_lock();
704 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
705 	if (!virt_addr) {
706 		rcu_read_unlock();
707 		virt_addr = acpi_os_ioremap(phys_addr, size);
708 		if (!virt_addr)
709 			return AE_BAD_ADDRESS;
710 		unmap = true;
711 	}
712 
713 	if (!value)
714 		value = &dummy;
715 
716 	error = acpi_os_read_iomem(virt_addr, value, width);
717 	BUG_ON(error);
718 
719 	if (unmap)
720 		iounmap(virt_addr);
721 	else
722 		rcu_read_unlock();
723 
724 	return AE_OK;
725 }
726 
727 acpi_status
728 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
729 {
730 	void __iomem *virt_addr;
731 	unsigned int size = width / 8;
732 	bool unmap = false;
733 
734 	rcu_read_lock();
735 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
736 	if (!virt_addr) {
737 		rcu_read_unlock();
738 		virt_addr = acpi_os_ioremap(phys_addr, size);
739 		if (!virt_addr)
740 			return AE_BAD_ADDRESS;
741 		unmap = true;
742 	}
743 
744 	switch (width) {
745 	case 8:
746 		writeb(value, virt_addr);
747 		break;
748 	case 16:
749 		writew(value, virt_addr);
750 		break;
751 	case 32:
752 		writel(value, virt_addr);
753 		break;
754 	case 64:
755 		writeq(value, virt_addr);
756 		break;
757 	default:
758 		BUG();
759 	}
760 
761 	if (unmap)
762 		iounmap(virt_addr);
763 	else
764 		rcu_read_unlock();
765 
766 	return AE_OK;
767 }
768 
769 acpi_status
770 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
771 			       u64 *value, u32 width)
772 {
773 	int result, size;
774 	u32 value32;
775 
776 	if (!value)
777 		return AE_BAD_PARAMETER;
778 
779 	switch (width) {
780 	case 8:
781 		size = 1;
782 		break;
783 	case 16:
784 		size = 2;
785 		break;
786 	case 32:
787 		size = 4;
788 		break;
789 	default:
790 		return AE_ERROR;
791 	}
792 
793 	result = raw_pci_read(pci_id->segment, pci_id->bus,
794 				PCI_DEVFN(pci_id->device, pci_id->function),
795 				reg, size, &value32);
796 	*value = value32;
797 
798 	return (result ? AE_ERROR : AE_OK);
799 }
800 
801 acpi_status
802 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
803 				u64 value, u32 width)
804 {
805 	int result, size;
806 
807 	switch (width) {
808 	case 8:
809 		size = 1;
810 		break;
811 	case 16:
812 		size = 2;
813 		break;
814 	case 32:
815 		size = 4;
816 		break;
817 	default:
818 		return AE_ERROR;
819 	}
820 
821 	result = raw_pci_write(pci_id->segment, pci_id->bus,
822 				PCI_DEVFN(pci_id->device, pci_id->function),
823 				reg, size, value);
824 
825 	return (result ? AE_ERROR : AE_OK);
826 }
827 
828 static void acpi_os_execute_deferred(struct work_struct *work)
829 {
830 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
831 
832 	dpc->function(dpc->context);
833 	kfree(dpc);
834 }
835 
836 #ifdef CONFIG_ACPI_DEBUGGER
837 static struct acpi_debugger acpi_debugger;
838 static bool acpi_debugger_initialized;
839 
840 int acpi_register_debugger(struct module *owner,
841 			   const struct acpi_debugger_ops *ops)
842 {
843 	int ret = 0;
844 
845 	mutex_lock(&acpi_debugger.lock);
846 	if (acpi_debugger.ops) {
847 		ret = -EBUSY;
848 		goto err_lock;
849 	}
850 
851 	acpi_debugger.owner = owner;
852 	acpi_debugger.ops = ops;
853 
854 err_lock:
855 	mutex_unlock(&acpi_debugger.lock);
856 	return ret;
857 }
858 EXPORT_SYMBOL(acpi_register_debugger);
859 
860 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
861 {
862 	mutex_lock(&acpi_debugger.lock);
863 	if (ops == acpi_debugger.ops) {
864 		acpi_debugger.ops = NULL;
865 		acpi_debugger.owner = NULL;
866 	}
867 	mutex_unlock(&acpi_debugger.lock);
868 }
869 EXPORT_SYMBOL(acpi_unregister_debugger);
870 
871 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
872 {
873 	int ret;
874 	int (*func)(acpi_osd_exec_callback, void *);
875 	struct module *owner;
876 
877 	if (!acpi_debugger_initialized)
878 		return -ENODEV;
879 	mutex_lock(&acpi_debugger.lock);
880 	if (!acpi_debugger.ops) {
881 		ret = -ENODEV;
882 		goto err_lock;
883 	}
884 	if (!try_module_get(acpi_debugger.owner)) {
885 		ret = -ENODEV;
886 		goto err_lock;
887 	}
888 	func = acpi_debugger.ops->create_thread;
889 	owner = acpi_debugger.owner;
890 	mutex_unlock(&acpi_debugger.lock);
891 
892 	ret = func(function, context);
893 
894 	mutex_lock(&acpi_debugger.lock);
895 	module_put(owner);
896 err_lock:
897 	mutex_unlock(&acpi_debugger.lock);
898 	return ret;
899 }
900 
901 ssize_t acpi_debugger_write_log(const char *msg)
902 {
903 	ssize_t ret;
904 	ssize_t (*func)(const char *);
905 	struct module *owner;
906 
907 	if (!acpi_debugger_initialized)
908 		return -ENODEV;
909 	mutex_lock(&acpi_debugger.lock);
910 	if (!acpi_debugger.ops) {
911 		ret = -ENODEV;
912 		goto err_lock;
913 	}
914 	if (!try_module_get(acpi_debugger.owner)) {
915 		ret = -ENODEV;
916 		goto err_lock;
917 	}
918 	func = acpi_debugger.ops->write_log;
919 	owner = acpi_debugger.owner;
920 	mutex_unlock(&acpi_debugger.lock);
921 
922 	ret = func(msg);
923 
924 	mutex_lock(&acpi_debugger.lock);
925 	module_put(owner);
926 err_lock:
927 	mutex_unlock(&acpi_debugger.lock);
928 	return ret;
929 }
930 
931 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
932 {
933 	ssize_t ret;
934 	ssize_t (*func)(char *, size_t);
935 	struct module *owner;
936 
937 	if (!acpi_debugger_initialized)
938 		return -ENODEV;
939 	mutex_lock(&acpi_debugger.lock);
940 	if (!acpi_debugger.ops) {
941 		ret = -ENODEV;
942 		goto err_lock;
943 	}
944 	if (!try_module_get(acpi_debugger.owner)) {
945 		ret = -ENODEV;
946 		goto err_lock;
947 	}
948 	func = acpi_debugger.ops->read_cmd;
949 	owner = acpi_debugger.owner;
950 	mutex_unlock(&acpi_debugger.lock);
951 
952 	ret = func(buffer, buffer_length);
953 
954 	mutex_lock(&acpi_debugger.lock);
955 	module_put(owner);
956 err_lock:
957 	mutex_unlock(&acpi_debugger.lock);
958 	return ret;
959 }
960 
961 int acpi_debugger_wait_command_ready(void)
962 {
963 	int ret;
964 	int (*func)(bool, char *, size_t);
965 	struct module *owner;
966 
967 	if (!acpi_debugger_initialized)
968 		return -ENODEV;
969 	mutex_lock(&acpi_debugger.lock);
970 	if (!acpi_debugger.ops) {
971 		ret = -ENODEV;
972 		goto err_lock;
973 	}
974 	if (!try_module_get(acpi_debugger.owner)) {
975 		ret = -ENODEV;
976 		goto err_lock;
977 	}
978 	func = acpi_debugger.ops->wait_command_ready;
979 	owner = acpi_debugger.owner;
980 	mutex_unlock(&acpi_debugger.lock);
981 
982 	ret = func(acpi_gbl_method_executing,
983 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
984 
985 	mutex_lock(&acpi_debugger.lock);
986 	module_put(owner);
987 err_lock:
988 	mutex_unlock(&acpi_debugger.lock);
989 	return ret;
990 }
991 
992 int acpi_debugger_notify_command_complete(void)
993 {
994 	int ret;
995 	int (*func)(void);
996 	struct module *owner;
997 
998 	if (!acpi_debugger_initialized)
999 		return -ENODEV;
1000 	mutex_lock(&acpi_debugger.lock);
1001 	if (!acpi_debugger.ops) {
1002 		ret = -ENODEV;
1003 		goto err_lock;
1004 	}
1005 	if (!try_module_get(acpi_debugger.owner)) {
1006 		ret = -ENODEV;
1007 		goto err_lock;
1008 	}
1009 	func = acpi_debugger.ops->notify_command_complete;
1010 	owner = acpi_debugger.owner;
1011 	mutex_unlock(&acpi_debugger.lock);
1012 
1013 	ret = func();
1014 
1015 	mutex_lock(&acpi_debugger.lock);
1016 	module_put(owner);
1017 err_lock:
1018 	mutex_unlock(&acpi_debugger.lock);
1019 	return ret;
1020 }
1021 
1022 int __init acpi_debugger_init(void)
1023 {
1024 	mutex_init(&acpi_debugger.lock);
1025 	acpi_debugger_initialized = true;
1026 	return 0;
1027 }
1028 #endif
1029 
1030 /*******************************************************************************
1031  *
1032  * FUNCTION:    acpi_os_execute
1033  *
1034  * PARAMETERS:  Type               - Type of the callback
1035  *              Function           - Function to be executed
1036  *              Context            - Function parameters
1037  *
1038  * RETURN:      Status
1039  *
1040  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1041  *              immediately executes function on a separate thread.
1042  *
1043  ******************************************************************************/
1044 
1045 acpi_status acpi_os_execute(acpi_execute_type type,
1046 			    acpi_osd_exec_callback function, void *context)
1047 {
1048 	acpi_status status = AE_OK;
1049 	struct acpi_os_dpc *dpc;
1050 	struct workqueue_struct *queue;
1051 	int ret;
1052 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1053 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1054 			  function, context));
1055 
1056 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1057 		ret = acpi_debugger_create_thread(function, context);
1058 		if (ret) {
1059 			pr_err("Call to kthread_create() failed.\n");
1060 			status = AE_ERROR;
1061 		}
1062 		goto out_thread;
1063 	}
1064 
1065 	/*
1066 	 * Allocate/initialize DPC structure.  Note that this memory will be
1067 	 * freed by the callee.  The kernel handles the work_struct list  in a
1068 	 * way that allows us to also free its memory inside the callee.
1069 	 * Because we may want to schedule several tasks with different
1070 	 * parameters we can't use the approach some kernel code uses of
1071 	 * having a static work_struct.
1072 	 */
1073 
1074 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1075 	if (!dpc)
1076 		return AE_NO_MEMORY;
1077 
1078 	dpc->function = function;
1079 	dpc->context = context;
1080 
1081 	/*
1082 	 * To prevent lockdep from complaining unnecessarily, make sure that
1083 	 * there is a different static lockdep key for each workqueue by using
1084 	 * INIT_WORK() for each of them separately.
1085 	 */
1086 	if (type == OSL_NOTIFY_HANDLER) {
1087 		queue = kacpi_notify_wq;
1088 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1089 	} else if (type == OSL_GPE_HANDLER) {
1090 		queue = kacpid_wq;
1091 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1092 	} else {
1093 		pr_err("Unsupported os_execute type %d.\n", type);
1094 		status = AE_ERROR;
1095 	}
1096 
1097 	if (ACPI_FAILURE(status))
1098 		goto err_workqueue;
1099 
1100 	/*
1101 	 * On some machines, a software-initiated SMI causes corruption unless
1102 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1103 	 * typically it's done in GPE-related methods that are run via
1104 	 * workqueues, so we can avoid the known corruption cases by always
1105 	 * queueing on CPU 0.
1106 	 */
1107 	ret = queue_work_on(0, queue, &dpc->work);
1108 	if (!ret) {
1109 		printk(KERN_ERR PREFIX
1110 			  "Call to queue_work() failed.\n");
1111 		status = AE_ERROR;
1112 	}
1113 err_workqueue:
1114 	if (ACPI_FAILURE(status))
1115 		kfree(dpc);
1116 out_thread:
1117 	return status;
1118 }
1119 EXPORT_SYMBOL(acpi_os_execute);
1120 
1121 void acpi_os_wait_events_complete(void)
1122 {
1123 	/*
1124 	 * Make sure the GPE handler or the fixed event handler is not used
1125 	 * on another CPU after removal.
1126 	 */
1127 	if (acpi_sci_irq_valid())
1128 		synchronize_hardirq(acpi_sci_irq);
1129 	flush_workqueue(kacpid_wq);
1130 	flush_workqueue(kacpi_notify_wq);
1131 }
1132 
1133 struct acpi_hp_work {
1134 	struct work_struct work;
1135 	struct acpi_device *adev;
1136 	u32 src;
1137 };
1138 
1139 static void acpi_hotplug_work_fn(struct work_struct *work)
1140 {
1141 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1142 
1143 	acpi_os_wait_events_complete();
1144 	acpi_device_hotplug(hpw->adev, hpw->src);
1145 	kfree(hpw);
1146 }
1147 
1148 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1149 {
1150 	struct acpi_hp_work *hpw;
1151 
1152 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1153 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1154 		  adev, src));
1155 
1156 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1157 	if (!hpw)
1158 		return AE_NO_MEMORY;
1159 
1160 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1161 	hpw->adev = adev;
1162 	hpw->src = src;
1163 	/*
1164 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1165 	 * the hotplug code may call driver .remove() functions, which may
1166 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1167 	 * these workqueues.
1168 	 */
1169 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1170 		kfree(hpw);
1171 		return AE_ERROR;
1172 	}
1173 	return AE_OK;
1174 }
1175 
1176 bool acpi_queue_hotplug_work(struct work_struct *work)
1177 {
1178 	return queue_work(kacpi_hotplug_wq, work);
1179 }
1180 
1181 acpi_status
1182 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1183 {
1184 	struct semaphore *sem = NULL;
1185 
1186 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1187 	if (!sem)
1188 		return AE_NO_MEMORY;
1189 
1190 	sema_init(sem, initial_units);
1191 
1192 	*handle = (acpi_handle *) sem;
1193 
1194 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1195 			  *handle, initial_units));
1196 
1197 	return AE_OK;
1198 }
1199 
1200 /*
1201  * TODO: A better way to delete semaphores?  Linux doesn't have a
1202  * 'delete_semaphore()' function -- may result in an invalid
1203  * pointer dereference for non-synchronized consumers.	Should
1204  * we at least check for blocked threads and signal/cancel them?
1205  */
1206 
1207 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1208 {
1209 	struct semaphore *sem = (struct semaphore *)handle;
1210 
1211 	if (!sem)
1212 		return AE_BAD_PARAMETER;
1213 
1214 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1215 
1216 	BUG_ON(!list_empty(&sem->wait_list));
1217 	kfree(sem);
1218 	sem = NULL;
1219 
1220 	return AE_OK;
1221 }
1222 
1223 /*
1224  * TODO: Support for units > 1?
1225  */
1226 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1227 {
1228 	acpi_status status = AE_OK;
1229 	struct semaphore *sem = (struct semaphore *)handle;
1230 	long jiffies;
1231 	int ret = 0;
1232 
1233 	if (!acpi_os_initialized)
1234 		return AE_OK;
1235 
1236 	if (!sem || (units < 1))
1237 		return AE_BAD_PARAMETER;
1238 
1239 	if (units > 1)
1240 		return AE_SUPPORT;
1241 
1242 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1243 			  handle, units, timeout));
1244 
1245 	if (timeout == ACPI_WAIT_FOREVER)
1246 		jiffies = MAX_SCHEDULE_TIMEOUT;
1247 	else
1248 		jiffies = msecs_to_jiffies(timeout);
1249 
1250 	ret = down_timeout(sem, jiffies);
1251 	if (ret)
1252 		status = AE_TIME;
1253 
1254 	if (ACPI_FAILURE(status)) {
1255 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1256 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1257 				  handle, units, timeout,
1258 				  acpi_format_exception(status)));
1259 	} else {
1260 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1261 				  "Acquired semaphore[%p|%d|%d]", handle,
1262 				  units, timeout));
1263 	}
1264 
1265 	return status;
1266 }
1267 
1268 /*
1269  * TODO: Support for units > 1?
1270  */
1271 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1272 {
1273 	struct semaphore *sem = (struct semaphore *)handle;
1274 
1275 	if (!acpi_os_initialized)
1276 		return AE_OK;
1277 
1278 	if (!sem || (units < 1))
1279 		return AE_BAD_PARAMETER;
1280 
1281 	if (units > 1)
1282 		return AE_SUPPORT;
1283 
1284 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1285 			  units));
1286 
1287 	up(sem);
1288 
1289 	return AE_OK;
1290 }
1291 
1292 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1293 {
1294 #ifdef ENABLE_DEBUGGER
1295 	if (acpi_in_debugger) {
1296 		u32 chars;
1297 
1298 		kdb_read(buffer, buffer_length);
1299 
1300 		/* remove the CR kdb includes */
1301 		chars = strlen(buffer) - 1;
1302 		buffer[chars] = '\0';
1303 	}
1304 #else
1305 	int ret;
1306 
1307 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1308 	if (ret < 0)
1309 		return AE_ERROR;
1310 	if (bytes_read)
1311 		*bytes_read = ret;
1312 #endif
1313 
1314 	return AE_OK;
1315 }
1316 EXPORT_SYMBOL(acpi_os_get_line);
1317 
1318 acpi_status acpi_os_wait_command_ready(void)
1319 {
1320 	int ret;
1321 
1322 	ret = acpi_debugger_wait_command_ready();
1323 	if (ret < 0)
1324 		return AE_ERROR;
1325 	return AE_OK;
1326 }
1327 
1328 acpi_status acpi_os_notify_command_complete(void)
1329 {
1330 	int ret;
1331 
1332 	ret = acpi_debugger_notify_command_complete();
1333 	if (ret < 0)
1334 		return AE_ERROR;
1335 	return AE_OK;
1336 }
1337 
1338 acpi_status acpi_os_signal(u32 function, void *info)
1339 {
1340 	switch (function) {
1341 	case ACPI_SIGNAL_FATAL:
1342 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1343 		break;
1344 	case ACPI_SIGNAL_BREAKPOINT:
1345 		/*
1346 		 * AML Breakpoint
1347 		 * ACPI spec. says to treat it as a NOP unless
1348 		 * you are debugging.  So if/when we integrate
1349 		 * AML debugger into the kernel debugger its
1350 		 * hook will go here.  But until then it is
1351 		 * not useful to print anything on breakpoints.
1352 		 */
1353 		break;
1354 	default:
1355 		break;
1356 	}
1357 
1358 	return AE_OK;
1359 }
1360 
1361 static int __init acpi_os_name_setup(char *str)
1362 {
1363 	char *p = acpi_os_name;
1364 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1365 
1366 	if (!str || !*str)
1367 		return 0;
1368 
1369 	for (; count-- && *str; str++) {
1370 		if (isalnum(*str) || *str == ' ' || *str == ':')
1371 			*p++ = *str;
1372 		else if (*str == '\'' || *str == '"')
1373 			continue;
1374 		else
1375 			break;
1376 	}
1377 	*p = 0;
1378 
1379 	return 1;
1380 
1381 }
1382 
1383 __setup("acpi_os_name=", acpi_os_name_setup);
1384 
1385 /*
1386  * Disable the auto-serialization of named objects creation methods.
1387  *
1388  * This feature is enabled by default.  It marks the AML control methods
1389  * that contain the opcodes to create named objects as "Serialized".
1390  */
1391 static int __init acpi_no_auto_serialize_setup(char *str)
1392 {
1393 	acpi_gbl_auto_serialize_methods = FALSE;
1394 	pr_info("ACPI: auto-serialization disabled\n");
1395 
1396 	return 1;
1397 }
1398 
1399 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1400 
1401 /* Check of resource interference between native drivers and ACPI
1402  * OperationRegions (SystemIO and System Memory only).
1403  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1404  * in arbitrary AML code and can interfere with legacy drivers.
1405  * acpi_enforce_resources= can be set to:
1406  *
1407  *   - strict (default) (2)
1408  *     -> further driver trying to access the resources will not load
1409  *   - lax              (1)
1410  *     -> further driver trying to access the resources will load, but you
1411  *     get a system message that something might go wrong...
1412  *
1413  *   - no               (0)
1414  *     -> ACPI Operation Region resources will not be registered
1415  *
1416  */
1417 #define ENFORCE_RESOURCES_STRICT 2
1418 #define ENFORCE_RESOURCES_LAX    1
1419 #define ENFORCE_RESOURCES_NO     0
1420 
1421 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1422 
1423 static int __init acpi_enforce_resources_setup(char *str)
1424 {
1425 	if (str == NULL || *str == '\0')
1426 		return 0;
1427 
1428 	if (!strcmp("strict", str))
1429 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1430 	else if (!strcmp("lax", str))
1431 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1432 	else if (!strcmp("no", str))
1433 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1434 
1435 	return 1;
1436 }
1437 
1438 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1439 
1440 /* Check for resource conflicts between ACPI OperationRegions and native
1441  * drivers */
1442 int acpi_check_resource_conflict(const struct resource *res)
1443 {
1444 	acpi_adr_space_type space_id;
1445 	acpi_size length;
1446 	u8 warn = 0;
1447 	int clash = 0;
1448 
1449 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1450 		return 0;
1451 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1452 		return 0;
1453 
1454 	if (res->flags & IORESOURCE_IO)
1455 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1456 	else
1457 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1458 
1459 	length = resource_size(res);
1460 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1461 		warn = 1;
1462 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1463 
1464 	if (clash) {
1465 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1466 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1467 				printk(KERN_NOTICE "ACPI: This conflict may"
1468 				       " cause random problems and system"
1469 				       " instability\n");
1470 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1471 			       " for this device, you should use it instead of"
1472 			       " the native driver\n");
1473 		}
1474 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1475 			return -EBUSY;
1476 	}
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(acpi_check_resource_conflict);
1480 
1481 int acpi_check_region(resource_size_t start, resource_size_t n,
1482 		      const char *name)
1483 {
1484 	struct resource res = {
1485 		.start = start,
1486 		.end   = start + n - 1,
1487 		.name  = name,
1488 		.flags = IORESOURCE_IO,
1489 	};
1490 
1491 	return acpi_check_resource_conflict(&res);
1492 }
1493 EXPORT_SYMBOL(acpi_check_region);
1494 
1495 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1496 					      void *_res, void **return_value)
1497 {
1498 	struct acpi_mem_space_context **mem_ctx;
1499 	union acpi_operand_object *handler_obj;
1500 	union acpi_operand_object *region_obj2;
1501 	union acpi_operand_object *region_obj;
1502 	struct resource *res = _res;
1503 	acpi_status status;
1504 
1505 	region_obj = acpi_ns_get_attached_object(handle);
1506 	if (!region_obj)
1507 		return AE_OK;
1508 
1509 	handler_obj = region_obj->region.handler;
1510 	if (!handler_obj)
1511 		return AE_OK;
1512 
1513 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1514 		return AE_OK;
1515 
1516 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1517 		return AE_OK;
1518 
1519 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1520 	if (!region_obj2)
1521 		return AE_OK;
1522 
1523 	mem_ctx = (void *)&region_obj2->extra.region_context;
1524 
1525 	if (!(mem_ctx[0]->address >= res->start &&
1526 	      mem_ctx[0]->address < res->end))
1527 		return AE_OK;
1528 
1529 	status = handler_obj->address_space.setup(region_obj,
1530 						  ACPI_REGION_DEACTIVATE,
1531 						  NULL, (void **)mem_ctx);
1532 	if (ACPI_SUCCESS(status))
1533 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1534 
1535 	return status;
1536 }
1537 
1538 /**
1539  * acpi_release_memory - Release any mappings done to a memory region
1540  * @handle: Handle to namespace node
1541  * @res: Memory resource
1542  * @level: A level that terminates the search
1543  *
1544  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1545  * overlap with @res and that have already been activated (mapped).
1546  *
1547  * This is a helper that allows drivers to place special requirements on memory
1548  * region that may overlap with operation regions, primarily allowing them to
1549  * safely map the region as non-cached memory.
1550  *
1551  * The unmapped Operation Regions will be automatically remapped next time they
1552  * are called, so the drivers do not need to do anything else.
1553  */
1554 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1555 				u32 level)
1556 {
1557 	if (!(res->flags & IORESOURCE_MEM))
1558 		return AE_TYPE;
1559 
1560 	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1561 				   acpi_deactivate_mem_region, NULL, res, NULL);
1562 }
1563 EXPORT_SYMBOL_GPL(acpi_release_memory);
1564 
1565 /*
1566  * Let drivers know whether the resource checks are effective
1567  */
1568 int acpi_resources_are_enforced(void)
1569 {
1570 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1571 }
1572 EXPORT_SYMBOL(acpi_resources_are_enforced);
1573 
1574 /*
1575  * Deallocate the memory for a spinlock.
1576  */
1577 void acpi_os_delete_lock(acpi_spinlock handle)
1578 {
1579 	ACPI_FREE(handle);
1580 }
1581 
1582 /*
1583  * Acquire a spinlock.
1584  *
1585  * handle is a pointer to the spinlock_t.
1586  */
1587 
1588 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1589 {
1590 	acpi_cpu_flags flags;
1591 	spin_lock_irqsave(lockp, flags);
1592 	return flags;
1593 }
1594 
1595 /*
1596  * Release a spinlock. See above.
1597  */
1598 
1599 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1600 {
1601 	spin_unlock_irqrestore(lockp, flags);
1602 }
1603 
1604 #ifndef ACPI_USE_LOCAL_CACHE
1605 
1606 /*******************************************************************************
1607  *
1608  * FUNCTION:    acpi_os_create_cache
1609  *
1610  * PARAMETERS:  name      - Ascii name for the cache
1611  *              size      - Size of each cached object
1612  *              depth     - Maximum depth of the cache (in objects) <ignored>
1613  *              cache     - Where the new cache object is returned
1614  *
1615  * RETURN:      status
1616  *
1617  * DESCRIPTION: Create a cache object
1618  *
1619  ******************************************************************************/
1620 
1621 acpi_status
1622 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1623 {
1624 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1625 	if (*cache == NULL)
1626 		return AE_ERROR;
1627 	else
1628 		return AE_OK;
1629 }
1630 
1631 /*******************************************************************************
1632  *
1633  * FUNCTION:    acpi_os_purge_cache
1634  *
1635  * PARAMETERS:  Cache           - Handle to cache object
1636  *
1637  * RETURN:      Status
1638  *
1639  * DESCRIPTION: Free all objects within the requested cache.
1640  *
1641  ******************************************************************************/
1642 
1643 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1644 {
1645 	kmem_cache_shrink(cache);
1646 	return (AE_OK);
1647 }
1648 
1649 /*******************************************************************************
1650  *
1651  * FUNCTION:    acpi_os_delete_cache
1652  *
1653  * PARAMETERS:  Cache           - Handle to cache object
1654  *
1655  * RETURN:      Status
1656  *
1657  * DESCRIPTION: Free all objects within the requested cache and delete the
1658  *              cache object.
1659  *
1660  ******************************************************************************/
1661 
1662 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1663 {
1664 	kmem_cache_destroy(cache);
1665 	return (AE_OK);
1666 }
1667 
1668 /*******************************************************************************
1669  *
1670  * FUNCTION:    acpi_os_release_object
1671  *
1672  * PARAMETERS:  Cache       - Handle to cache object
1673  *              Object      - The object to be released
1674  *
1675  * RETURN:      None
1676  *
1677  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1678  *              the object is deleted.
1679  *
1680  ******************************************************************************/
1681 
1682 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1683 {
1684 	kmem_cache_free(cache, object);
1685 	return (AE_OK);
1686 }
1687 #endif
1688 
1689 static int __init acpi_no_static_ssdt_setup(char *s)
1690 {
1691 	acpi_gbl_disable_ssdt_table_install = TRUE;
1692 	pr_info("ACPI: static SSDT installation disabled\n");
1693 
1694 	return 0;
1695 }
1696 
1697 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1698 
1699 static int __init acpi_disable_return_repair(char *s)
1700 {
1701 	printk(KERN_NOTICE PREFIX
1702 	       "ACPI: Predefined validation mechanism disabled\n");
1703 	acpi_gbl_disable_auto_repair = TRUE;
1704 
1705 	return 1;
1706 }
1707 
1708 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1709 
1710 acpi_status __init acpi_os_initialize(void)
1711 {
1712 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1713 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1714 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1715 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1716 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1717 		/*
1718 		 * Use acpi_os_map_generic_address to pre-map the reset
1719 		 * register if it's in system memory.
1720 		 */
1721 		int rv;
1722 
1723 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1724 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1725 	}
1726 	acpi_os_initialized = true;
1727 
1728 	return AE_OK;
1729 }
1730 
1731 acpi_status __init acpi_os_initialize1(void)
1732 {
1733 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1734 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1735 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1736 	BUG_ON(!kacpid_wq);
1737 	BUG_ON(!kacpi_notify_wq);
1738 	BUG_ON(!kacpi_hotplug_wq);
1739 	acpi_osi_init();
1740 	return AE_OK;
1741 }
1742 
1743 acpi_status acpi_os_terminate(void)
1744 {
1745 	if (acpi_irq_handler) {
1746 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1747 						 acpi_irq_handler);
1748 	}
1749 
1750 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1751 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1752 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1753 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1754 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1755 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1756 
1757 	destroy_workqueue(kacpid_wq);
1758 	destroy_workqueue(kacpi_notify_wq);
1759 	destroy_workqueue(kacpi_hotplug_wq);
1760 
1761 	return AE_OK;
1762 }
1763 
1764 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1765 				  u32 pm1b_control)
1766 {
1767 	int rc = 0;
1768 	if (__acpi_os_prepare_sleep)
1769 		rc = __acpi_os_prepare_sleep(sleep_state,
1770 					     pm1a_control, pm1b_control);
1771 	if (rc < 0)
1772 		return AE_ERROR;
1773 	else if (rc > 0)
1774 		return AE_CTRL_TERMINATE;
1775 
1776 	return AE_OK;
1777 }
1778 
1779 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1780 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1781 {
1782 	__acpi_os_prepare_sleep = func;
1783 }
1784 
1785 #if (ACPI_REDUCED_HARDWARE)
1786 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1787 				  u32 val_b)
1788 {
1789 	int rc = 0;
1790 	if (__acpi_os_prepare_extended_sleep)
1791 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1792 					     val_a, val_b);
1793 	if (rc < 0)
1794 		return AE_ERROR;
1795 	else if (rc > 0)
1796 		return AE_CTRL_TERMINATE;
1797 
1798 	return AE_OK;
1799 }
1800 #else
1801 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1802 				  u32 val_b)
1803 {
1804 	return AE_OK;
1805 }
1806 #endif
1807 
1808 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1809 			       u32 val_a, u32 val_b))
1810 {
1811 	__acpi_os_prepare_extended_sleep = func;
1812 }
1813 
1814 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1815 				u32 reg_a_value, u32 reg_b_value)
1816 {
1817 	acpi_status status;
1818 
1819 	if (acpi_gbl_reduced_hardware)
1820 		status = acpi_os_prepare_extended_sleep(sleep_state,
1821 							reg_a_value,
1822 							reg_b_value);
1823 	else
1824 		status = acpi_os_prepare_sleep(sleep_state,
1825 					       reg_a_value, reg_b_value);
1826 	return status;
1827 }
1828